More stories

  • in

    3 Questions: What’s it like winning the MIT $100K Entrepreneurship Competition?

    Solar power plays a major role in nearly every roadmap for global decarbonization. But solar panels are large, heavy, and expensive, which limits their deployment. But what if solar panels looked more like a yoga mat?

    Such a technology could be transported in a roll, carried to the top of a building, and rolled out across the roof in a matter of minutes, slashing installation costs and dramatically expanding the places where rooftop solar makes sense.

    That was the vision laid out by the MIT spinout Active Surfaces as part of the winning pitch at this year’s MIT $100K Entrepreneurship Competition, which took place May 15. The company is leveraging materials science and manufacturing innovations from labs across MIT to make ultra-thin, lightweight, and durable solar a reality.

    The $100K is one of MIT’s most visible entrepreneurship competitions, and past winners say the prize money is only part of the benefit that winning brings to a burgeoning new company. MIT News sat down with Active Surface founders Shiv Bhakta, a graduate student in MIT’s Leaders for Global Operations dual-degree program within the MIT Sloan School of Management and Department of Civil and Environmental Engineering, and Richard Swartwout SM ’18 PhD ’21, an electrical engineering and computer science graduate and former Research Laboratory of Electronics postdoc and MIT.nano innovation fellow, to learn what the last couple of months have been like since they won.

    Q: What is Active Surfaces’ solution, and what is its potential?

    Bhakta: We’re commercializing an ultrathin film, flexible solar technology. Solar is one of the most broadly distributed resources in the world, but access is limited today. It’s heavy — it weighs 50 to 60 pounds a panel — it requires large teams to move around, and the form factor can only be deployed in specific environments.

    Our approach is to develop a solar technology for the built environment. In a nutshell, we can create flexible solar panels that are as thin as paper, just as efficient as traditional panels, and at unprecedented cost floors, all while being applied to any surface. Same area, same power. That’s our motto.

    When I came to MIT, my north star was to dive deeper in my climate journey and help make the world a better, greener place. Now, as we build Active Surfaces, I’m excited to see that dream taking shape. The prospect of transforming any surface into an energy source, thereby expanding solar accessibility globally, holds the promise of significantly reducing CO2 emissions at a gigaton scale. That’s what gets me out of bed in the morning.

    Swartwout: Solar and a lot of other renewables tend to be pretty land-inefficient. Solar 1.0 is using low hanging fruit: cheap land next to easy interconnects and new buildings designed to handle the weight of current panels. But as we ramp up solar, those things will run out. We need to utilize spaces and assets better. That’s what I think solar 2.0 will be: urban PV deployments, solar that’s closer to demand, and integrated into the built environment. These next-generation use cases aren’t just a racking system in the middle of nowhere.

    We’re going after commercial roofs, which would cover most [building] energy demand. Something like 80-90 percent of building electricity demands in the space can be met by rooftop solar.

    The goal is to do the manufacturing in-house. We use roll-to-roll manufacturing, so we can buy tons of equipment off the shelf, but most roll-to-roll manufacturing is made for things like labeling and tape, and not a semiconductor, so our plan is to be the core of semiconductor roll-to-roll manufacturing. There’s never been roll-to-roll semiconductor manufacturing before.

    Q: What have the last few months been like since you won the $100K competition?

    Bhakta: After winning the $100K, we’ve gotten a lot of inbound contact from MIT alumni. I think that’s my favorite part about the MIT community — people stay connected. They’ve been congratulating us, asking to chat, looking to partner, deploy, and invest.

    We’ve also gotten contacted by previous $100K competition winners and other startups that have spun out of MIT that are a year or two or three ahead of us in terms of development. There are a lot of startup scaling challenges that other startup founders are best equipped to answer, and it’s been huge to get guidance from them.

    We’ve also gotten into top accelerators like Cleantech Open, Venture For Climatetech, and ACCEL at Greentown Labs. We also onboarded two rockstar MIT Sloan interns for the summer. Now we’re getting to the product-development phase, building relationships with potential pilot partners, and scaling up the area of our technology.      

    Swartwout: Winning the $100K competition was a great point of validation for the company, because the judges themselves are well known in the venture capital community as well as people who have been in the startup ecosystem for a long time, so that has really propelled us forward. Ideally, we’ll be getting more MIT alumni to join us to fulfill this mission.

    Q: What are your plans for the next year or so?

    Swartwout: We’re planning on leveraging open-access facilities like those at MIT.nano and the University of Massachusetts Amherst. We’re pretty focused now on scaling size. Out of the lab, [the technology] is a 4-inch by 4-inch solar module, and the goal is to get up to something that’s relevant for the industry to offset electricity for building owners and generate electricity for the grid at a reasonable cost.

    Bhakta: In the next year, through those open-access facilities, the goal is to go from 100-millimeter width to 300-millimeter width and a very long length using a roll-to-roll manufacturing process. That means getting through the engineering challenges of scaling technology and fine tuning the performance.

    When we’re ready to deliver a pilotable product, it’s my job to have customers lined up ready to demonstrate this works on their buildings, sign longer term contracts to get early revenue, and have the support we need to demonstrate this at scale. That’s the goal. More

  • in

    Helping the transportation sector adapt to a changing world

    After graduating from college, Nick Caros took a job as an engineer with a construction company, helping to manage the building of a new highway bridge right near where he grew up outside of Vancouver, British Columbia.  

    “I had a lot of friends that would use that new bridge to get to work,” Caros recalls. “They’d say, ‘You saved me like 20 minutes!’ That’s when I first realized that transportation could be a huge benefit to people’s lives.”

    Now a PhD candidate in the Urban Mobility Lab and the lead researcher for the MIT Transit Research Consortium, Caros works with seven transit agencies across the country to understand how workers’ transportation needs have changed as companies have adopted remote work policies.

    “Another cool thing about working on transportation is that everybody, even if they don’t engage with it on an academic level, has an opinion or wants to talk about it,” says Caros. “As soon as I mention I’ve worked with the T, they have something they want to talk about.”

    Caros is drawn to projects with social impact beyond saving his friends a few minutes during their commutes. He sees public transportation as a crucial component in combating climate change and is passionate about identifying and lowering the psychological barriers that prevent people around the world from taking advantage of their local transit systems.

    “The more I’ve learned about public transportation, the more I’ve come to realize it will play an essential part in decarbonizing urban transportation,” says Caros. “I want to continue working on these kinds of issues, like how we can make transportation more sustainable or promoting public transportation in places where it doesn’t exist or can be improved.”

    Caros says he doesn’t have a “transportation origin story,” like some of his peers who grew up in urban centers with robust public transit systems. As a child growing up in the Vancouver suburbs, he always enjoyed the outdoors, which were as close as his backyard. He chose to study engineering as an undergraduate at the University of British Columbia, fascinated by the hydroelectric dams that supply Vancouver with most of its power. But after two projects with the construction company, the second of which took him to Maryland to work on a fossil fuel project, he decided he needed a change.

    Not quite sure what he wanted to do next, Caros sought out the shortest master’s program he could find that interested him. That ended up being an 18-month master’s program in transportation planning and engineering at New York University. Initially intending to pursue the course-based program, Caros was soon offered the chance to be a research assistant in NYU’s Behavioral Urban Informatics, Logistics, and Transport Laboratory with Professor Joseph Chow. There, he worked to model an experimental transportation system of modular self-driving cars that could link and unlink with each other while in motion.

    “It was this really futuristic stuff,” says Caros. “It turned out to be a really cool project to work on because it’s kind of rare to have a blank-slate problem to try and solve. A lot of transportation engineering problems have largely been solved. We know how to make efficient and sustainable transportation systems; it’s just finding the political support and encouraging behavioral change that remains a challenge.”

    At NYU, Caros fell in love with research and the field of transportation. Later, he was drawn to MIT by its interdisciplinary PhD program that spans both urban studies and planning and civil engineering and the opportunity to work with Professor Jinhua Zhao.

    His research focuses on identifying “third places,” locations where some people go if their job gives them the flexibility to work remotely. Previously, transportation needs revolved around office spaces, typically located in city centers. With more people working from home, the first assumption is that transportation needs would decrease. But that’s not what Caros has found.

    “One major finding from our research is that people have changed where they’re going when they go to work,” says Caros. “A lot of people are working from home, but some are also working in other places, like coffee shops or co-working spaces. And these third places are not evenly distributed in Boston.”

    Identifying the concentration of these third places and what locations would benefit from them is the core of Caros’ dissertation. He’s building an algorithm that identifies ideal locations to build more shared workplaces based on both economic and social factors. Caros seeks to answer how you can minimize travel time across the board while leaving room for the spontaneous social interactions that drive a city’s productivity. His research is sponsored by seven of the largest transit agencies in the United States, who are members of the MIT Transit Research Consortium. Rather than a single agency sponsoring a single specific project, funding is pooled to tackle projects that address general topics that can apply to multiple cities.

    These kinds of problems require a multidisciplinary approach that appeals to Caros. Even when diving into the technical details of a solution, he always keeps the bigger picture in mind. He is certain that changing people’s views of public transportation will be crucial in the fight against climate change.

    “A lot of it is not necessarily engineering, but understanding what the motivations of people are,” says Caros. “Transportation is a leading sector for carbon emissions in the U.S., and so figuring out what makes people tick and how you can get them to ride public transit more, for example, would help to reduce the overall carbon cost.”

    Following the completion of his degree, Caros will join the Organization for Economic Cooperation and Development. He already spent six months at its Paris headquarters as an intern during a leave from MIT, something his lab encourages all of its students to do. Last fall, he worked on drafting policy guidelines for new mobility services such as vehicle-share scooters, and addressing transportation equity issues in Ghana. Plus, living in Paris gave him the opportunity to practice his French. Growing up in Canada, he attended a French immersion school, and his internship offered his first opportunity to use the language outside of an academic context.

    Looking forward, Caros hopes to keep tackling projects that promote sustainable public transportation. There is an urgency in getting ahead of the curve, especially in cities experiencing rapid growth.

    “You kind of get locked in,” says Caros. “It becomes much harder to build sustainable transportation systems after the fact. But it’s really just a geometry problem. Trains and buses are a way more efficient way to move people using the same amount of space as private cars.” More

  • in

    Harnessing synthetic biology to make sustainable alternatives to petroleum products

    Reducing our reliance on fossil fuels is going to require a transformation in the way we make things. That’s because the hydrocarbons found in fuels like crude oil, natural gas, and coal are also in everyday items like plastics, clothing, and cosmetics.

    Now Visolis, founded by Deepak Dugar SM ’11, MBA ’13, PhD ’13, is combining synthetic biology with chemical catalysis to reinvent the way the world makes things — and reducing gigatons of greenhouse gas emissions in the process.

    The company — which uses a microbe to ferment biomass waste like wood chips and create a molecular building block called mevalonic acid — is more sustainably producing everything from car tires and cosmetics to aviation fuels by tweaking the chemical processes involved to make different byproducts.

    “We started with [the rubber component] isoprene as the main molecule we produce [from mevalonic acid], but we’ve expanded our platform with this unique combination of chemistry and biology that allows us to decarbonize multiple supply chains very rapidly and efficiently,” Dugar explains. “Imagine carbon-negative yoga pants. We can make that happen. Tires can be carbon-negative, personal care can lower its footprint — and we’re already selling into personal care. So in everything from personal care to apparel to industrial goods, our platform is enabling decarbonization of manufacturing.”

    “Carbon-negative” is a term Dugar uses a lot. Visolis has already partnered with some of the world’s largest consumers of isoprene, a precursor to rubber, and now Dugar wants to prove out the company’s process in other emissions-intensive industries.

    “Our process is carbon-negative because plants are taking CO2 from the air, and we take that plant matter and process it into something structural, like synthetic rubber, which is used for things like roofing, tires, and other applications,” Dugar explains. “Generally speaking, most of that material at the end of its life gets recycled, for example to tarmac or road, or, worst-case scenario, it ends up in a landfill, so the CO2 that was captured by the plant matter stays captured in the materials. That means our production can be carbon-negative depending on the emissions of the production process. That allows us to not only reduce climate change but start reversing it. That was an insight I had about 10 years ago at MIT.”

    Finding a path

    For his PhD, Dugar explored the economics of using microbes to make high-octane gas additives. He also took classes at the MIT Sloan School of Management on sustainability and entrepreneurship, including the particularly influential course 15.366 (Climate and Energy Ventures). The experience inspired him to start a company.

    “I wanted to work on something that could have the largest climate impact, and that was replacing petroleum,” Dugar says. “It was about replacing petroleum not just as a fuel but as a material as well. Everything from the clothes we wear to the furniture we sit on is often made using petroleum.”

    By analyzing recent advances in synthetic biology and making some calculations from first principles, Dugar decided that a microbial approach to cleaning up the production of rubber was viable. He participated in the MIT Clean Energy Prize and worked with others at MIT to prove out the idea. But it was still just an idea. After graduation, he took a consulting job at a large company, spending his nights and weekends renting lab space to continue trying to make his sustainable rubber a reality.

    After 18 months, by applying engineering concepts like design-for-scale to synthetic biology, Dugar was able to develop a microbe that met 80 percent of his criteria for making an intermediate molecule called mevalonic acid. From there, he developed a chemical catalysis process that converted mevalonic acid to isoprene, the main component of natural rubber. Visolis has since patented other chemical conversion processes that turn mevalonic acid to aviation fuel, polymers, and fabrics.

    Dugar left his consulting job in 2014 and was awarded a fellowship to work on Visolis full-time at the Lawrence Berkeley National Lab via Activate, an incubator empowering scientists to reinvent the world.

    From rubber to jet fuels

    Today, in addition to isoprene, Visolis is selling skin care products through the brand Ameva Bio, which produces mevalonic acid-based creams by recycling plant byproducts created in other processes. The company offers refillable bottles and even offsets emissions from the shipping of its products.

    “We are working throughout the supply chain,” Dugar says. “It made sense to clean up the isoprene part of the rubber supply chain rather than the entire supply chain. But we’re also producing molecules for skin that are better for you, so you can put something much more sustainable and healthier on your body instead of petrochemicals. We launched Ameva to demonstrate that brands can leverage synthetic biology to turn carbon-negative ingredients into high-performing products.”

    Visolis is also starting the process of gaining regulatory approval for its sustainable aviation fuel, which Dugar believes could have the biggest climate impact of any of the company’s products by cleaning up the production of fuels for commercial flight.

    “We’re working with leading companies to help them decarbonize aviation” Dugar says. “If you look at the lifecycle of fuel, the current petroleum-based approach is we dig out hydrocarbons from the ground and burn it, emitting CO2 into the air. In our process, we take plant matter, which affixes to CO2 and captures renewable energy in those bonds, and then we transfer that into aviation fuel plus things like synthetic rubber, yoga pants, and other things that continue to hold the carbon. So, our factories can still operate at net zero carbon emissions.”

    Visolis is already generating millions of dollars in revenue, and Dugar says his goal is to scale the company rapidly now that its platform molecule has been validated.

    “We have been scaling our technology by 10 times every two to three years and are now looking to increase deployment of our technology at the same pace, which is very exciting.” Dugar says. “If you extrapolate that, very quickly you get to massive impact. That’s our goal.” More

  • in

    Cutting urban carbon emissions by retrofitting buildings

    To support the worldwide struggle to reduce carbon emissions, many cities have made public pledges to cut their carbon emissions in half by 2030, and some have promised to be carbon neutral by 2050. Buildings can be responsible for more than half a municipality’s carbon emissions. Today, new buildings are typically designed in ways that minimize energy use and carbon emissions. So attention focuses on cleaning up existing buildings.

    A decade ago, leaders in some cities took the first step in that process: They quantified their problem. Based on data from their utilities on natural gas and electricity consumption and standard pollutant-emission rates, they calculated how much carbon came from their buildings. They then adopted policies to encourage retrofits, such as adding insulation, switching to double-glazed windows, or installing rooftop solar panels. But will those steps be enough to meet their pledges?

    “In nearly all cases, cities have no clear plan for how they’re going to reach their goal,” says Christoph Reinhart, a professor in the Department of Architecture and director of the Building Technology Program. “That’s where our work comes in. We aim to help them perform analyses so they can say, ‘If we, as a community, do A, B, and C to buildings of a certain type within our jurisdiction, then we are going to get there.’”

    To support those analyses, Reinhart and a team in the MIT Sustainable Design Lab (SDL) — PhD candidate Zachary M. Berzolla SM ’21; former doctoral student Yu Qian Ang PhD ’22, now a research collaborator at the SDL; and former postdoc Samuel Letellier-Duchesne, now a senior building performance analyst at the international building engineering and consulting firm Introba — launched a publicly accessible website providing a series of simulation tools and a process for using them to determine the impacts of planned steps on a specific building stock. Says Reinhart: “The takeaway can be a clear technology pathway — a combination of building upgrades, renewable energy deployments, and other measures that will enable a community to reach its carbon-reduction goals for their built environment.”

    Analyses performed in collaboration with policymakers from selected cities around the world yielded insights demonstrating that reaching current goals will require more effort than city representatives and — in a few cases — even the research team had anticipated.

    Exploring carbon-reduction pathways

    The researchers’ approach builds on a physics-based “building energy model,” or BEM, akin to those that architects use to design high-performance green buildings. In 2013, Reinhart and his team developed a method of extending that concept to analyze a cluster of buildings. Based on publicly available geographic information system (GIS) data, including each building’s type, footprint, and year of construction, the method defines the neighborhood — including trees, parks, and so on — and then, using meteorological data, how the buildings will interact, the airflows among them, and their energy use. The result is an “urban building energy model,” or UBEM, for a neighborhood or a whole city.

    The website developed by the MIT team enables neighborhoods and cities to develop their own UBEM and to use it to calculate their current building energy use and resulting carbon emissions, and then how those outcomes would change assuming different retrofit programs or other measures being implemented or considered. “The website — UBEM.io — provides step-by-step instructions and all the simulation tools that a team will need to perform an analysis,” says Reinhart.

    The website starts by describing three roles required to perform an analysis: a local sustainability champion who is familiar with the municipality’s carbon-reduction efforts; a GIS manager who has access to the municipality’s urban datasets and maintains a digital model of the built environment; and an energy modeler — typically a hired consultant — who has a background in green building consulting and individual building energy modeling.

    The team begins by defining “shallow” and “deep” building retrofit scenarios. To explain, Reinhart offers some examples: “‘Shallow’ refers to things that just happen, like when you replace your old, failing appliances with new, energy-efficient ones, or you install LED light bulbs and weatherstripping everywhere,” he says. “‘Deep’ adds to that list things you might do only every 20 years, such as ripping out walls and putting in insulation or replacing your gas furnace with an electric heat pump.”

    Once those scenarios are defined, the GIS manager uploads to UBEM.io a dataset of information about the city’s buildings, including their locations and attributes such as geometry, height, age, and use (e.g., commercial, retail, residential). The energy modeler then builds a UBEM to calculate the energy use and carbon emissions of the existing building stock. Once that baseline is established, the energy modeler can calculate how specific retrofit measures will change the outcomes.

    Workshop to test-drive the method

    Two years ago, the MIT team set up a three-day workshop to test the website with sample users. Participants included policymakers from eight cities and municipalities around the world: namely, Braga (Portugal), Cairo (Egypt), Dublin (Ireland), Florianopolis (Brazil), Kiel (Germany), Middlebury (Vermont, United States), Montreal (Canada), and Singapore. Taken together, the cities represent a wide range of climates, socioeconomic demographics, cultures, governing structures, and sizes.

    Working with the MIT team, the participants presented their goals, defined shallow- and deep-retrofit scenarios for their city, and selected a limited but representative area for analysis — an approach that would speed up analyses of different options while also generating results valid for the city as a whole.

    They then performed analyses to quantify the impacts of their retrofit scenarios. Finally, they learned how best to present their findings — a critical part of the exercise. “When you do this analysis and bring it back to the people, you can say, ‘This is our homework over the next 30 years. If we do this, we’re going to get there,’” says Reinhart. “That makes you part of the community, so it’s a joint goal.”

    Sample results

    After the close of the workshop, Reinhart and his team confirmed their findings for each city and then added one more factor to the analyses: the state of the city’s electric grid. Several cities in the study had pledged to make their grid carbon-neutral by 2050. Including the grid in the analysis was therefore critical: If a building becomes all-electric and purchases its electricity from a carbon-free grid, then that building will be carbon neutral — even with no on-site energy-saving retrofits.

    The final analysis for each city therefore calculated the total kilograms of carbon dioxide equivalent emitted per square meter of floor space assuming the following scenarios: the baseline; shallow retrofit only; shallow retrofit plus a clean electricity grid; deep retrofit only; deep retrofit plus rooftop photovoltaic solar panels; and deep retrofit plus a clean electricity grid. (Note that “clean electricity grid” is based on the area’s most ambitious decarbonization target for their power grid.)

    The following paragraphs provide highlights of the analyses for three of the eight cities. Included are the city’s setting, emission-reduction goals, current and proposed measures, and calculations of how implementation of those measures would affect their energy use and carbon emissions.

    Singapore

    Singapore is generally hot and humid, and its building energy use is largely in the form of electricity for cooling. The city is dominated by high-rise buildings, so there’s not much space for rooftop solar installations to generate the needed electricity. Therefore, plans for decarbonizing the current building stock must involve retrofits. The shallow-retrofit scenario focuses on installing energy-efficient lighting and appliances. To those steps, the deep-retrofit scenario adds adopting a district cooling system. Singapore’s stated goals are to cut the baseline carbon emissions by about a third by 2030 and to cut it in half by 2050.

    The analysis shows that, with just the shallow retrofits, Singapore won’t achieve its 2030 goal. But with the deep retrofits, it should come close. Notably, decarbonizing the electric grid would enable Singapore to meet and substantially exceed its 2050 target assuming either retrofit scenario.

    Dublin

    Dublin has a mild climate with relatively comfortable summers but cold, humid winters. As a result, the city’s energy use is dominated by fossil fuels, in particular, natural gas for space heating and domestic hot water. The city presented just one target — a 40 percent reduction by 2030.

    Dublin has many neighborhoods made up of Georgian row houses, and, at the time of the workshop, the city already had a program in place encouraging groups of owners to insulate their walls. The shallow-retrofit scenario therefore focuses on weatherization upgrades (adding weatherstripping to windows and doors, insulating crawlspaces, and so on). To that list, the deep-retrofit scenario adds insulating walls and installing upgraded windows. The participants didn’t include electric heat pumps, as the city was then assessing the feasibility of expanding the existing district heating system.

    Results of the analyses show that implementing the shallow-retrofit scenario won’t enable Dublin to meet its 2030 target. But the deep-retrofit scenario will. However, like Singapore, Dublin could make major gains by decarbonizing its electric grid. The analysis shows that a decarbonized grid — with or without the addition of rooftop solar panels where possible — could more than halve the carbon emissions that remain in the deep-retrofit scenario. Indeed, a decarbonized grid plus electrification of the heating system by incorporating heat pumps could enable Dublin to meet a future net-zero target.

    Middlebury

    Middlebury, Vermont, has warm, wet summers and frigid winters. Like Dublin, its energy demand is dominated by natural gas for heating. But unlike Dublin, it already has a largely decarbonized electric grid with a high penetration of renewables.

    For the analysis, the Middlebury team chose to focus on an aging residential neighborhood similar to many that surround the city core. The shallow-retrofit scenario calls for installing heat pumps for space heating, and the deep-retrofit scenario adds improvements in building envelopes (the façade, roof, and windows). The town’s targets are a 40 percent reduction from the baseline by 2030 and net-zero carbon by 2050.

    Results of the analyses showed that implementing the shallow-retrofit scenario won’t achieve the 2030 target. The deep-retrofit scenario would get the city to the 2030 target but not to the 2050 target. Indeed, even with the deep retrofits, fossil fuel use remains high. The explanation? While both retrofit scenarios call for installing heat pumps for space heating, the city would continue to use natural gas to heat its hot water.

    Lessons learned

    For several policymakers, seeing the results of their analyses was a wake-up call. They learned that the strategies they had planned might not be sufficient to meet their stated goals — an outcome that could prove publicly embarrassing for them in the future.

    Like the policymakers, the researchers learned from the experience. Reinhart notes three main takeaways.

    First, he and his team were surprised to find how much of a building’s energy use and carbon emissions can be traced to domestic hot water. With Middlebury, for example, even switching from natural gas to heat pumps for space heating didn’t yield the expected effect: On the bar graphs generated by their analyses, the gray bars indicating carbon from fossil fuel use remained. As Reinhart recalls, “I kept saying, ‘What’s all this gray?’” While the policymakers talked about using heat pumps, they were still going to use natural gas to heat their hot water. “It’s just stunning that hot water is such a big-ticket item. It’s huge,” says Reinhart.

    Second, the results demonstrate the importance of including the state of the local electric grid in this type of analysis. “Looking at the results, it’s clear that if we want to have a successful energy transition, the building sector and the electric grid sector both have to do their homework,” notes Reinhart. Moreover, in many cases, reaching carbon neutrality by 2050 would require not only a carbon-free grid but also all-electric buildings.

    Third, Reinhart was struck by how different the bar graphs presenting results for the eight cities look. “This really celebrates the uniqueness of different parts of the world,” he says. “The physics used in the analysis is the same everywhere, but differences in the climate, the building stock, construction practices, electric grids, and other factors make the consequences of making the same change vary widely.”

    In addition, says Reinhart, “there are sometimes deeply ingrained conflicts of interest and cultural norms, which is why you cannot just say everybody should do this and do this.” For instance, in one case, the city owned both the utility and the natural gas it burned. As a result, the policymakers didn’t consider putting in heat pumps because “the natural gas was a significant source of municipal income, and they didn’t want to give that up,” explains Reinhart.

    Finally, the analyses quantified two other important measures: energy use and “peak load,” which is the maximum electricity demanded from the grid over a specific time period. Reinhart says that energy use “is probably mostly a plausibility check. Does this make sense?” And peak load is important because the utilities need to keep a stable grid.

    Middlebury’s analysis provides an interesting look at how certain measures could influence peak electricity demand. There, the introduction of electric heat pumps for space heating more than doubles the peak demand from buildings, suggesting that substantial additional capacity would have to be added to the grid in that region. But when heat pumps are combined with other retrofitting measures, the peak demand drops to levels lower than the starting baseline.

    The aftermath: An update

    Reinhart stresses that the specific results from the workshop provide just a snapshot in time; that is, where the cities were at the time of the workshop. “This is not the fate of the city,” he says. “If we were to do the same exercise today, we’d no doubt see a change in thinking, and the outcomes would be different.”

    For example, heat pumps are now familiar technology and have demonstrated their ability to handle even bitterly cold climates. And in some regions, they’ve become economically attractive, as the war in Ukraine has made natural gas both scarce and expensive. Also, there’s now awareness of the need to deal with hot water production.

    Reinhart notes that performing the analyses at the workshop did have the intended impact: It brought about change. Two years after the project had ended, most of the cities reported that they had implemented new policy measures or had expanded their analysis across their entire building stock. “That’s exactly what we want,” comments Reinhart. “This is not an academic exercise. It’s meant to change what people focus on and what they do.”

    Designing policies with socioeconomics in mind

    Reinhart notes a key limitation of the UBEM.io approach: It looks only at technical feasibility. But will the building owners be willing and able to make the energy-saving retrofits? Data show that — even with today’s incentive programs and subsidies — current adoption rates are only about 1 percent. “That’s way too low to enable a city to achieve its emission-reduction goals in 30 years,” says Reinhart. “We need to take into account the socioeconomic realities of the residents to design policies that are both effective and equitable.”

    To that end, the MIT team extended their UBEM.io approach to create a socio-techno-economic analysis framework that can predict the rate of retrofit adoption throughout a city. Based on census data, the framework creates a UBEM that includes demographics for the specific types of buildings in a city. Accounting for the cost of making a specific retrofit plus financial benefits from policy incentives and future energy savings, the model determines the economic viability of the retrofit package for representative households.

    Sample analyses for two Boston neighborhoods suggest that high-income households are largely ineligible for need-based incentives or the incentives are insufficient to prompt action. Lower-income households are eligible and could benefit financially over time, but they don’t act, perhaps due to limited access to information, a lack of time or capital, or a variety of other reasons.

    Reinhart notes that their work thus far “is mainly looking at technical feasibility. Next steps are to better understand occupants’ willingness to pay, and then to determine what set of federal and local incentive programs will trigger households across the demographic spectrum to retrofit their apartments and houses, helping the worldwide effort to reduce carbon emissions.”

    This work was supported by Shell through the MIT Energy Initiative. Zachary Berzolla was supported by the U.S. National Science Foundation Graduate Research Fellowship. Samuel Letellier-Duchesne was supported by the postdoctoral fellowship of the Natural Sciences and Engineering Research Council of Canada.

    This article appears in the Spring 2023 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Transatlantic connections make the difference for MIT Portugal

    Successful relationships take time to develop, with both parties investing energy and resources and fostering mutual trust and understanding. The MIT Portugal Program (MPP), a strategic partnership between MIT, Portuguese universities and research institutions, and the Portuguese government, is a case in point.

    Portugal’s inaugural partnership with a U.S. university, MPP was established in 2006 as a collaboration between MIT and the Portuguese Science and Technology Foundation (Fundação para a Ciência e Tecnologia, or FCT). Since then, the program has developed research platforms in areas such as bioengineering, sustainable energy, transportation systems, engineering design, and advanced manufacturing. Now halfway through its third phase (MPP2030, begun in 2018), the program owes much of its success to the bonds connecting institutions and people across the Atlantic over the past 17 years.

    “When you look at the successes and the impact, these things don’t happen overnight,” says John Hansman, the T. Wilson Professor of Aeronautics and Astronautics at MIT and co-director of MPP, noting, in particular, MPP’s achievements in the areas of energy and ocean research, as well as bioengineering. “This has been a longstanding relationship that we have and want to continue. I think it’s been beneficial to Portugal and to MIT. I think you can argue it has made substantial contributions to the success that Portugal is currently experiencing both in its technical capabilities and also its energy policy.”

    With research often aimed at climate and sustainability solutions, one of MPP’s key strengths is its education of future leaders in science, technology, and entrepreneurship. And the program’s impacts carry forward, as several former MPP students are now on the faculty at participating Portuguese universities.

    “The original intent of working together with Portugal was to try to establish collaboration between universities and to instill some of the MIT culture with the culture in Portugal, and I think that’s been hugely successful,” says Douglas Hart, MPP co-director and professor of mechanical engineering at MIT. “It has had a lot of impacts in terms of the research, but also the people.”

    One of those people is André Pina, associate director of H2 strategy and origination at the company EDP, who was in residence at MIT in 2014 as part of the MPP Sustainable Energy Systems Doctoral Program. He says the competencies and experiences he acquired have been critical to his professional development in energy system planning, have influenced his approach to problem solving, and have allowed him to bring “holistic thinking” to business endeavors.

    “The MIT Portugal Program has created a collaborative ecosystem between Portuguese universities, companies, and MIT that enabled the training of highly qualified professionals, while contributing to the positioning of Portuguese companies in new cutting-edge fields,” he says.

    Building on MPP’s previous successes, MPP2030 focuses on advancing research in four strategic areas: climate science and climate change; earth systems from oceans to near space; digital transformation in manufacturing; and sustainable cities — all involving data science-intensive approaches and methodologies. Within these broad scientific areas, FCT funding has enabled seven collaborative large-scale “flagship” projects between Portuguese and MIT researchers during the current phase, as well as dozens of smaller projects.

    Flagship projects currently underway include:

    ·   AEROS Constellation

    ·   C-Tech: Climate Driven Technologies for Low Carbon Cities

    ·   K2D: Knowledge and Data from the Deep to Space

    ·   NEWSAT

    ·   Operator: Digital Transformation in Industry with a Focus on the Operator 4.0

    ·   SNOB-5G: Scalable Network Backhauling for 5G

    ·   Transformer 4.0: Digital Revolution of Power Transformers

    Sustainability plays a significant role in MPP — reflective of the value both Portugal and MIT place on environmental, energy, and climate solutions. Projects under the Sustainable Cities strategic area, for example, are “helping cities in Portugal to become more efficient and more sustainable,” Hansman says, noting that MPP’s influence is being felt in cities across the country and it is “having a big impact in terms of local city planning activities.”

    Regarding energy, Hansman points to a previous MPP phase that focused on the Azores as an isolated energy ecosystem and investigated its ability to minimize energy use and become energy independent.

    “That view of system-level energy use helped to stimulate activity on the mainland in Portugal, which has helped Portugal become a leader in various energy sources and made them less vulnerable in the last year or two,” Hansman says.

    In the Oceans to Near Space strategic area, the K2D flagship project also emphasizes research into sustainability solutions, as well as resilience to environmental change. Over the past few years, K2D researchers in Portugal and MIT have worked together to develop components that permit cost-effective gathering of chemical, physical, biological, and environmental data from the ocean depths. One current project investigates the integration of autonomous underwater vehicles with subsea cables to enhance both environmental monitoring and hazard warning systems.

    “The program has been very successful,” Hart says. “They are now deploying a 2-kilometer cable just south of Lisbon, which will be in place in another month or so. Portugal has been hit with tsunamis that caused tremendous devastation, and one of the objectives of these cables is to sense tsunamis. So, it’s an early warning system.”

    As a leader in ocean technology with a long history of maritime discovery, Portugal provides many opportunities for MIT’s ocean researchers. Hart notes that the Portuguese military invites international researchers on board its ships, providing MIT with research opportunities that would be financially difficult otherwise.

    Hansman adds that partnering with researchers in the Azores provides MIT with unique access to facilities and labs in the middle of the Atlantic Ocean. For example, Hart will be teaching at a marine robotics summer school in the Azores this July.

    Cadence Payne, an MIT PhD candidate, is among those planning to attend. Through MPP’s AEROS project, Payne has helped develop a modular “cubesat” that will orbit over Portugal’s Exclusive Economic Zone collecting images and radio data to help define the ecological health of the country’s coastal waters. The nanosatellite is expected to launch in late 2023 or early 2024, says Payne, adding that it will be Portugal’s first cubesat mission.

    “In monitoring the ocean, you’re monitoring the climate,” Payne says. “If you want to do work on detecting climate change and developing methods of mitigating climate change … it helps to integrate international collaboration,” she says, adding that, for students, “it’s been a really beautiful opportunity for us to see the benefits of collaboration.”

    “I would say one of the main benefits of working with Portugal is that we share many interests in research in the sense that they’re very interested in climate change, sustainability, environmental impacts and those kinds of things,” says Hart. “They have turned out to be a very good strategic partner for MIT, and, hopefully, MIT for them.” More

  • in

    MIT climate and sustainability interns consider aviation emissions and climate change

    Over 600 MIT students are traveling abroad with the MIT International Science and Technology Initiatives (MISTI) to intern, research, and work in organizations across 25 countries this summer. Twenty percent of the students were placed in areas related to climate and sustainability.

    Through MISTI, hundreds of MIT students travel abroad each summer to intern in companies, universities, governments, and nongovernmental organizations. Since 2018, around 20 percent of the internships and research experiences have been in areas related to climate and sustainability. MISTI has been working to increase the number of interns working on these projects by increasing the number of hosts and available grants, as well as connecting with other labs, departments, and centers across MIT to support students’ global experiences.

    For the first time this year, MISTI developed pre-departure sessions intended to help students reflect on their experiences in the wider context of sustainability and climate change. Around 90 students were invited to participate in a Canvas course and an in-person session with guest speakers. In the Canvas session, students were asked to calculate the carbon footprint of their flight to their MISTI destination and compare the results to other common daily activities. Four out of five of them expressed that the level of emissions from their flights was higher, or much higher, than they previously thought. Half of the students expressed that this was the first time they thought about their flight emissions for the summer. The students were then directed to the MIT Climate Portal website and asked to reflect on the impact of carbon dioxide emissions on the climate and the effects of climate change on economically developing countries. The Canvas exercise concluded with readings and reflections on what can be done to address the climate crisis.

    The in-person session featured David Hsu, associate professor of urban and environmental planning and co-chair of the Campus Fast Forward working group on climate education, who presented his research and work on flight emissions. He emphasized the high impact of aviation on carbon dioxide emissions and how emissions are unevenly distributed on a global scale, based on income levels and per capita bases. A small group of travelers account for most of the emissions, which is also true in academic settings where a small number of travelers have a much higher carbon footprint. Hsu also explained the School of Architecture and Planning climate action plan and how it addresses faculty and student travel. “I know it’s hard. If we at MIT want to be leaders in this area, talking about it is not enough,” he said. “We have to act. We cannot be models just by doing research; we have to be role models at all levels. Faculty, staff, and students have to change their flight habits.”

    Having completed the climate and sustainability training, Favianna Colón Irizarry, a rising second-year majoring in chemical and biological engineering, explains, “to minimize our carbon footprint, we are taught to eat consciously and use environmentally friendly products. What we are not taught is that this alone will not make a difference; we ought to sacrifice more, like flying selectively and meaningfully, to truly make an impact. MISTI’s Climate and Sustainability helped me recognize this, as well as prepare me for how I choose to proceed in my future green endeavors.”

    Also during the session, rising seniors Anushree Chaudhuri and Melissa Stok, the leads for the MIT Student Sustainability Coalition, presented their work around coordinating efforts among students and the vast landscape of groups, organizations, and entities at the Institute. They invited all interested students to join and reach out to any of the entities that could be a good fit for their interests. Chaudhuri reflected afterwards, “Sustainability is inherently interdisciplinary. Every MIT student can incorporate sustainability into their work, regardless of major, class year, or interests! I was excited to join my SSC co-lead, Melissa, in speaking with a diverse group of MISTI interns about how to explore sustainability-related academic, extracurricular, professional, and experiential opportunities at MIT and beyond. These students come from many different disciplines, so it was incredibly heartening to hear that they are all pursuing a climate-related project abroad this summer.”

    Eduardo Rivera, MISTI’s coordinator for climate and sustainability expressed that “educational experiences abroad are a fundamental part of MIT’s mission to foster global leaders to tackle the climate crisis. This summer, more than 110 students will be working around the world in solar and wind technologies, carbon capture, climate adaptation and urban planning, sustainable concrete, electric mobility, among others. We are using this opportunity to expand on the reflection part of the experiential learning cycle. The goal of these pre-departure sessions is to raise awareness and help our students reflect on the impact of their everyday activities on the climate, and to also give them resources to learn and act thoughtfully. We hope they will not only become conscious travelers, but also agents for change.”

    “This year’s climate and sustainability pre-departure training were pilot sessions, and the goal is to expand this learning experience to all MISTI students, not just those working in the fields of climate and sustainability. This will be a unique opportunity to raise awareness and expand the knowledge to over 1,000 of our students as they travel to more than 40 countries across the globe,” explains Abby MacKenzie, MIT-India coordinator who co-developed the pre-departure sessions. More

  • in

    MIT speaker series taps into students’ passion for entrepreneurship and social impact.

    Last summer, leaders of MIT’s Venture Mentoring Service (VMS) noticed a growing trend in entrepreneur applications to the program: An increasing number of aspiring founders were expressing a passion for social impact.

    VMS, which connects students and alumni with teams of mentors, hosts bootcamps, holds expert office hours, and offers an annual Demo Day, did not previously have offerings to help founders focused on this type of impact, so its leaders decided to pilot an Impact Speaker Series.

    The series, which featured experienced early-stage entrepreneurs from the MIT community and took place throughout the year, was a smashing success. In total, more than 1,200 MIT community members registered across eight events, including students at all stages of their education as well as alumni interested in making a positive impact on the world through entrepreneurship.

    “We felt an intense desire from attendees to explore entrepreneurship as a path to solve our most pressing problems,” VMS mentor and series co-Lead Paul Bosco says. “The degree to which students identified with challenges such as climate, health, sustainability, and education, rather than their major, was striking. Our goal was to help them see a path as first-time founders.”

    Now VMS is riding the momentum from the speaker series by rolling out more support services for impact-driven students, including hosting additional events, adding experienced impact entrepreneurs and social enterprise experts to its network of mentors, and connecting with more funders and executives with experience leading organizations focused on impact.

    Ultimately, VMS believes these new efforts will bolster MIT’s broader mission of translating science and innovation from its labs and classrooms into positive advances around the world.

    “Our pivot to strengthen support for founders with a passion for impact is absolutely aligned with the mission of MIT,” Bosco says. “Pursuing research and ideas with a passion for world-changing impact has always been in the DNA of MIT. A new generation of entrepreneurs is challenging us to help them hone their skills and lead organizations to build a better world.”

    Striking a chord

    Each one of VMS’ events had a different theme, from addressing general founder challenges, like first time pre-seed or nondilutive fundraising to building startup ventures in sectors like climate, health care, and education. One panel focused on helping entrepreneurs find their personal paths to success and impact, featuring founders leading impactful companies at different stages of development. Another panel discussion, titled Funding Your Path to Impact and Success, featured investors and directors of programs funding ventures delivering impact.

    “I want to encourage founders to consider driving toward a new ‘unicorn success’ model, where success is not measured in $1-billion-dollar valuations, but is based on world-changing carbon reductions, water cleanliness, lives saved, students inspired, etc.,” Ela Mirowski, a program director with the National Science Foundation, told the audience at one event.

    In total, the events featured 24 expert speakers, early-stage founders, and funders. Impact driven businesses, speakers emphasized, can take many forms. Bosco, who moderated one of the panels, says he’s heard from students and alumni interested in starting for-profit companies focused on profit and impact, what he called “dual bottom lines,” as well as students interested in starting public benefit companies, social enterprises, and traditional nonprofit organizations.

    “VMS is getting better at tapping into the different types of entrepreneurs at different stages of their journeys,” says Akshit Singla SM ’22. “It’s exactly what’s needed, and I know that because there was a huge waitlist for these events.”

    Zahra Kanji, who attended VMS’s most recent event in May and is currently director of MIT Hacking Medicine, sees the speaker series as a natural response to evolving student needs.

    “For students, I think the focus has changed a lot over the years,” Kanji said. “There used to be a lot more interest in entrepreneurship with making money as the final goal, and now it’s turned into more of a triple goal, like a public benefit corporation or something that has more impact. So, hearing key lessons learned from experts is really important — these aren’t answers you can get in a textbook.”

    Listening to the community

    Many of next year’s VMS events will be similar to the events that most resonated with the MIT community this year. VMS will also be adding an event on entrepreneurship in artificial intelligence and computing for impact. VMS is hoping to continue expanding student connections to recent founders, or what Bosco refers to as “near-peer founders,” that can relate more closely with first-time founders navigating the current startup environment.

    “Given that many new entrepreneurs are shifting to focus on impact, we need to evolve,” says VMS mentor Matt Cherian SM ’11. “I’m glad students are starting to think differently, and I’m really glad VMS is making this programming to help people think in this new way.”

    “The most notable aspect of our series was the commitment of students, including undergrads, graduates, and postdocs, pursuing their passion for impact through entrepreneurship,” Bosco says. “Many students we met exploring entrepreneurship for impact have exceptional job offers from top employers, or if they are alums they’re leaving significant positions to pursue a greater purpose in their lives. It is profoundly inspiring and an honor to help each of these founders.” More

  • in

    A clean alternative to one of the world’s most common ingredients

    Never underestimate the power of a time crunch.

    In 2016, MIT classmates David Heller ’18, Shara Ticku, and Harry McNamara PhD ’19 were less than two weeks away from the deadline to present a final business plan as part of their class MAS.883 (Revolutionary Ventures: How to Invent and Deploy Transformative Technologies). The students had connected over a shared passion for using biology to solve climate challenges, but their first few ideas didn’t pan out, so they went back to the drawing board.

    In a brainstorming session, Ticku began to reminisce about a trip to Singapore she’d taken where the burning of forests had cast a dark haze over the city. The story sparked a memory from halfway across the world in Costa Rica, where McNamara had traveled and noticed endless rows of palm plantations, which are used to harvest palm oil.

    “Besides Shara’s experience in Singapore and Harry’s in Costa Rica, palm was a material none of us had seriously thought about,” Heller recalls. “That conversation made us realize it was a big, big industry, and there’s major issues to the way that palm is produced.”

    The classmates decided to try using synthetic biology to create a sustainable alternative to palm oil. The idea was the beginning of C16 Biosciences. Today C16 is fulfilling that mission at scale with a palm oil alternative it harvests from oil-producing yeast, which ferment sugars in a process similar to brewing beer.

    The company’s product, which it sells to personal care brands and directly to consumers, holds enormous potential to improve the sustainability of the personal care and food industries because, as it turns out, the classmates had stumbled onto a massive problem.

    Palm oil is the most popular vegetable oil in the world. It’s used in everything from soaps and cosmetics to sauces, rolls, and crackers. But palm oil can only be harvested from palm trees near the equator, so producers often burn down tropical rainforests and swamps in those regions to make way for plantations, decimating wildlife habitats and producing a staggering amount of greenhouse gas emissions. One recent study found palm expansion in Southeast Asia could account for 0.75 percent of the world’s total greenhouse gas emissions. That’s not even including the palm expansion happening across west Africa and South America. Among familiar creatures threatened by palm oil deforestation are orangutans, all three species of which are now listed as “critically endangered” — the most urgent status on the IUCN Red List of Threatened Species, a global endangered species list.

    “To respond to increasing demand over the last few decades, large palm producers usually inappropriately seize land,” Heller explains. “They’ll literally slash and burn tropical rainforests to the ground, drive out indigenous people, they’ll kill or drive out local wildlife, and they’ll replace everything with hectares and hectares of palm oil plantations. That land conversion process has been emitting something like a gigaton of CO2 per year, just for the expansion of palm oil.”

    From milliliters to metric tons

    Heller took Revolutionary Ventures his junior year as one of the few undergraduates in the Media Lab-based class, which is also open to students from nearby colleges. On one of the first days, students were asked to stand in front of the class and explain their passions, or “what makes them tick,” as Heller recalls. He focused on climate tech.

    McNamara, who was a PhD candidate in the Harvard-MIT Program in Health Sciences and Technology at the time, talked about his interest in applying new technology to global challenges in biotech and biophysics. Ticku, who was attending Harvard Business School, discussed her experience working in fertility health and her passion for global health initiatives. The three decided to team up.

    “The core group is very, very passionate about using biology to solve major climate problems,” says Heller, who majored in biological engineering while at MIT.

    After a successful final presentation in the class, the founders received a small amount of funding by participating in the MIT $100K Pitch Competition and from the MIT Sandbox Innovation Fund.

    “MIT Sandbox was one of our first bits of financial support,” Heller says. “We also received great mentorship. We learned from other startups at MIT and made connections with professors whom we learned a lot from.”

    By the time Heller graduated in 2018, the team had experimented with different yeast strains and produced a few milliliters of oil. The process has gradually been optimized and scaled up from there. Today C16 is producing metric tons of oil in 50,000-liter tanks and has launched a consumer cosmetic brand called Palmless.

    Heller says C16 started its own brand as a way to spread the word about the harms associated with palm oil and to show larger companies it was ready to be a partner.

    “The oil palm tree is amazing in terms of the yields it generates, but the location needed for the crop is in conflict with what’s essential in our ecosystem: tropical rainforests,” Heller says. “There’s a lot of excitement when it comes to microbial palm alternatives. A lot of brands have been under pressure from consumers and even governments who are feeling the urgency around climate and are feeling the urgency from consumers to make changes to get away from an oil ingredient that is incredibly destructive.”

    Scaling with biology

    C16’s first offering, which it calls Torula Oil, is a premium product compared to traditional palm oil, but Heller notes the cost of palm oil today is deflated because companies don’t factor in its costs to the planet and society. He also notes that C16 has a number of advantages in its quest to upend the $60 billion palm oil industry: It’s far easier to improve the productivity of C16’s precision fermentation process than it is to improve agricultural processes. C16 also expects its costs to plummet as it continues to grow.

    “What’s exciting for us is we have these economies of scale,” Heller says. “We have the opportunity to expand vertically, in large stainless steel tanks, as opposed to horizontally on land, so we can drive down our cost curve by increasing the size of the infrastructure and improving the optimization of our strain. The timelines for improvement in a precision fermentation process are a fraction of the time it takes in an agricultural context.”

    Heller says C16 is currently focused on partnering with large personal care brands and expects to announce some important deals in coming months. Further down the line, C16 also hopes to use its product to replace the palm oil in food products, although additional regulations mean that dream is still a few years away.

    With all of its efforts, C16 tries to shine a light on the problems associated with the palm industry, which the company feels are underappreciated despite palm oil’s ubiquitous presence in our society.

    “We need to find a way to reduce our reliance on deforestation products,” Heller says. “We do a lot of work to help educate people on the palm oil industry. Just because something has palm oil in it doesn’t mean you should stop using it, but you should understand what that means for the world.” More