More stories

  • in

    Advancing public understanding of sea-level rise

    Museum exhibits can be a unique way to communicate science concepts and information. Recently, MIT faculty have served as sounding boards for curators at the Museum of Science, Boston, a close neighbor of the MIT campus.

    In January, Professor Emerita Paola Malanotte-Rizzoli and Cecil and Ida Green Professor Raffaele Ferrari of the Department of Earth, Atmospheric and Planetary Science (EAPS) visited the museum to view the newly opened pilot exhibit, “Resilient Venice: Adapting to Climate Change.”

    When Malanotte-Rizzoli was asked to contribute her expertise on the efforts in Venice, Italy, to mitigate flood damage, she was more than willing to offer her knowledge. “I love Venice. It is fun to tell people all of the challenges which you see the lagoon has … how much must be done to preserve, not only the city, but the environment, the islands and buildings,” she says.

    The installation is the second Museum of Science exhibit to be developed in recent years in consultation with EAPS scientists. In December 2020, “Arctic Adventure: Exploring with Technology” opened with the help of Cecil and Ida Green Career Development Professor Brent Minchew, who lent his expertise in geophysics and glaciology to the project. But for Malanotte-Rizzoli, the new exhibit hits a little closer to home.

    “My house is there,” Malanotte-Rizzoli excitedly pointed out on the exhibit’s aerial view of Venice, which includes a view above St. Mark’s Square and some of the surrounding city.

    “Resilient Venice” focuses on Malanotte-Rizzoli’s hometown, a city known for flooding. Built on a group of islands in the Venetian Lagoon, Venice has always experienced flooding, but climate change has brought unprecedented tide levels, causing billions of dollars in damages and even causing two deaths in the flood of 2019.

    The dark exhibit hall is lined with immersive images created by Iconem, a startup whose mission is digital preservation of endangered World Heritage Sites. The firm took detailed 3D scans and images of Venice to put together the displays and video.

    The video on which Malanotte-Rizzoli pointed to her home shows the potential sea level rise by 2100 if action isn’t taken. It shows the entrance to St. Mark’s Basilica completely submerged in water; she compares it to the disaster movie “The Day After Tomorrow.”

    The MOSE system

    Between critiques of the choice of music (“that’s not very Venice-inspired,” joked Ferrari, who is also Italian) and bits of conversation exchanged in Italian, the two scientists do what scientists do: discuss technicalities.

    Ferrari pointed to a model of a gate system and asked Malanotte-Rizzoli if the hydraulic jump seen in the model is present in the MOSE system; she confirmed it is not.

    This is the part of the exhibit that Malanotte-Rizzoli was consulted on. One of the plans Venice has implemented to address the flooding is the MOSE system — short for Modulo Sperimentale Elettromeccanico, or the Experimental Electromechanical Module. The MOSE is a system of flood barriers designed to protect the city from extremely high tides. Construction began in 2003, and its first successful operation happened on Oct. 3, 2020, when it prevented a tide 53 inches above normal from flooding the city.

    The barriers are made of a series of gates, each 66-98 feet in length and 66 feet wide, which sit in chambers built into the sea floor when not in use to allow boats and wildlife to travel between the ocean and lagoon. The gates are filled with water to keep them submerged; when activated, air is pumped into them, pushing out the water and allowing them to rise. The entire process takes 30 minutes to complete, and half that time to return to the sea floor.

    The top of the gates in the MOSE come out of the water completely and are individually controlled so that sections can remain open to allow ships to pass through. In the model, the gate remains partially submerged, and as the high-velocity water passes over it into an area of low velocity, it creates a small rise of water before it falls over the edge of the barrier, creating a hydraulic jump.

    But Malanotte-Rizzoli joked that only scientists will care about that; otherwise, the model does a good job demonstrating how the MOSE gates rise and fall.

    The MOSE system is only one of many plans taken to mitigate the rising water levels in Venice and to protect the lagoon and the surrounding area, and this is an important point for Malanotte-Rizzoli, who worked on the project from 1995 to 2013.

    “It is not the MOSE or,” she emphasized. “It is the MOSE and.” Other complementary plans have been implemented to reduce harm to both economic sectors, such as shipping and tourism, as well as the wildlife that live in the lagoons.

    Beyond barriers

    There’s more to protecting Venice than navigating flooded streets — it’s not just “putting on rainboots,” as Malanotte-Rizzoli put it.

    “It’s destroying the walls,” she said, pointing out the corrosive effects of water on a model building, which emphasizes the damage to architecture caused by the unusually high flood levels. “People don’t think about this.” The exhibit also emphasizes the economic costs of businesses lost by having visitors take down and rebuild a flood barrier for a gelato shop with the rising and falling water levels.

    Malanotte-Rizzoli gave the exhibit her seal of approval, but the Venice section is only a small portion of what the finished exhibit will look like. The current plan involves expanding it to include a few other World Heritage Sites.

    “How do we make people care about a site that they haven’t been to?” asked Julia Tate, the project manager of touring exhibits and exhibit production at the museum. She said that it’s easy to start with a city like Venice, since it’s a popular tourist destination. But it becomes trickier to get people to care about a site that they maybe haven’t been to, such as the Easter Islands, that are just as much at risk. The plan is to incorporate a few more sites before turning it into a traveling exhibit that will end by asking visitors to think about climate change in their own towns.

    “We want them to think about solutions and how to do better,” said Tate. Hope is the alternative message: It’s not too late to act.

    Malanotte-Rizzoli thinks it’s important for Bostonians to see their own city in Venice, as Boston is also at risk from sea level rise. The history of Boston reminds Malanotte-Rizzoli about her hometown and is one of the reasons why she was willing to emigrate. The history encompassed in Boston makes the need for preservation even more important.

    “Those things that cannot be replaced, they must be respected in the process of preservation,” she said. “Modern things and engineering can be done even in a city which is so fragile, so delicate.” More

  • in

    Conversations at the front line of climate

    The climate crisis is a novel and developing chapter in human and planetary history. As a species, humankind is still very much learning how to face this crisis, and the world’s frontline communities — those being most affected by climate change — are struggling to make their voices heard. How can communities imperiled by climate change convey the urgency of their situation to countries and organizations with the means to make a difference? And how can governments and other powerful groups provide resources to these vulnerable frontline communities?The MIT Civic Design Initiative (CDI), an interdisciplinary confluence of media studies and design expertise, emerged in 2020 to tackle just these kinds of questions. It brings together the MIT Design Lab, a program originally founded in the School of Architecture and Planning with its research practices in design, and the Comparative Media Studies program (CMS/W) with its focus on the fundamentals of human connection and communication. Drawing on these complementary sources of scholarly perspective and expertise, CDI is a suitably broad umbrella for the range of climate-related issues that humanistic research and design can potentially address. Based in the CMS/W program of the School of Humanities, Arts, and Social Sciences, the initiative is responding to the climate crises with a spirit of inquiry, listening, and solid data. Reflecting on the mission, James Paradis, the Robert M. Metcalfe Professor of CMS/W and CDI faculty director, says the core idea is to address global issues by combining new and emerging technologies with an equally keen focus on the social and cultural contexts — the human dimensions of the issue — with many of their nuances.  Working closely with Paradis on this vision are the two CDI co-directors: Yihyun Lim, an architect, urban designer, and MIT researcher; and Eric Gordon, a visiting professor of civic media in MIT CMS/W. Prior to CDI, when she was leading the MIT Design Lab research group, Lim says “At MIT Design Lab, I was working within the realm of applied research with industry partnerships, how we can apply user-centered design methods in creating connected experiences. Eric, Jim, and I wanted to shift the focus into a more civic realm, where we could bring all our collective expertise together to address tricky problems.”

    Deep listeningThe initiative’s flagship project, the Deep Listening Project, is currently working with an initial group of frontline communities in Nepal and Indigenous tribes in the United States and Canada. The work is a direct application of communication protocols: understanding how people are communicating with and often without technologies — and how technologies can be better used to help people get the help they need, when they need it, in the face of the climate crisis.

    The CDI team describes deep listening as “a form of institutional and community intake that considers diversity, tensions, and frictions, and that incorporates communities’ values in creating solutions.”

    Globally, the majority of climate response funding currently goes toward mitigation efforts — such as reducing emissions or using more eco-friendly materials. It is only in recent years that more substantial funding has been focused on climate adaptation: making adjustments that can help a community adapt to present changes and impacts and also prepare for future climate-related crises. For the millions of people in frontline communities, such adaptation can be crucial to protecting and sustaining their communities.Gordon describes the scope of the situation: “We know that over the next 10 years, climate change will drive over 100 million people to adapt where and how they live, regardless of the success of mitigation efforts. And in order for those adaptations to succeed, there must be a concerted collaborative effort between frontline communities and institutions with the resources to facilitate adaptation.“Communication between institutions and their constituents is a fundamental planning problem in any context,” Gordon continues. “In the case of climate adaptation, there will not be a surplus of time to get things right. Putting communication mechanisms in place to connect affected communities with institutional resources is already imperative.“This situation requires that we figure out, quickly, how to listen to the people who will rely on [those institutions] for their lives and livelihoods. We want to understand how institutions — from governments to universities to NGOs [nongovernmental organizations] — are adopting and adapting technologies, and how that is benefiting or hurting their constituencies.  People with direct frontline experience need to be supported in their speech and ideas, and institutions need to be able to take in the data from these communities, listen carefully to discern its significance, and then act upon it.” Sensemaking: infrastructure for connection

    One important aspect of meaningful, effective communication will be the ability of frontline and Indigenous communities to communicate likely or imagined futures, based on their own knowledge and desires. One potential tool is what the initiative calls “sensemaking:” producing and sharing data visualizations that can communicate to governments the experiences of frontline communities. The initiative also hopes to develop additional elements of the “deep listening infrastructure” — mechanisms to make sure important community voices carry and that important data isn’t lost to noise in the vast question of climate adaptability.“Oftentimes in academia, the paper gets published or the website gets developed, and everybody says, ‘OK, we’ve done our work,’” Paradis observes. “What we’re aiming to do in the CDI is the necessary work that happens after the publication of research — where research is applied to actually improve peoples’ lives.”The Deep Listening Project is also building a network of scholars and practitioners nationwide, including Henry Jenkins, co-founder and former faculty member at MIT CMS/W; Sangita Shresthova SM ’03 at the University of Southern California; and Darren Ranco at the University of Maine. Ranco, an anthropologist, Indigenous activist, and organizational leader, has been instrumental in connecting with Indigenous groups and tribal governments across North America. Meanwhile, Gordon has helped forge connections with groups like the International Red Cross/Red Crescent, the World Bank, and the UN Development. At the root of these connections is the impetus to communicate lived realities from the level of a small community to that of global relief organizations and governmental powers.

    Potential human futures

    Mona Vijaykumar, a second-year student in the SMArchS Architecture and Urbanism program in the Department of Architecture, and among the first student researcher assistants attached to the new initiative, is excited to have the chance to help build CDI from the ground up. “It’s been a great honor to be working with CDI’s amazing team for the last eight months,” she says. With her background in urban design and research interest in climate adaptation processes, Vijaykumar has been engaged in developing the Deep Listening Project’s white paper as part of MIT Climate Grand Challenges. She works alongside the initiative’s two other inaugural research assistants: Tomas Guarna, a master’s student in CMS, and Gabriela Degetau, a master’s student in the SMarchS Urbanism program, with Vijaykumar.“I was involved in analyzing the literature case study on community-based adaptation processes and co-writing the white paper,” Vijaykumar says, “and am currently working on conducting interviews with communities and institutions in India. Going forward, Gabriela and I will be presenting the white paper at gatherings such as the American Association of Geographers’ Conference in New York and the Climate and Social Impact Conference in Vancouver.”“The support and collaboration of the team have been incredibly empowering,” reflects Degetau, who will be co-presenting the white paper with Vijaykumar in New York and Vancouver, British Columbia. “Even when working from different countries and through Zoom, the experience has been unique and cohesive.”Both Degetau and Vijaykumar were selected as the first fellows of the Vuslat Foundation, organized by the MIT Transmedia Storytelling Initiative. In this one-year fellowship, they are seeking to co-design “climate imaginaries” through the Deep Listening Project. Vijaykumar’s work is also supported by the MIT Human Rights and Technology Fellowship for 2021-22, which guides her personal focus on what she refers to as the “dual sword” of technology and data colonialism in India.As the Deep Listening Project continues to develop a sustainable and balanced communication infrastructure, Lim reflects that a vital part of that is sharing how potential futures are envisioned. Both large institutions and individual communities imagine, separately — and hopefully soon together — how the human world will reshape itself to be viable in profoundly shifting climate conditions. “What are our possible futures?” asks Lim. “What are people dreaming?” 

    Story prepared by MIT SHASS CommunicationsEditorial and design director: Emily HiestandSenior communications associate: Alison Lanier More

  • in

    Nurturing human communities and natural ecosystems

    When she was in 7th grade, Heidi Li and the five other members of the Oyster Gardening Club cultivated hundreds of oysters to help repopulate the Chesapeake Bay. On the day they released the oysters into the bay, the event attracted TV journalists and local officials, including the governor. The attention opened the young Li’s eyes to the ways that a seemingly small effort in her local community could have a real-world impact.

    “I got to see firsthand how we can make change at a grassroots level and how that impacts where we are,” she says.

    Growing up in Howard County, Maryland, Li was constantly surrounded by nature. Her family made frequent trips to the Chesapeake Bay, as it reminded them of her parent’s home in Shandong, China. Li worked to bridge the cultural gap between parents, who grew up in China, and their children, who grew up in the U.S., and attended Chinese school every Sunday for 12 years. These experiences instilled in her a community-oriented mindset, which Li brought with her to MIT, where she now majors in materials science and engineering.

    During her first year, Li pursued a microbiology research project through the Undergraduate Research Opportunities Program (UROP) in the Department of Civil and Environmental Engineering. She studied microbes in aquatic environments, analyzing how the cleanliness of water impacted immunity and behavioral changes of the marine bacteria.

    The experience led her to consider the ways environmental policy affected sustainability efforts. She began applying the problem to energy, asking herself questions such as, “How can you take this specific economic principle and apply it to energy? What has energy policy looked like in the past and how can we tailor that to apply to our current energy system?”

    To explore the intersection of policy and energy, Li participated in the Roosevelt Project, through the Center of Energy and Environmental Policy Research, during the summer after her junior year. The project used case studies targeting specific communities in vulnerable areas to propose methods for a more sustainable future. Li focused on Pittsburgh, Pennsylvania, evaluating the efficiency of an energy transition from natural gas and fossil fuels to carbon-capture, which would mean redistributing the carbon dioxide produced by the coal industry. After traveling to Pittsburgh and interviewing stakeholders in the area, Li watched as local community leaders created physical places for citizens to share their ideas and opinions on the energy transition

    “I watched community leaders create a safe space for people from the surrounding town to share their ideas for entrepreneurship. I saw how important community is and how to create change at a grassroots level,” she says.

    In the summer of 2021, Li pursued an internship through the energy consulting firm Wood Mackenzie, where she looked at technologies that could potentially help with the energy transition from fossil fuels to renewable energy. Her job was to make sure the technology could be implemented efficiently and cost-effectively, optimizing the resources available to the surrounding area. The project allowed Li to engage with industry-based efforts to chart and analyze the technological advancements for various decarbonization scenarios. She hopes to continue looking at both the local, community-based, and external, industry-based, inputs on how economic policy would affect stakeholders.

    On campus, Li is the current president of the Sustainable Energy Alliance (SEA), where she aims to make students more conscious about climate change and their impact on the environment. During summer of her sophomore year, Li chaired a sustainability hackathon for over 200 high school students, where she designed and led the “Protecting Climate Refugees” and “Tackling Environmental Injustice” challenges to inspire students to think about humanitarian efforts for protecting frontline communities.

    “The whole goal of this is to empower students to think about solutions for themselves. Empowering students is really important to show them they can make change and inspire hope in themselves and the people around them,” she says.

    Li also hosted and produced “Open SEAcrets,” a podcast designed to engage MIT students with topics surrounding energy sustainability and provide them with the opportunity to share their opinions on the subject. She sees the podcast as a platform to raise awareness about energy, climate change, and environmental policy, while also inspiring a sense of community with listeners.

    When she is not in the classroom or the lab, Li relaxes by playing volleyball. She joined the Volleyball Club during her first year at MIT, though she has been playing since she was 12. The sport allows her to not only relieve stress, but also have conversations with both undergrads and graduate students, who bring different their backgrounds, interests, and experiences to conversations. The sport has also taught Li about teamwork, trust, and the importance of community in ways that her other experience doesn’t.

    Looking ahead, Li is currently working on a UROP project, called Climate Action Through Education (CATE), that designs climate change curriculum for K-12 grades and aims to show how climate change and energy are integral to peoples’ daily lives. Seeing the energy transition as an interdisciplinary problem, she wants to educate students about the problems of climate change and sustainability using perspectives from math, science, history, and psychology to name a few areas.

    But above all, Li wants to empower younger generations to develop solution-minded approaches to environmentalism. She hopes to give local communities a voice in policy implementation, with the end goal of a more sustainable future for all.

    “Finding a community you really thrive in will allow you to push yourself and be the best version of yourself you can be. I want to take this mindset and create spaces for people and establish and instill this sense of community,” she says. More

  • in

    First-ever Climate Grand Challenges recognizes 27 finalists

    All-carbon buildings, climate-resilient crops, and new tools to improve the prediction of extreme weather events are just a few of the 27 bold, interdisciplinary research projects selected as finalists from a field of almost 100 proposals in the first MIT Climate Grand Challenges competition. Each of the finalist teams received $100,000 to develop a comprehensive research and innovation plan.

    A subset of the finalists will make up a portfolio of multiyear projects that will receive additional funding and other support to develop high-impact, science-based mitigation and adaptation solutions on an accelerated basis. These flagship projects, which will be announced later this spring, will augment the work of the many MIT units already pursuing climate-related research activities.

    “Climate change poses a suite of challenges of immense urgency, complexity and scale. At MIT, we are bringing our particular strengths to bear through our community — a rare concentration of ingenuity and determination, rooted in a vibrant innovation ecosystem,” President L. Rafael Reif says. “Through MIT’s Climate Grand Challenges, we are engaging hundreds of our brilliant faculty and researchers in the search for solutions with enormous potential for impact.”

    The Climate Grand Challenges launched in July 2020 with the goal of mobilizing the entire MIT research community around developing solutions to some of the most complex unsolved problems in emissions reduction, climate change adaptation and resilience, risk forecasting, carbon removal, and understanding the human impacts of climate change.

    An event in April will showcase the flagship projects, bringing together public and private sector partners with the MIT teams to begin assembling the necessary resources for developing, implementing, and scaling these solutions rapidly.

    A whole-of-MIT effort

    Part of a wide array of major climate programs outlined last year in “Fast Forward: MIT’s Climate Action Plan for the Decade,” the Climate Grand Challenges focuses on problems where progress depends on the application of forefront knowledge in the physical, life, and social sciences and the advancement of cutting-edge technologies.

    “We don’t have the luxury of time in responding to the intensifying climate crisis,” says Vice President for Research Maria Zuber, who oversees the implementation of MIT’s climate action plan. “The Climate Grand Challenges are about marshaling the wide and deep knowledge and methods of the MIT community around transformative research that can help accelerate our collective response to climate change.”

    If successful, the solutions will have tangible effects, changing the way people live and work. Examples of these new approaches range from developing cost-competitive long-term energy-storage systems to using drone technologies and artificial intelligence to study the role of the deep ocean in the climate crisis. Many projects also aim to increase the humanistic understanding of these phenomena, recognizing that technological advances alone will not address the widespread impacts of climate change, and a comparable behavioral and cultural shift is needed to stave off future threats.

    “To achieve net-zero emissions later this century we must deploy the tools and technologies we already have,” says Richard Lester, associate provost for international activities. “But we’re still far from having everything needed to get there in ways that are equitable and affordable. Nor do we have the solutions in hand that will allow communities — especially the most vulnerable ones — to adapt to the disruptions that will occur even if the world does get to net-zero. Climate Grand Challenges is creating a new opportunity for the MIT research community to attack some of these hard, unsolved problems, and to engage with partners in industry, government, and the nonprofit sector to accelerate the whole cycle of activities needed to implement solutions at scale.” 

    Selecting the finalist projects

    A 24-person faculty committee convened by Lester and Zuber with members from all five of MIT’s schools and the MIT Schwarzman College of Computing led the planning and initial call for ideas. A smaller group of committee members was charged with evaluating nearly 100 letters of interest, representing 90 percent of MIT departments and ​​involving almost 400 MIT faculty members and senior researchers as well as colleagues from other research institutions.

    “Effectively confronting the climate emergency requires risk taking and sustained investment over a period of many decades,” says Anantha Chandrakasan, dean of the School of Engineering. “We have a responsibility to use our incredible resources and expertise to tackle some of the most challenging problems in climate mitigation and adaptation, and the opportunity to make major advances globally.”

    Lester and Zuber charged a second faculty committee with organizing a rigorous and thorough evaluation of the plans developed by the 27 finalist teams. Drawing on an extensive review process involving international panels of prominent experts, MIT will announce a small group of flagship Grand Challenge projects in April. 

    Each of the 27 finalist teams is addressing one of four broad Grand Challenge problems:

    Building equity and fairness into climate solutions

    Policy innovation and experimentation for effective and equitable climate solutions, led by Abhijit Banerjee, Iqbal Dhaliwal, and Claire Walsh
    Protecting and enhancing natural carbon sinks – Natural Climate and Community Solutions (NCCS), led by John Fernandez, Daniela Rus, and Joann de Zegher
    Reducing group-based disparities in climate adaptation, led by Evan Lieberman, Danielle Wood, and Siqi Zheng
    Reinventing climate change adaptation – The Climate Resilience Early Warning System (CREWSnet), led by John Aldridge and Elfatih Eltahir
    The Deep Listening Project: Communication infrastructure for collaborative adaptation, led by Eric Gordon, Yihyun Lim, and James Paradis
    The Equitable Resilience Framework, led by Janelle Knox-Hayes

    Decarbonizing complex industries and processes

    Carbon >Building, led by Mark Goulthorpe
    Center for Electrification and Decarbonization of Industry, led by Yet-Ming Chiang and Bilge Yildiz
    Decarbonizing and strengthening the global energy infrastructure using nuclear batteries, led by Jacopo Buongiorno
    Emissions reduction through innovation in the textile industry, led by Yuly Fuentes-Medel and Greg Rutledge
    Rapid decarbonization of freight mobility, led by Yossi Sheffi and Matthias Winkenbach
    Revolutionizing agriculture with low-emissions, resilient crops, led by Christopher Voigt
    Solar fuels as a vector for climate change mitigation, led by Yuriy Román-Leshkov and Yogesh Surendranath
    The MIT Low-Carbon Co-Design Institute, led by Audun Botterud, Dharik Mallapragada, and Robert Stoner
    Tough to Decarbonize Transportation, led by Steven Barrett and William Green

    Removing, managing, and storing greenhouse gases

    Demonstrating safe, globally distributed geological CO2 storage at scale, led by Bradford Hager, Howard Herzog, and Ruben Juanes
    Deploying versatile carbon capture technologies and storage at scale, led by Betar Gallant, Bradford Hager, and T. Alan Hatton
    Directed Evolution of Biological Carbon Fixation Working Group at MIT (DEBC-MIT), led by Edward Boyden and Matthew Shoulders
    Managing sources and sinks of carbon in terrestrial and coastal ecosystems, led by Charles Harvey, Tami Lieberman, and Heidi Nepf
    Strategies to Reduce Atmospheric Methane, led by Desiree Plata

    The Advanced Carbon Mineralization Initiative, led by Edward Boyden, Matěj Peč, and Yogesh Surendranath

    Using data and science to forecast climate-related risk

    Bringing computation to the climate challenge, led by Noelle Eckley Selin and Raffaele Ferrari
    Ocean vital signs, led by Christopher Hill and Ryan Woosley
    Preparing for a new world of weather and climate extremes, led by Kerry Emanuel, Miho Mazereeuw, and Paul O’Gorman
    Quantifying and managing the risks of sea-level rise, led by Brent Minchew
    Stratospheric Airborne Climate Observatory System to initiate a climate risk forecasting revolution, led by R. John Hansman and Brent Minchew
    The future of coasts – Changing flood risk for coastal communities in the developing world, led by Dara Entekhabi, Miho Mazereeuw, and Danielle Wood

    To learn more about the MIT Climate Grand Challenges, visit climategrandchallenges.mit.edu. More

  • in

    3 Questions: What a single car can say about traffic

    Vehicle traffic has long defied description. Once measured roughly through visual inspection and traffic cameras, new smartphone crowdsourcing tools are now quantifying traffic far more precisely. This popular method, however, also presents a problem: Accurate measurements require a lot of data and users.

    Meshkat Botshekan, an MIT PhD student in civil and environmental engineering and research assistant at the MIT Concrete Sustainability Hub, has sought to expand on crowdsourcing methods by looking into the physics of traffic. During his time as a doctoral candidate, he has helped develop Carbin, a smartphone-based roadway crowdsourcing tool created by MIT CSHub and the University of Massachusetts Dartmouth, and used its data to offer more insight into the physics of traffic — from the formation of traffic jams to the inference of traffic phase and driving behavior. Here, he explains how recent findings can allow smartphones to infer traffic properties from the measurements of a single vehicle.  

    Q: Numerous navigation apps already measure traffic. Why do we need alternatives?

    A: Traffic characteristics have always been tough to measure. In the past, visual inspection and cameras were used to produce traffic metrics. So, there’s no denying that today’s navigation tools apps offer a superior alternative. Yet even these modern tools have gaps.

    Chief among them is their dependence on spatially distributed user counts: Essentially, these apps tally up their users on road segments to estimate the density of traffic. While this approach may seem adequate, it is both vulnerable to manipulation, as demonstrated in some viral videos, and requires immense quantities of data for reliable estimates. Processing these data is so time- and resource-intensive that, despite their availability, they can’t be used to quantify traffic effectively across a whole road network. As a result, this immense quantity of traffic data isn’t actually optimal for traffic management.

    Q: How could new technologies improve how we measure traffic?

    A: New alternatives have the potential to offer two improvements over existing methods: First, they can extrapolate far more about traffic with far fewer data. Second, they can cost a fraction of the price while offering a far simpler method of data collection. Just like Waze and Google Maps, they rely on crowdsourcing data from users. Yet, they are grounded in the incorporation of high-level statistical physics into data analysis.

    For instance, the Carbin app, which we are developing in collaboration with UMass Dartmouth, applies principles of statistical physics to existing traffic models to entirely forgo the need for user counts. Instead, it can infer traffic density and driver behavior using the input of a smartphone mounted in single vehicle.

    The method at the heart of the app, which was published last fall in Physical Review E, treats vehicles like particles in a many-body system. Just as the behavior of a closed many-body system can be understood through observing the behavior of an individual particle relying on the ergodic theorem of statistical physics, we can characterize traffic through the fluctuations in speed and position of a single vehicle across a road. As a result, we can infer the behavior and density of traffic on a segment of a road.

    As far less data is required, this method is more rapid and makes data management more manageable. But most importantly, it also has the potential to make traffic data less expensive and accessible to those that need it.

    Q: Who are some of the parties that would benefit from new technologies?

    A: More accessible and sophisticated traffic data would benefit more than just drivers seeking smoother, faster routes. It would also enable state and city departments of transportation (DOTs) to make local and collective interventions that advance the critical transportation objectives of equity, safety, and sustainability.

    As a safety solution, new data collection technologies could pinpoint dangerous driving conditions on a much finer scale to inform improved traffic calming measures. And since socially vulnerable communities experience traffic violence disproportionately, these interventions would have the added benefit of addressing pressing equity concerns. 

    There would also be an environmental benefit. DOTs could mitigate vehicle emissions by identifying minute deviations in traffic flow. This would present them with more opportunities to mitigate the idling and congestion that generate excess fuel consumption.  

    As we’ve seen, these three challenges have become increasingly acute, especially in urban areas. Yet, the data needed to address them exists already — and is being gathered by smartphones and telematics devices all over the world. So, to ensure a safer, more sustainable road network, it will be crucial to incorporate these data collection methods into our decision-making. More

  • in

    Investors awaken to the risks of climate change

    Poppy Allonby, a senior financial executive and the former managing director of BlackRock, has been analyzing the link between climate change and investing for more than two decades. “For a lot of that, it was quite lonely,” Allonby said during her December address at the MIT Energy Initiative Fall Colloquium. “There weren’t that many other people looking at this field. And over the last three or four years, that’s completely changed.”

    Increasingly, Allonby said, investors are opening their eyes to the long-term risks of climate change — risks that threaten not only the planet, but also their portfolios. And as more institutional investors come to see climate change as a threat to their beneficiaries, they are taking action to fight it. Still, she cautioned that much more work remains to be done.

    “Various investors are at very different stages in considering climate change,” Allonby said. “Once they realize this is something they need to think about … they need to do a risk assessment, then develop a strategy.” 

    “When you look at different institutions,” she said, “some are just at the very beginning of this journey.”

    A changing landscape

    Although there is a compelling moral case to be made for taking steps to mitigate climate change, Allonby noted that institutional investors such as pension funds are bound by a fiduciary duty to their beneficiaries. That is to say, they are obligated to put their client or member interests ahead of their own.

    “I talk about fiduciary duty, because one of the things that has really changed in the investment space is that more and more investors are beginning to see climate change and climate risk as [impacting] their fiduciary duty,” said Allonby. “That has been a shift. In my mind, it makes total sense. If you’re a long-term investor … and you’re thinking about beneficiaries that need assets over the next 10 or 20 years, and thinking about risks that might materialize — and climate change, in particular — then that makes a lot of sense. But that is not where we were five or 10 years ago.”

    Allonby spent more than 20 years at the multinational investment management corporation BlackRock. For 17 of those years, she was a senior portfolio manager responsible for managing multibillion-dollar funds investing globally in companies across the traditional energy sector, and also those involved in sustainable energy and mitigating climate change. Most recently, she was head of the corporation’s Global Product Group on several continents, where she provided oversight for nearly $1 trillion assets and played a critical role in developing BlackRock’s sustainable product strategy.

    “Where I like to think the finance industry is heading is integration,” she said. “This means thinking holistically about pretty much every decision you make as an investor, and thinking about how climate risk is going to impact that investment. That is a sea change in the mentality around how people invest.”

    Divestment versus engagement

    For many years, activists have pushed for institutions — including MIT — to divest from fossil fuel companies. By keeping fossil fuel companies out of their portfolios, these activists argue, institutions and individuals can exert social, political, and economic pressure on these corporations and help to accelerate the shift to renewable energy.

    However, Allonby argued instead for ongoing engagement with fossil fuel companies, reasoning that this better positions investors to push for change. “My personal view with divesting from oil and gas companies is, that’s not very effective,” Allonby said. “I think there might be examples where you have very specific companies which you don’t think will be involved in the transition [to net zero], and [divestment] might make sense. Or if you’ve got an institutional investor where it is imperative that their investment is entirely aligned with their values — so, certain charities — it might make sense. But if you really care about change, I think you need to keep a seat at the table.”

    In a way, Allonby said, divesting from fossil fuel companies lets leaders at those organizations off the hook, reducing the pressure on them to make meaningful changes to their operations. “Imagine a company that is incredibly polluting and not sustainable, and they have shareholders that are not happy, but they don’t do anything, and those shareholders decide to divest,” she said. “What happens as a result of that, potentially, is the company goes, ‘Oh, that was easy! I didn’t have to do anything, and [the activists] have gone away.’ And potentially, those assets end up being owned by people who care less. So that is a risk, when you think about divestment.”

    Challenges and opportunities         

    Allonby outlined several challenges with climate-focused investing, but also noted a number of opportunities — both for investors looking to make money, and those looking to make a change.

    Among the challenges: For one, some investors simply still need to be convinced that climate change is a problem they should be working to solve. Also, Allonby said, there is a lack both of a formalized methodology and of specialized investment products for climate-focused investing, although she noted that both of these areas are improving. Finally, she said, it remains a challenge to encourage investors to direct capital toward clean-energy projects in developing countries. 

    Investors can both set themselves up for financial success and mitigate climate change, Allonby said, through savvy investments in either distressed or underpriced assets. “If you can buy assets that are discounted or cheaper because people have real concerns about their environmental footprint, then you can work with those companies to improve it and therefore reduce the risk and improve the valuation,” she said.

    Allonby, pointing to the high cost of waterfront property in areas that are vulnerable to rising sea levels, also suggested that the long-term risks of climate change have not been fully priced into many assets. “My view is that we haven’t really gotten our arms around that,” she said. “From a purely investment perspective, that’s also an opportunity.”

    Additionally, Allonby noted the recent rise of ESG funds, which invest with environmental, social, and corporate governance guidelines in mind. Some of these funds, she noted, have outperformed the larger market over the past several years.

    “When we talk about climate change, one has a range of emotions,” Allonby said. “Sometimes it can feel like we’re not making enough progress. And one of the nice things about being here at MIT is that whenever I’m here, I always feel hopeful about the future, and quite hopeful about all of the technologies and work that you are doing to transition energy systems and move things forward. When you look at what’s happening in the financial services sector, there’s still a huge amount to do, but it’s also quite a hopeful story.” More

  • in

    Students dive into research with the MIT Climate and Sustainability Consortium

    Throughout the fall 2021 semester, the MIT Climate and Sustainability Consortium (MCSC) supported several research projects with a climate-and-sustainability topic related to the consortium, through the MIT Undergraduate Research Opportunities Program (UROP). These students, who represent a range of disciplines, had the opportunity to work with MCSC Impact Fellows on topics related directly to the ongoing work and collaborations with MCSC member companies and the broader MIT community, from carbon capture to value-chain resilience to biodegradables. Many of these students are continuing their work this spring semester.

    Hannah Spilman, who is studying chemical engineering, worked with postdoc Glen Junor, an MCSC Impact Fellow, to investigate carbon capture, utilization, and storage (CCUS), with the goal of facilitating CCUS on a gigaton scale, a much larger capacity than what currently exists. “Scientists agree CCUS will be an important tool in combating climate change, but the largest CCUS facility only captures CO2 on a megaton scale, and very few facilities are actually operating,” explains Spilman. 

    Throughout her UROP, she worked on analyzing the currently deployed technology in the CCUS field, using National Carbon Capture Center post-combustion project reports to synthesize the results and outline those technologies. Examining projects like the RTI-NAS experiment, which showcased innovation with carbon capture technology, was especially helpful. “We must first understand where we are, and as we continue to conduct analyses, we will be able to understand the field’s current state and path forward,” she concludes.

    Fellow chemical engineering students Claire Kim and Alfonso Restrepo are working with postdoc and MCSC Impact Fellow Xiangkun (Elvis) Cao, also on investigating CCUS technology. Kim’s focus is on life cycle assessment (LCA), while Restrepo’s focus is on techno-economic assessment (TEA). They have been working together to use the two tools to evaluate multiple CCUS technologies. While LCA and TEA are not new tools themselves, their application in CCUS has not been comprehensively defined and described. “CCUS can play an important role in the flexible, low-carbon energy systems,” says Kim, which was part of the motivation behind her project choice.

    Through TEA, Restrepo has been investigating how various startups and larger companies are incorporating CCUS technology in their processes. “In order to reduce CO2 emissions before it’s too late to act, there is a strong need for resources that effectively evaluate CCUS technology, to understand the effectiveness and viability of emerging technology for future implementation,” he explains. For their next steps, Kim and Restrepo will apply LCA and TEA to the analysis of a specific capture (for example, direct ocean capture) or conversion (for example, CO2-to-fuel conversion) process​ in CCUS.

    Cameron Dougal, a first-year student, and James Santoro, studying management, both worked with postdoc and MCSC Impact Fellow Paloma Gonzalez-Rojas on biodegradable materials. Dougal explored biodegradable packaging film in urban systems. “I have had a longstanding interest in sustainability, with a newer interest in urban planning and design, which motivated me to work on this project,” Dougal says. “Bio-based plastics are a promising step for the future.”

    Dougal spent time conducting internet and print research, as well as speaking with faculty on their relevant work. From these efforts, Dougal has identified important historical context for the current recycling landscape — as well as key case studies and cities around the world to explore further. In addition to conducting more research, Dougal plans to create a summary and statistic sheet.

    Santoro dove into the production angle, working on evaluating the economic viability of the startups that are creating biodegradable materials. “Non-renewable plastics (created with fossil fuels) continue to pollute and irreparably damage our environment,” he says. “As we look for innovative solutions, a key question to answer is how can we determine a more effective way to evaluate the economic viability and probability of success for new startups and technologies creating biodegradable plastics?” The project aims to develop an effective framework to begin to answer this.

    At this point, Santoro has been understanding the overall ecosystem, understanding how these biodegradable materials are developed, and analyzing the economics side of things. He plans to have conversations with company founders, investors, and experts, and identify major challenges for biodegradable technology startups in creating high performance products with attractive unit economics. There is also still a lot to research about new technologies and trends in the industry, the profitability of different products, as well as specific individual companies doing this type of work.

    Tess Buchanan, who is studying materials science and engineering, is working with Katharina Fransen and Sarah Av-Ron, MIT graduate students in the Department of Chemical Engineering, and principal investigator Professor Bradley Olsen, to also explore biodegradables by looking into their development from biomass “This is critical work, given the current plastics sustainability crisis, and the potential of bio-based polymers,” Buchanan says.

    The objective of the project is to explore new sustainable polymers through a biodegradation assay using clear zone growth analysis to yield degradation rates. For next steps, Buchanan is diving into synthesis expansion and using machine learning to understand the relationship between biodegradation and polymer chemistry.

    Kezia Hector, studying chemical engineering, and Tamsin Nottage, a first-year student, working with postdoc and MCSC Impact Fellow Sydney Sroka, explored advancing and establishing sustainable solutions for value chain resilience. Hector’s focus was understanding how wildfires can affect supply chains, specifically identifying sources of economic loss. She reviewed academic literature and news articles, and looked at the Amazon, California, Siberia, and Washington, finding that wildfires cause millions of dollars in damage every year and impact supply chains by cutting off or slowing down freight activity. She will continue to identify ways to make supply chains more resilient and sustainable.

    Nottage focused on the economic impact of typhoons, closely studying Typhoon Mangkhut, a powerful and catastrophic tropical cyclone that caused extensive damages of $593 million in Guam, the Philippines, and South China in September 2018. “As a Bahamian, I’ve witnessed the ferocity of hurricanes and challenges of rebuilding after them,” says Nottage. “I used this project to identify the tropical cyclones that caused the most extensive damage for further investigation.”She compiled the causes of damage and their costs to inform targets of supply chain resiliency reform (shipping, building materials, power supply, etc.). As a next step, Nottage will focus on modeling extreme events like Mangkunt to develop frameworks that companies can learn from and utilize to build more sustainable supply chains in the future.

    Ellie Vaserman, a first-year student working with postdoc and MCSC Impact Fellow Poushali Maji, also explored a topic related to value chains: unlocking circularity across the entire value chain through quality improvement, inclusive policy, and behavior to improve materials recovery. Specifically, her objectives have been to learn more about methods of chemolysis and the viability of their products, to compare methods of chemical recycling of polyethylene terephthalate (PET) using quantitative metrics, and to design qualitative visuals to make the steps in PET chemical recycling processes more understandable.

    To do so, she conducted a literature review to identify main methods of chemolysis that are utilized in the field (and collect data about these methods) and created graphics for some of the more common processes. Moving forward, she hopes to compare the processes using other metrics and research the energy intensity of the monomer purification processes.

    The work of these students, as well as many others, continued over MIT’s Independent Activities Period in January. More

  • in

    Reducing methane emissions at landfills

    The second-largest driver of global warming is methane, a greenhouse gas 28 times more potent than carbon dioxide. Landfills are a major source of methane, which is created when organic material decomposes underground.

    Now a startup that began at MIT is aiming to significantly reduce methane emissions from landfills with a system that requires no extra land, roads, or electric lines to work. The company, Loci Controls, has developed a solar-powered system that optimizes the collection of methane from landfills so more of it can be converted into natural gas.

    At the center of Loci’s (pronounced “low-sigh”) system is a lunchbox-sized device that attaches to methane collection wells, which vacuum the methane up to the surface for processing. The optimal vacuum force changes with factors like atmospheric pressure and temperature. Loci’s system monitors those factors and adjusts the vacuum force at each well far more frequently than is possible with field technicians making manual adjustments.

    “We expect to reduce methane emissions more than any other company in the world over the next five years,” Loci Controls CEO Peter Quigley ’85 says. The company was founded by Melinda Hale Sims SM ’09, PhD ’12 and Andrew Campanella ’05, SM ’13.

    The reason for Quigley’s optimism is the high concentration of landfill methane emissions. Most landfill emissions in the U.S. come from about 1,000 large dumps. Increasing collection of methane at those sites could make a significant dent in the country’s overall emissions.

    In one landfill where Loci’s system was installed, for instance, the company says it increased methane sales at an annual rate of 180,000 metric tons of carbon dioxide equivalent. That’s about the same as removing 40,000 cars from the road for a year.

    Loci’s system is currently installed on wells in 15 different landfills. Quigley says only about 70 of the 1,000 big landfills in the U.S. sell gas profitably. Most of the others burn the gas. But Loci’s team believes increasing public and regulatory pressure will help expands its potential customer base.

    Uncovering a major problem

    The idea for Loci came from a revelation by Sims’ father, serial entrepreneur Michael Hale SM ’85, PhD ’89. The elder Hale was working in wastewater management when he was contacted by a landfill in New York that wanted help using its excess methane gas.

    “He realized if he could help that particular landfill with the problem, it would apply to almost any landfill,” Sims says.

    At the time, Sims was pursuing her PhD in mechanical engineering at MIT and minoring in entrepreneurship.

    Her father didn’t have time to work on the project, but Sims began exploring technology solutions to improve methane capture at landfills in her business classes. The work was unrelated to her PhD, but her advisor, David Hardt, the Ralph E. and Eloise F. Cross Professor in Manufacturing at MIT, was understanding. (Hardt had also served as PhD advisor for Sim’s father, who was, after all, the person to blame for Sim’s new side project.)

    Sims partnered with Andrew Campanella, then a master’s student focused on electrical engineering, and the two went through the delta v summer accelerator program hosted by the Martin Trust Center for MIT Entrepreneurship.

    Quigley was retired but serving on multiple visiting committees at MIT when he began mentoring Loci’s founders. He’d spent his career commercializing reinforced plastic through two companies, one in the high-performance sporting goods industry and the other in oil field services.

    “What captured my imagination was the emissions-reduction opportunity,” Quigley says.

    Methane is generated in landfills when organic waste decomposes. Some landfill operators capture the methane by drilling hundreds of collection wells. The vacuum pressure of those wells needs to be adjusted to maximize the amount of methane collected, but Quigley says technicians can only make those adjustments manually about once a month.

    Loci’s devices monitor gas composition, temperature, and environmental factors like barometric pressure to optimize vacuum power every hour. The data the controllers collect is aggregated in an analytics platform for technicians to monitor remotely. That data can also be used to pinpoint well failure events, such as flooding during rain, and otherwise improve operations to increase the amount of methane captured.

    “We can adjust the valves automatically, but we also have data that allows on-site operators to identify and remedy problems much more quickly,” Quigley explains.

    Furthering a high-impact mission

    Methane capture at landfills is becoming more urgent as improvements in detection technologies are revealing discrepancies between methane emission estimates and reality in the industry. A new airborne methane sensor deployed by NASA, for instance, found that California landfills have been leaking methane at rates as much as six times greater than estimates from the U.S. Environmental Protection Agency. The difference has major implications for the Earth’s atmosphere.

    A reckoning will have to occur to motivate more waste management companies to start collecting methane and to optimize methane capture. That could come in the form of new collection standards or an increased emphasis on methane collection from investors. (Funds controlled by billionaires Bill Gates and Larry Fink are major investors in waste management companies.)

    For now, Loci’s team, including co-founder and current senior advisor Sims, believes it’s on the road to making a meaningful impact under current market conditions.

    “When I was in grad school, the majority of the focus on emissions was on CO2,” Sims says. “I think methane is a really high-impact place to be focused, and I think it’s been underestimated how valuable it could be to apply technology to the industry.” More