More stories

  • in

    Governing for our descendants

    Social scientists worry that too often we think only of ourselves. 

    “There’s been an increasing recognition that over the last few decades the economy and society have become incredibly focused on the individual, to the detriment of our social fabric,” says Lily L. Tsai, the Ford Professor of Political Science at MIT.

    Tsai, who is also the director and founder of the MIT Governance LAB (MIT GOV/LAB) and is the current chair of the MIT faculty, is interested in distributive justice — allocating resources fairly across different groups of people. Typically, that might mean splitting resources between different socioeconomic groups, or between different nations. 

    But in an essay in the journal Dædalus, Tsai discusses policies and institutions that consider the needs of people in the future when determining who deserves what resources. That is, they broaden our concept of a collective society to include people who haven’t been born yet and will bear the brunt of climate change in the future.

    Some groups of people do actually consider the needs of future people when making decisions. For example, Wales has a Future Generations Commissioner who monitors whether the government’s actions compromise the needs of future generations. Norway’s Petroleum Fund invests parts of its oil profits for future generations. And MIT’s endowment “is explicitly charged” with ensuring that future students are just as well-off as current students, Tsai says.

    But in other ways, societies place a lower value on the needs of their descendants. For example, to determine the total return on an investment, governments use something called a discount rate that places more value in the present return on the investment than the future return on the investment. And humans are currently using up the planet’s resources at an unsustainable rate, which in turn is raising global temperatures and making earth less habitable for our children and our children’s children.

    The purpose of Tsai’s essay is not to suggest how, say, governments might set discount rates that more fairly consider future people. “I’m interested in the things that make people care about setting the discount rate lower and therefore valuing the future more,” she says. “What are the moral commitments and the kinds of cultural practices or social institutions that make people care more?”

    Tsai thinks the volatility of the modern world and anxiety about the future — say, the future habitability of the planet — make it harder for people to consider the needs of their descendants. In Tsai’s 2021 book “When People Want Punishment,” she argues that this volatility and anxiety make people seek out more stability and order. “The more uncertain the future is, the less you can be sure that saving for the future is going to be valuable to anybody,” she says. So, part of the solution could be making people feel less unsettled and more stable, which Tsai says can be done with institutions we already have, like social welfare systems.

    She also thinks the rate at which things change in the modern world has hurt our ability to consider the long view. “We no longer think in terms of decades and centuries the way in which we used to,” she says.

    MIT GOV/LAB is working with partners to figure out how to experiment in a lab setting with developing democratic practices or institutions that might better distribute resources between current people and future people. That would allow researchers to assess if structuring interactions or decision-making in a particular way encourages people to save more for future people. 

    Tsai thinks getting people to care about their descendants is a problem researchers can work on, and that humans have a natural inclination to consider the future. People have a desire to be entrusted with things of importance, to leave a legacy, and for conservation. “I think many humans actually naturally conserve things that are valuable and scarce, and there’s a strange way in which society has eroded that human instinct in favor of a culture of consumption,” she says. We need to “re-imagine the kinds of practices that encourage conservation rather than consumption,” she adds. More

  • in

    Envisioning education in a climate-changed world

    What must colleges and universities do differently to help students develop the skills, capacities, and perspectives they’ll need to live, lead, and thrive in a world being remade by the accelerating climate crisis?

    That question was at the heart of a recent convening on MIT’s campus that brought together faculty and staff from more than 30 institutions of higher education. Over two days, attendees delved into the need for higher education to align structurally and philosophically with the changing demands of the coming decades.

    “We all know that there is more to do to educate and to empower today’s students, the young people who rightly feel the threat of climate change most acutely,” said MIT Chancellor Melissa Nobles. “They are our future leaders, the generation that will inherit the full weight of the problem and the responsibility for trying to solve it.”

    The MIT Symposium for Advancing Climate Education, held on April 6 and 7, was hosted by MIT’s Climate Education Working Group, one of three working groups established under the Institute’s ambitious Fast Forward climate action plan. The Climate Education Working Group is tasked with finding ways to strengthen climate- and sustainability-related education at the Institute, from curricular offerings to experiential learning opportunities and beyond.

    “We began working as a group about a year ago, and we quickly realized it would be important to expand the conversation across MIT and to colleagues at other institutions who … are thinking broadly,” says Professor David McGee, co-chair of the Climate Education Working Group.

    Co-chair Professor David Hsu encouraged attendees to build lasting relationships, adding, “There is a true wealth of knowledge spread throughout the room. Every university has pieces of the puzzle, but I don’t think we can point to a single one that right now exemplifies all of what we want to achieve.”

    The symposium featured keynotes by Nobles; Kim Cobb, director of the Institute at Brown for Environment and Society; and Reverend Mariama White-Hammond, founder of the New Roots AME Church in Dorchester, who is also chief of environment, energy, and open space for the City of Boston.

    On the first morning of the event, participants engaged in roundtable discussions, exchanging ideas, successes, and pain points. They also identified and read out close to a dozen unsolved challenges, among them: “How do we meet the fear and anger that students are feeling, and the desire to ‘do’ that students are expressing?” “How do we support people who challenge the status quo?” “As we create these new educational experiences, how do we ensure that a diversity of students can participate in them?” “How do we align tenure and power structures to center communities in the development of this work?” and “How radical a change is MIT willing to make?”

    Kate Trimble, senior associate dean and director of the Office of Experiential Learning, remarked on the thorniness of those questions in closing, wryly adding, “We’ll answer every last one of them before we leave here tomorrow.”

    But in sharing best practices and lessons learned, the tone was overwhelmingly hopeful. Trimble, for example, led a series of discussions highlighting 10 climate education programs already developed at MIT, the University of California at Davis, the University of Michigan, Swarthmore College, Worcester Polytechnic Institute, and McGill University, among others. Each offered new models by which to weave climate justice, community partnerships, and cross-disciplinary teaching into classroom-based and experiential learning.

    Maria Zuber, MIT’s vice president for research, opened the symposium on the second day. Invoking the words of U.N. Secretary-General António Guterres upon publication of the IPCC’s sixth synthesis report last month, she said, “the global response needs to be ‘everything, everywhere, all at once.’”

    She pointed to a number of MIT research initiatives that are structured to address complex problems, among them the Climate Grand Challenges projects — the proposals for which came from researchers across 90 percent of MIT departments — as well as the MIT Climate and Sustainability Consortium and the MIT Energy Initiative’s Future Energy Systems Center.

    “These initiatives recognize that no sector, let alone any single institution, can be effective on its own — and so they seek to engage from the outset with other research institutions and with government, industry, and civil society,” Zuber said.

    Cobb, of Brown University, also spoke about the value of sustained action partnerships built on transdisciplinary research and collaborations with community leaders. She highlighted Brown’s participation in the Breathe Providence project and Georgia Tech’s involvement in the Smart Sea Level Sensors project in Savannah.

    Several speakers noted the importance of hands-on learning opportunities for students as a training ground for tackling complex challenges at scale. Students should learn how to build a respectfully collaborative team and how to connect with communities to understand the true nature and constraints of the problem, they said.

    Engineering professor Anne White, who is co-chair of the MIT Climate Nucleus, the faculty committee charged with implementing the Fast Forward plan, and MIT’s associate provost and associate vice president for research administration, moderated a career panel spanning nonprofit and corporate roles.

    The panelists’ experiences emphasized that in a world where no sector will be untouched by the impacts of climate change, every graduate in every field must be informed and ready to engage.

    “Education is training; it’s skills. We want the students to be smart. But what I’m hearing is that it’s not just that,” White reflected. “It’s these other qualities, right? It’s can they be brave … and can they be kind?”

    “Every job is a climate job in this era,” declared MIT graduate student Dyanna Jaye, co-founder of the Sunrise Movement.

    John Fernández, director of the Environmental Solutions Initiative at MIT, moderated a panel on structural change in higher education, speaking with Jim Stock, vice provost for climate and sustainability at Harvard University; Toddi Steelman, dean of the Nicholas School of the Environment at Duke University; and Stephen Porder, assistant provost for sustainability at Brown.

    Steelman (who is also a qualified wildland firefighter — a useful skill for a dean, she noted) described a popular course at Duke called “Let’s Talk About Climate Change” that is jointly taught by a biogeochemist and a theologian. The course enrolled around 150 students in the fall who met for contemplative breakout discussions. “Unless we talk about our hearts and our minds,” she said, “we’re not going to make progress.”

    White-Hammond highlighted one trait she believes today’s students already have in abundance.

    “They’re willing to say that the status quo is unacceptable, and that is an important part of being courageous in the face of this climate crisis,” she said. She urged institutions to take that cue.

    “If we have to remake the world, rebuild it on something radically different. Why would we bake in racial injustice again? Why would we say, let’s have an equally unequal economic system that just doesn’t burn as many fossil fuels? I think we have an opportunity to go big.”

    “That,” she added, “is the work I believe higher education should be taking on, and not from an ivory tower, but rooted in real communities.”

    The MIT Symposium for Advancing Climate Education was part of Earth Month at MIT, a series of climate and sustainability events on campus in April. More

  • in

    Asegun Henry wins National Science Foundation’s Alan T. Waterman Award

    The National Science Foundation (NSF) today named Asegun Henry, an associate professor in MIT’s Department of Mechanical Engineering, as a 2023 recipient of its Alan T. Waterman Award. This award is the NSF’s highest honor for early-career researchers and provides funding for research in any science or engineering field. 

    This is the second year NSF has chosen to honor three researchers with the award. Henry is the sixth faculty member from MIT to receive this honor in its 47-year history, and is only the second mechanical engineer to ever win the award. In addition to a medal, Henry and his fellow awardees, Natalie S. King of Georgia State University and William Anderegg from the University of Utah, will each receive $1 million over five years for research in their chosen field of science.

    “I am thrilled to congratulate this year’s Waterman awardees, three outstanding scientists who are courageously tackling some of the most challenging societal problems through their ingenuity and innovative mindset,” says NSF Director Sethuraman Panchanathan. “Their pioneering accomplishments are precisely what the Waterman Award was created to recognize, and I look forward to their tremendous contributions in the future.”

    NSF recognizes Henry as an international thermal science and engineering leader. Henry has made breakthrough advances in nanoscale heat transfer and high-temperature energy systems. He directs the Atomistic Simulation and Energy (ASE) Research Group at MIT, focusing on heat transfer at the atomic level. He also works on developing technologies that can help mitigate climate change, addressing many problems from the atomic to the gigawatt scale.

    Henry and colleagues have led the development of several technological breakthroughs, setting a world record for the highest-temperature pump, using an all-ceramic mechanical pump to move liquid metal above 1,400 degrees Celsius, as well as the world record for thermophotovoltaic efficiency.

    “It has been challenging to push the field towards acceptance of new ideas, and it has been a path fraught with resistance and questioning of the validity of our results,” says Henry. “Receiving this award is vindicating and will impact my career greatly as it helps validate that the advances we’ve pioneered really do register as major contributions, and I pride myself on the impact of my work.”

    The Waterman Award will be presented to Henry at a ceremony held in Washington on May 9 during the National Science Board meeting.  More

  • in

    Exploring the bow shock and beyond

    For most people, the night sky conjures a sense of stillness, an occasional shooting star the only visible movement. A conversation with Rishabh Datta, however, unveils the supersonic drama crashing above planet Earth. The PhD candidate has focused his recent study on the plasma speeding through space, flung from sources like the sun’s corona and headed toward Earth, halted abruptly by colliding with the planet’s magnetosphere. The resulting shock wave is similar to the “bow shock” that forms around the nose cone of a supersonic jet, which manifests as the familiar sonic boom.

    The bow shock phenomenon has been well studied. “It’s probably one of the things that’s keeping life alive,” says Datta, “protecting us from the solar wind.” While he feels the magnetosphere provides “a very interesting space laboratory,” Datta’s main focus is, “Can we create this high-energy plasma that is moving supersonically in a laboratory, and can we study it? And can we learn things that are hard to diagnose in an astrophysical plasma?”

    Datta’s research journey to the bow shock and beyond began when he joined a research program for high school students at the National University Singapore. Tasked with culturing bacteria and measuring the amount of methane they produced in a biogas tank, Datta found his first research experience “quite nasty.”

    “I was working with chicken manure, and every day I would come home smelling completely awful,” he says.

    As an undergraduate at Georgia Tech, Datta’s interests turned toward solar power, compelled by a new technology he felt could generate sustainable energy. By the time he joined MIT’s Department of Mechanical Engineering, though, his interests had morphed into researching the heat and mass transfer from airborne droplets. After a year of study, he felt the need to go in a yet another direction.

    The subject of astrophysical plasmas had recently piqued his interest, and he followed his curiosity to Department of Nuclear Science and Engineering Professor Nuno Loureiro’s introductory plasma class. There he encountered Professor Jack Hare, who was sitting in on the class and looking for students to work with him.

    “And that’s how I ended up doing plasma physics and studying bow shocks,” he says, “a long and circuitous route that started with culturing bacteria.”

    Gathering measurements from MAGPIE

    Datta is interested in what he can learn about plasma from gathering measurements of a laboratory-created bow shock, seeking to verify theoretical models. He uses data already collected from experiments on a pulsed-power generator known as MAGPIE (the Mega-Ampere Generator of Plasma Implosion Experiments), located at Imperial College, London. By observing how long it takes a plasma to reach an obstacle, in this case a probe that measures magnetic fields, Datta was able to determine its velocity.   

    With the velocity established, an interferometry system was able to provide images of the probe and the plasma around it, allowing Datta to characterize the structure of the bow shock.

    “The shape depends on how fast sound waves can travel in a plasma,” says Datta. “And this ‘sound speed’ depends on the temperature.”

    The interdependency of these characteristics means that by imaging a shock it’s possible to determine temperature, sound speed, and other measurements more easily and cheaply than with other methods.

    “And knowing more about your plasma allows you to make predictions about, for example, electrical resistivity, which can be important for understanding other physics that might interest you,” says Datta, “like magnetic reconnection.”

    This phenomenon, which controls the evolution of such violent events as solar flares, coronal mass ejections, magnetic storms that drive auroras, and even disruptions in fusion tokamaks, has become the focus of his recent research. It happens when opposing magnetic fields in a plasma break and then reconnect, generating vast quantities of heat and accelerating the plasma to high velocities.

    Onward to Z

    Datta travels to Sandia National Laboratories in Albuquerque, New Mexico, to work on the largest pulsed power facility in the world, informally known as “the Z machine,” to research how the properties of magnetic reconnection change when a plasma emits strong radiation and cools rapidly.

    In future years, Datta will only have to travel across Albany Street on the MIT campus to work on yet another machine, PUFFIN, currently being built at the Plasma Science and Fusion Center (PSFC). Like MAGPIE and Z, PUFFIN is a pulsed power facility, but with the ability to drive the current 10 times longer than other machines, opening up new opportunities in high-energy-density laboratory astrophysics.

    Hare, who leads the PUFFIN team, is pleased with Datta’s increasing experience.

    “Working with Rishabh is a real pleasure,” he says, “He has quickly learned the ins and outs of experimental plasma physics, often analyzing data from machines he hasn’t even yet had the chance to see! While we build PUFFIN it’s really useful for us to carry out experiments at other pulsed-power facilities worldwide, and Rishabh has already written papers on results from MAGPIE, COBRA at Cornell in Ithaca, New York, and the Z Machine.”

    Pursuing climate action at MIT

    Hand-in-hand with Datta’s quest to understand plasma is his pursuit of sustainability, including carbon-free energy solutions. A member of the Graduate Student Council’s Sustainability Committee since he arrived in 2019, he was heartened when MIT, revising their climate action plan, provided him and other students the chance to be involved in decision-making. He led focus groups to provide graduate student input on the plan, raising issues surrounding campus decarbonization, the need to expand hiring of early-career researchers working on climate and sustainability, and waste reduction and management for MIT laboratories.

    When not focused on bringing astrophysics to the laboratory, Datta sometimes experiments in a lab closer to home — the kitchen — where he often challenges himself to duplicate a recipe he has recently tried at a favorite restaurant. His stated ambition could apply to his sustainability work as well as to his pursuit of understanding plasma.

    “The goal is to try and make it better,” he says. “I try my best to get there.”

    Datta’s work has been funded, in part, by the National Science Foundation, National Nuclear Security Administration, and the Department of Energy. More

  • in

    Exploring new sides of climate and sustainability research

    When the MIT Climate and Sustainability Consortium (MCSC) launched its Climate and Sustainability Scholars Program in fall 2022, the goal was to offer undergraduate students a unique way to develop and implement research projects with the strong support of each other and MIT faculty. Now into its second semester, the program is underscoring the value of fostering this kind of network — a community with MIT students at its core, exploring their diverse interests and passions in the climate and sustainability realms.Inspired by MIT’s successful SuperUROP [Undergraduate Research Opportunities Program], the yearlong MCSC Climate and Sustainability Scholars Program includes a classroom component combined with experiential learning opportunities and mentorship, all centered on climate and sustainability topics.“Harnessing the innovation, passion, and expertise of our talented students is critical to MIT’s mission of tackling the climate crisis,” says Anantha P. Chandrakasan, dean of the School of Engineering, Vannevar Bush Professor of Electrical Engineering and Computer Science, and chair of the MCSC. “The program is helping train students from a variety of disciplines and backgrounds to be effective leaders in climate and sustainability-focused roles in the future.”

    “What we found inspiring about MIT’s existing SuperUROP program was how it provides students with the guidance, training, and resources they need to investigate the world’s toughest problems,” says Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director. “This incredible level of support and mentorship encourages students to think and explore in creative ways, make new connections, and develop strategies and solutions that propel their work forward.”The first and current cohort of Climate and Sustainability Scholars consists of 19 students, representing MIT’s School of Engineering, MIT Schwarzman College of Computing, School of Science, School of Architecture and Planning, and MIT Sloan School of Management. These students are learning new perspectives, approaches, and angles in climate and sustainability — from each other, MIT faculty, and industry professionals.Projects with real-world applicationsStudents in the program work directly with faculty and principal investigators across MIT to develop their research projects focused on a large scope of sustainability topics.

    “This broad scope is important,” says Desirée Plata, MIT’s Gilbert W. Winslow Career Development Professor in Civil and Environmental Engineering, “because climate and sustainability solutions are needed in every facet of society. For a long time, people were searching for a ‘silver bullet’ solution to the climate change problems, but we didn’t get to this point with a single technological decision. This problem was created across a spectrum of sociotechnological activities, and fundamentally different thinking across a spectrum of solutions is what’s needed to move us forward. MCSC students are working to provide those solutions.”

    Undergraduate student and physics major M. (MG) Geogdzhayeva is working with Raffaele Ferrari, Cecil and Ida Green Professor of Oceanography in the Department of Earth, Atmospheric and Planetary Sciences, and director of the Program in Atmospheres, Oceans, and Climate, on their project “Using Continuous Time Markov Chains to Project Extreme Events under Climate.” Geogdzhayeva’s research supports the Flagship Climate Grand Challenges project that Ferrari is leading along with Professor Noelle Eckley Selin.

    “The project I am working on has a similar approach to the Climate Grand Challenges project entitled “Bringing computation to the climate challenge,” says Geogdzhayeva. “I am designing an emulator for climate extremes. Our goal is to boil down climate information to what is necessary and to create a framework that can deliver specific information — in order to develop valuable forecasts. As someone who comes from a physics background, the Climate and Sustainability Scholars Program has helped me think about how my research fits into the real world, and how it could be implemented.”

    Investigating technology and stakeholders

    Within technology development, Jade Chongsathapornpong, also a physics major, is diving into photo-modulated catalytic reactions for clean energy applications. Chongsathapornpong, who has worked with the MCSC on carbon capture and sequestration through the Undergraduate Research Opportunities Program (UROP), is now working with Harry Tuller, MIT’s R.P. Simmons Professor of Ceramics and Electronic Materials. Louise Anderfaas, majoring in materials science and engineering, is also working with Tuller on her project “Robust and High Sensitivity Detectors for Exploration of Deep Geothermal Wells.”Two other students who have worked with the MCSC through UROP include Paul Irvine, electrical engineering and computer science major, who is now researching American conservatism’s current relation to and views about sustainability and climate change, and Pamela Duke, management major, now investigating the use of simulation tools to empower industrial decision-makers around climate change action.Other projects focusing on technology development include the experimental characterization of poly(arylene ethers) for energy-efficient propane/propylene separations by Duha Syar, who is a chemical engineering major and working with Zachary Smith, the Robert N. Noyce Career Development Professor of Chemical Engineering; developing methods to improve sheet steel recycling by Rebecca Lizarde, who is majoring in materials science and engineering; and ion conduction in polymer-ceramic composite electrolytes by Melissa Stok, also majoring in materials science and engineering.

    Melissa Stok, materials science and engineering major, during a classroom discussion.

    Photo: Andrew Okyere

    Previous item
    Next item

    “My project is very closely connected to developing better Li-Ion batteries, which are extremely important in our transition towards clean energy,” explains Stok, who is working with Bilge Yildiz, MIT’s Breene M. Kerr (1951) Professor of Nuclear Science and Engineering. “Currently, electric cars are limited in their range by their battery capacity, so working to create more effective batteries with higher energy densities and better power capacities will help make these cars go farther and faster. In addition, using safer materials that do not have as high of an environmental toll for extraction is also important.” Claire Kim, a chemical engineering major, is focusing on batteries as well, but is honing in on large form factor batteries more relevant for grid-scale energy storage with Fikile Brushett, associate professor of chemical engineering.Some students in the program chose to focus on stakeholders, which, when it comes to climate and sustainability, can range from entities in business and industry to farmers to Indigenous people and their communities. Shivani Konduru, an electrical engineering and computer science major, is exploring the “backfire effects” in climate change communication, focusing on perceptions of climate change and how the messenger may change outcomes, and Einat Gavish, mathematics major, on how different stakeholders perceive information on driving behavior.Two students are researching the impact of technology on local populations. Anushree Chaudhuri, who is majoring in urban studies and planning, is working with Lawrence Susskind, Ford Professor of Urban and Environmental Planning, on community acceptance of renewable energy siting, and Amelia Dogan, also an urban studies and planning major, is working with Danielle Wood, assistant professor of aeronautics and astronautics and media arts and sciences, on Indigenous data sovereignty in environmental contexts.

    “I am interviewing Indigenous environmental activists for my project,” says Dogan. “This course is the first one directly related to sustainability that I have taken, and I am really enjoying it. It has opened me up to other aspects of climate beyond just the humanity side, which is my focus. I did MIT’s SuperUROP program and loved it, so was excited to do this similar opportunity with the climate and sustainability focus.”

    Other projects include in-field monitoring of water quality by Dahlia Dry, a physics major; understanding carbon release and accrual in coastal wetlands by Trinity Stallins, an urban studies and planning major; and investigating enzyme synthesis for bioremediation by Delight Nweneka, an electrical engineering and computer science major, each linked to the MCSC’s impact pathway work in nature-based solutions.

    The wide range of research topics underscores the Climate and Sustainability Program’s goal of bringing together diverse interests, backgrounds, and areas of study even within the same major. For example, Helena McDonald is studying pollution impacts of rocket launches, while Aviva Intveld is analyzing the paleoclimate and paleoenvironment background of the first peopling of the Americas. Both students are Earth, atmospheric and planetary sciences majors but are researching climate impacts from very different perspectives. Intveld was recently named a 2023 Gates Cambridge Scholar.

    “There are students represented from several majors in the program, and some people are working on more technical projects, while others are interpersonal. Both approaches are really necessary in the pursuit of climate resilience,” says Grace Harrington, who is majoring in civil and environmental engineering and whose project investigates ways to optimize the power of the wind farm. “I think it’s one of the few classes I’ve taken with such an interdisciplinary nature.”

    Shivani Konduru, electrical engineering and computer science major, during a classroom lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Perspectives and guidance from MIT and industry expertsAs students are developing these projects, they are also taking the program’s course (Climate.UAR), which covers key topics in climate change science, decarbonization strategies, policy, environmental justice, and quantitative methods for evaluating social and environmental impacts. The course is cross-listed in departments across all five schools and is taught by an experienced and interdisciplinary team. Desirée Plata was central to developing the Climate and Sustainability Scholars Programs and course with Associate Professor Elsa Olivetti, who taught the first semester. Olivetti is now co-teaching the second semester with Jeffrey C. Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, head of the Department of Materials Science and Engineering, and MCSC co-director. The course’s writing instructors are Caroline Beimford and David Larson.  

    “I have been introduced to a lot of new angles in the climate space through the weekly guest lecturers, who each shared a different sustainability-related perspective,” says Claire Kim. “As a chemical engineering major, I have mostly looked into the technologies for decarbonization, and how to scale them, so learning about policy, for example, was helpful for me. Professor Black from the Department of History spoke about how we can analyze the effectiveness of past policy to guide future policy, while Professor Selin talked about framing different climate policies as having co-benefits. These perspectives are really useful because no matter how good a technology is, you need to convince other people to adopt it, or have strong policy in place to encourage its use, in order for it to be effective.”

    Bringing the industry perspective, guests have presented from MCSC member companies such as PepsiCo, Holcim, Apple, Cargill, and Boeing. As an example, in one class, climate leaders from three companies presented together on their approaches to setting climate goals, barriers to reaching them, and ways to work together. “When I presented to the class, alongside my counterparts at Apple and Boeing, the student questions pushed us to explain how can collaborate on ways to achieve our climate goals, reflecting the broader opportunity we find within the MCSC,” says Dana Boyer, sustainability manager at Cargill.

    Witnessing the cross-industry dynamics unfold in class was particularly engaging for the students. “The most beneficial part of the program for me is the number of guest lectures who have come in to the class, not only from MIT but also from the industry side,” Grace Harrington adds. “The diverse range of people talking about their own fields has allowed me to make connections between all my classes.”Bringing in perspectives from both academia and industry is a reflection of the MCSC’s larger mission of linking its corporate members with each other and with the MIT community to develop scalable climate solutions.“In addition to focusing on an independent research project and engaging with a peer community, we’ve had the opportunity to hear from speakers across the sustainability space who are also part of or closely connected to the MIT ecosystem,” says Anushree Chaudhuri. “These opportunities have helped me make connections and learn about initiatives at the Institute that are closely related to existing or planned student sustainability projects. These connections — across topics like waste management, survey best practices, and climate communications — have strengthened student projects and opened pathways for future collaborations.

    Basuhi Ravi, MIT PhD candidate, giving a guest lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Having a positive impact as students and after graduation

    At the start of the program, students identified several goals, including developing focused independent research questions, drawing connections and links with real-world challenges, strengthening their critical thinking skills, and reflecting on their future career ambitions. A common thread throughout them all: the commitment to having a meaningful impact on climate and sustainability challenges both as students now, and as working professionals after graduation.“I’ve absolutely loved connecting with like-minded peers through the program. I happened to know most of the students coming in from various other communities on campus, so it’s been a really special experience for all of these people who I couldn’t connect with as a cohesive cohort before to come together. Whenever we have small group discussions in class, I’m always grateful for the time to learn about the interdisciplinary research projects everyone is involved with,” concludes Chaudhuri. “I’m looking forward to staying in touch with this group going forward, since I think most of us are planning on grad school and/or careers related to climate and sustainability.”

    The MCSC Climate and Sustainability Scholars Program is representative of MIT’s ambitious and bold initiatives on climate and sustainability — bringing together faculty and students across MIT to collaborate with industry on developing climate and sustainability solutions in the context of undergraduate education and research. Learn about how you can get involved. More

  • in

    Volunteer committee helps the MIT community live and work sustainably

    April 22 marks the arrival of Earth Day, which provides all of us with a good reason to think of ways to live more sustainably. For more than 20 years, the MIT Working Green Committee has helped community members do just that by encouraging the reuse and recycling of possessions.

    Made up entirely of volunteers, the committee has played an important role in promoting more sustainable operations at MIT and raising awareness of the importance of conservation.

    “We try to provide a place for people to learn how to live and work in a more environmentally friendly way,” says committee co-chair Rebecca Fowler, a senior administrative assistant in MIT’s Office of Sustainability.

    The committee hosts regular Choose to Reuse events to give MIT’s community members a chance to donate unwanted items — or find free things that just might become prized possessions. It also provides resources to help host more sustainable events, make more sustainable purchasing decisions, and learn more about recycling.

    “The recycling industry is very frustrating, so people are always asking what to do,” Fowler says. “They feel like they make the wrong decisions and just want to know how to do it. We get a lot of questions, and we’re always there to help find answers.”

    Committee members say they’ve realized devoting a little time each month to things like recycling education, and hosting events can make a big difference in reducing waste. In last month’s Choose to Reuse event, more than 100 people dropped off thousands of items including clothing, housewares, and office supplies. MIT’s always-active Reuse email lists, which the committee encourages community members to join, are another great way to pass gently used items to others who can give them new life.

    “The goal is to keep things out of landfills, and the Choose to Reuse event shows you immediate results,” says committee co-chair Gianna Hernandez-Figueroa, who is the assistant to the director at the MIT AgeLab. “It’s inspiring because people are excited to put things in the hands of someone who is going to repurpose it. It’s a circular event that’s really beautiful.”

    Choose to Reuse events are typically on the third Thursday of every other month, although the next one — the last for the spring semester — is on Monday, April 24.

    The committee is one of the only groups on campus run by support staff, whose responsibilities involve clerical duties, data processing, and library and accounting functions, among other things. It is a subcommittee of the Working Group for Support Staff.

    The committee began as the Working Group on Recycling in 2000 at a time when MIT’s recycling rate was around 11 percent. By 2006, MIT had reached a 40 percent recycling rate and received a Go Green Award from the City of Cambridge. That year the committee earned an MIT Excellence Awards for its work.

    Around 2011, the group started hosting Choose to Reuse events, which became an instant success.

    “I really believe in the gift economy, specifically in academic settings where you have a lot of international students,” Hernandez-Figueroa says. “Plus, Boston is an expensive city!”

    For a long time, the group was run by Ruth Davis, who served as MIT’s manager for recycling and materials management and retired last year. Since Davis left, others have stepped up.

    “A lot of the volunteers have been around since the first Choose to Reuse event 13 years ago,” Fowler says, adding that the committee is always looking for more volunteers. “They’re all very committed to the event and to the cause.”

    The organization is also a way for support staff to gain new skills. Fowler credits her experience working on the committee with improving her project management and website design abilities.

    “We really emphasize capacity building,” Fowler says. “If there’s a skill a volunteer would like to develop, we can explore ways to do that through the committee. That’s something I’d like to continue: finding people’s strengths and helping them build their careers.”

    Overall, Fowler says the committee aligns with MIT’s commitment to make an impact.

    The group’s long history “shows a commitment to environmentalism and sustainability and a yearning to do more beyond what is in your job responsibilities,” she says. “It really shows the commitment to volunteerism of MIT’s staff members.” More

  • in

    3 Questions: New MIT major and its role in fighting climate change

    Launched this month, MIT’s new Bachelor of Science in climate system science and engineering is jointly offered by the departments of Civil and Environmental Engineering (CEE) and Earth, Atmospheric and Planetary Sciences (EAPS). As part of MIT’s commitment to aid the global response to climate change, the new degree program is designed to train the next generation of leaders, providing a foundational understanding of both the Earth system and engineering principles — as well as an understanding of human and institutional behavior as it relates to the climate challenge. Jadbabaie and Van der Hilst discuss the new Course 1-12 multidisciplinary major and why it’s needed now at MIT. 

    Q: What was the idea behind launching this new major at MIT?

    Jadbabaie: Climate change is an incredibly important issue that we must address, and time is of the essence. MIT is in a unique position to play a leadership role in this effort. We not only have the ability to advance the science of climate change and deepen our understanding of the climate system, but also to develop innovative engineering solutions for sustainability that can help us meet the climate goals set forth in the Paris Agreement. It is important that our educational approach also incorporates other aspects of this cross-cutting issue, ranging from climate justice, policy, to economics, and MIT is the perfect place to make this happen. With Course 1’s focus on sustainability across scales, from the nano to the global scale, and with Course 12 studying Earth system science in general, it was a natural fit for CEE and EAPS to tackle this challenge together. It is my belief that we can leverage our collective expertise and resources to make meaningful progress. There has never been a more crucial time for us to advance students’ understanding of both climate science and engineering, as well as their understanding of the societal implications of climate risk.

    Van der Hilst: Climate change is a global issue, and the solutions we urgently need for building a net-zero future must consider how everything is connected. The Earth’s climate is a complex web of cause and effect between the oceans, atmosphere, ecosystems, and processes that shape the surface and environmental systems of the planet. To truly understand climate risks, we need to understand the fundamental science that governs these interconnected systems — and we need to consider the ways that human activity influences their behavior. The types of large-scale engineering projects that we need to secure a sustainable future must take into consideration the Earth system itself. A systems approach to modeling is crucial if we are to succeed at inventing, designing, and implementing solutions that can reduce greenhouse gas emissions, build climate resilience, and mitigate the inevitable climate-related natural disasters that we’ll face. That’s why our two departments are collaborating on a degree program that equips students with foundational climate science knowledge alongside fundamental engineering principles in order to catalyze the innovation we’ll need to meet the world’s 2050 goals.

    Q: How is MIT uniquely positioned to lead undergraduate education in climate system science and engineering? 

    Jadbabaie: It’s a great example of how MIT is taking a leadership role and multidisciplinary approach to tackling climate change by combining engineering and climate system science in one undergraduate major. The program leverages MIT’s academic strengths, focusing on teaching hard analytical and computational skills while also providing a curriculum that includes courses in a wide range of topics, from climate economics and policy to ethics, climate justice, and even climate literature, to help students develop an understanding of the political and social issues that are tied to climate change. Given the strong ties between courses 1 and 12, we want the students in the program to be full members of both departments, as well as both the School of Engineering and the School of Science. And, being MIT, there is no shortage of opportunities for undergraduate research and entrepreneurship — in fact, we specifically encourage students to participate in the active research of the departments. The knowledge and skills our students gain will enable them to serve the nation and the world in a meaningful way as they tackle complex global-scale environmental problems. The students at MIT are among the most passionate and driven people out there. I’m really excited to see what kind of innovations and solutions will come out of this program in the years to come. I think this undergraduate major is a fantastic step in the right direction.

    Q: What opportunities will the major provide to students for addressing climate change?

    Van der Hilst: Both industry and government are actively seeking new talent to respond to the challenges — and opportunities — posed by climate change and our need to build a sustainable future. What’s exciting is that many of the best jobs in this field call for leaders who can combine the analytical skill of a scientist with the problem-solving mindset of an engineer. That’s exactly what this new degree program at MIT aims to prepare students for — in an expanding set of careers in areas like renewable energy, civil infrastructure, risk analysis, corporate sustainability, environmental advocacy, and policymaking. But it’s not just about career opportunities. It’s also about making a real difference and safeguarding our future. It’s not too late to prevent much more damaging changes to Earth’s climate. Indeed, whether in government, industry, or academia, MIT students are future leaders — as such it is critically important that all MIT students understand the basics of climate system science and engineering along with math, physics, chemistry, and biology. The new Course 1-12 degree was designed to forge students who are passionate about protecting our planet into the next generation of leaders who can fast-track high-impact, science-based solutions to aid the global response, with an eye toward addressing some of the uneven social impacts inherent in the climate crisis. More

  • in

    Moving perovskite advancements from the lab to the manufacturing floor

    The following was issued as a joint announcement from MIT.nano and the MIT Research Laboratory for Electronics; CubicPV; Verde Technologies; Princeton University; and the University of California at San Diego.

    Tandem solar cells are made of stacked materials — such as silicon paired with perovskites — that together absorb more of the solar spectrum than single materials, resulting in a dramatic increase in efficiency. Their potential to generate significantly more power than conventional cells could make a meaningful difference in the race to combat climate change and the transition to a clean-energy future.

    However, current methods to create stable and efficient perovskite layers require time-consuming, painstaking rounds of design iteration and testing, inhibiting their development for commercial use. Today, the U.S. Department of Energy Solar Energy Technologies Office (SETO) announced that MIT has been selected to receive an $11.25 million cost-shared award to establish a new research center to address this challenge by using a co-optimization framework guided by machine learning and automation.

    A collaborative effort with lead industry participant CubicPV, solar startup Verde Technologies, and academic partners Princeton University and the University of California San Diego (UC San Diego), the center will bring together teams of researchers to support the creation of perovskite-silicon tandem solar modules that are co-designed for both stability and performance, with goals to significantly accelerate R&D and the transfer of these achievements into commercial environments.

    “Urgent challenges demand rapid action. This center will accelerate the development of tandem solar modules by bringing academia and industry into closer partnership,” says MIT professor of mechanical engineering Tonio Buonassisi, who will direct the center. “We’re grateful to the Department of Energy for supporting this powerful new model and excited to get to work.”

    Adam Lorenz, CTO of solar energy technology company CubicPV, stresses the importance of thinking about scale, alongside quality and efficiency, to accelerate the perovskite effort into the commercial environment. “Instead of chasing record efficiencies with tiny pixel-sized devices and later attempting to stabilize them, we will simultaneously target stability, reproducibility, and efficiency,” he says. “It’s a module-centric approach that creates a direct channel for R&D advancements into industry.”

    The center will be named Accelerated Co-Design of Durable, Reproducible, and Efficient Perovskite Tandems, or ADDEPT. The grant will be administered through the MIT Research Laboratory for Electronics (RLE).

    David Fenning, associate professor of nanoengineering at UC San Diego, has worked with Buonassisi on the idea of merging materials, automation, and computation, specifically in this field of artificial intelligence and solar, since 2014. Now, a central thrust of the ADDEPT project will be to deploy machine learning and robotic screening to optimize processing of perovskite-based solar materials for efficiency and durability.

    “We have already seen early indications of successful technology transfer between our UC San Diego robot PASCAL and industry,” says Fenning. “With this new center, we will bring research labs and the emerging perovskite industry together to improve reproducibility and reduce time to market.”

    “Our generation has an obligation to work collaboratively in the fight against climate change,” says Skylar Bagdon, CEO of Verde Technologies, which received the American-Made Perovskite Startup Prize. “Throughout the course of this center, Verde will do everything in our power to help this brilliant team transition lab-scale breakthroughs into the world where they can have an impact.”

    Several of the academic partners echoed the importance of the joint effort between academia and industry. Barry Rand, professor of electrical and computer engineering at the Andlinger Center for Energy and the Environment at Princeton University, pointed to the intersection of scientific knowledge and market awareness. “Understanding how chemistry affects films and interfaces will empower us to co-design for stability and performance,” he says. “The center will accelerate this use-inspired science, with close guidance from our end customers, the industry partners.”

    A critical resource for the center will be MIT.nano, a 200,000-square-foot research facility set in the heart of the campus. MIT.nano Director Vladimir Bulović, the Fariborz Maseeh (1990) Professor of Emerging Technology, says he envisions MIT.nano as a hub for industry and academic partners, facilitating technology development and transfer through shared lab space, open-access equipment, and streamlined intellectual property frameworks.

    “MIT has a history of groundbreaking innovation using perovskite materials for solar applications,” says Bulović. “We’re thrilled to help build on that history by anchoring ADDEPT at MIT.nano and working to help the nation advance the future of these promising materials.”

    MIT was selected as a part of the SETO Fiscal Year 2022 Photovoltaics (PV) funding program, an effort to reduce costs and supply chain vulnerabilities, further develop durable and recyclable solar technologies, and advance perovskite PV technologies toward commercialization. ADDEPT is one project that will tackle perovskite durability, which will extend module life. The overarching goal of these projects is to lower the levelized cost of electricity generated by PV.

    Research groups involved with the ADDEPT project at MIT include Buonassisi’s Accelerated Materials Laboratory for Sustainability (AMLS), Bulović’s Organic and Nanostructured Electronics (ONE) Lab, and the Bawendi Group led by Lester Wolfe Professor in Chemistry Moungi Bawendi. Also working on the project is Jeremiah Mwaura, research scientist in the ONE Lab. More