More stories

  • in

    Energizing communities in Africa

    Growing up in Lagos, Nigeria, Ayomikun Ayodeji enjoyed the noisy hustle and bustle of his neighborhood. The cacophony included everything from vendors hawking water sachets and mini sausages, to commuters shouting for the next bus.

    Another common sound was the cry of “Up NEPA!” — an acronym for the Nigerian Electrical Power Authority — which Ayodeji would chant in unison with other neighborhood children when power had been restored after an outage. He remembers these moments fondly because, despite the difficulties of the frequent outages, the call also meant that people finally did have long-awaited electricity in their homes.

    “I grew up without reliable electricity, so power is something I’ve always been interested in,” says Ayodeji, who is now a senior studying chemical engineering. He hopes to use the knowledge he has gained during his time at MIT to expand energy access in his home country and elsewhere in Africa.

    Before coming to MIT, Ayodeji spent two years in Italy at United World College, where he embarked on chemistry projects, specifically focusing on dye-sensitized solar cells. He then transferred to the Institute, seeking a more technical grounding. He hoped that the knowledge gained in and out of the classroom would equip him with the tools to help combat the energy crisis in Lagos.

    “The questions that remained in the back of my mind were: How can I give back to the community I came from? How can I use the resources around me to help others?”  he says.

    This community-oriented mindset led Ayodeji to team up with a group of friends and brainstorm ideas for how they could help communities close to them. They eventually partnered with the Northeast Children’s Trust (NECT), an organization that helps children affected by the extremist group Boko Haram. Ayodeji and his friends looked at how to expand NECT’s educational program, and decided to build an offline, portable classroom server with a repository of books, animations, and activities for students at the primary and secondary education levels. The project was sponsored by Davis Projects for Peace and MIT’s PKG Center.

    Because of travel restrictions, Ayodeji was the only member of his team able to fly to Nigeria in the summer of 2019 to facilitate installing the servers. He says he wished his team could have been there, but he appreciated the opportunity to speak with the children directly, inspired by their excitement to learn and grow. The experience reaffirmed Ayodeji’s desire to pursue social impact projects, especially in Nigeria.

    “We knew we hadn’t just taken a step in providing the kids with a well-rounded education, but we also supported the center, NECT, in raising the next generation of future leaders that would guide that region to a sustainable, peaceful future,” he says.

    Ayodeji has also sought out energy-related opportunities on campus, pursuing an undergraduate research program (UROP) in the Buonassisi Lab in his sophomore year. He was tasked with testing perovskite solar cells, which have the potential to reach high efficiencies at low production costs. He characterized the cells using X-ray diffraction, studying their stability and degradation pathways. While Ayodeji enjoyed his first experience doing hands-on energy research, he found he was more curious about how energy technologies were implemented to reach various communities. “I wanted to see how things were being done in the industry,” he says.

    In the summer after his sophomore year, Ayodeji interned with Pioneer Natural Resources, an independent oil and gas company in Texas. Ayodeji worked as part of the completions projects team to assess the impact of design changes on cluster efficiency, that is, how evenly fluid is distributed along the wellbore. By using fiberoptic and photographic data to analyze perforation erosion, he discovered ways to lower costs while maintaining environmental stability during completions. The experience taught Ayodeji about the corporate side of the energy industry and enabled him to observe how approaches to alternative energy sources differ across countries, especially in the U.S. and Nigeria.

    “Some developing economies don’t have the capacity to pour resources into expanding renewable energy infrastructure at the rate that most developed economies do. While it is important to think sustainably for the long run, it is also important for us to understand that a clean energy transition is not something that can be done overnight,” he says.

    Ayodeji also employs his community-oriented mindset on campus. He is currently the vice president of the African Students’ Association (ASA), where he formerly chaired the African Learning Circle, a weekly discussion panel spotlighting key development and innovation events taking place on the African continent. He is also involved with student outreach, both within the ASA and as an international orientation student coordinator for the International Students Office.

    As a member of Cru, a Christian community on campus, Ayodeji helps lead a bible study and says the group supports him as he navigates college life. “It is a wonderful community of people I explore faith with and truly lean on when things get tough,” he says.

    After graduating, Ayodeji plans to start work at Boston Consulting Group, where he interned last summer. He expects he’ll have opportunities to engage with private equity issues and tackle energy-related cases while learning more about where the industry is headed.

    His long-term goal is to help expand renewable energy access and production across the African continent.

    “A key element of what the world needs to develop and grow is access to reliable energy. I hope to keep expanding my problem-solving toolkit so that, one day, it can be useful in electrifying communities back home,” he says. More

  • in

    Preparing global online learners for the clean energy transition

    After a career devoted to making the electric power system more efficient and resilient, Marija Ilic came to MIT in 2018 eager not just to extend her research in new directions, but to prepare a new generation for the challenges of the clean-energy transition.

    To that end, Ilic, a senior research scientist in MIT’s Laboratory for Information and Decisions Systems (LIDS) and a senior staff member at Lincoln Laboratory in the Energy Systems Group, designed an edX course that captures her methods and vision: Principles of Modeling, Simulation, and Control for Electric Energy Systems.

    EdX is a provider of massive open online courses produced in partnership with MIT, Harvard University, and other leading universities. Ilic’s class made its online debut in June 2021, running for 12 weeks, and it is one of an expanding set of online courses funded by the MIT Energy Initiative (MITEI) to provide global learners with a view of the shifting energy landscape.

    Ilic first taught a version of the class while a professor at Carnegie Mellon University, rolled out a second iteration at MIT just as the pandemic struck, and then revamped the class for its current online presentation. But no matter the course location, Ilic focuses on a central theme: “With the need for decarbonization, which will mean accommodating new energy sources such as solar and wind, we must rethink how we operate power systems,” she says. “This class is about how to pose and solve the kinds of problems we will face during this transformation.”

    Hot global topic

    The edX class has been designed to welcome a broad mix of students. In summer 2021, more than 2,000 signed up from 109 countries, ranging from high school students to retirees. In surveys, some said they were drawn to the class by the opportunity to advance their knowledge of modeling. Many others hoped to learn about the move to decarbonize energy systems.

    “The energy transition is a hot topic everywhere in the world, not just in the U.S.,” says teaching assistant Miroslav Kosanic. “In the class, there were veterans of the oil industry and others working in investment and finance jobs related to energy who wanted to understand the potential impacts of changes in energy systems, as well as students from different fields and professors seeking to update their curricula — all gathered into a community.”

    Kosanic, who is currently a PhD student at MIT in electrical engineering and computer science, had taken this class remotely in the spring semester of 2021, while he was still in college in Serbia. “I knew I was interested in power systems, but this course was eye-opening for me, showing how to apply control theory and to model different components of these systems,” he says. “I finished the course and thought, this is just the beginning, and I’d like to learn a lot more.” Kosanic performed so well online that Ilic recruited him to MIT, as a LIDS researcher and edX course teaching assistant, where he grades homework assignments and moderates a lively learner community forum.

    A platform for problem-solving

    The course starts with fundamental concepts in electric power systems operations and management, and it steadily adds layers of complexity, posing real-world problems along the way. Ilic explains how voltage travels from point to point across transmission lines and how grid managers modulate systems to ensure that enough, but not too much, electricity flows. “To deliver power from one location to the next one, operators must constantly make adjustments to ensure that the receiving end can handle the voltage transmitted, optimizing voltage to avoid overheating the wires,” she says.

    In her early lectures, Ilic notes the fundamental constraints of current grid operations, organized around a hierarchy of regional managers dealing with a handful of very large oil, gas, coal, and nuclear power plants, and occupied primarily with the steady delivery of megawatt-hours to far-flung customers. But historically, this top-down structure doesn’t do a good job of preventing loss of energy due to sub-optimal transmission conditions or due to outages related to extreme weather events.

    These issues promise to grow for grid operators as distributed resources such as solar and wind enter the picture, Ilic tells students. In the United States, under new rules dictated by the Federal Energy Regulatory Commission, utilities must begin to integrate the distributed, intermittent electricity produced by wind farms, solar complexes, and even by homes and cars, which flows at voltages much lower than electricity produced by large power plants.

    Finding ways to optimize existing energy systems and to accommodate low- and zero-carbon energy sources requires powerful new modes of analysis and problem-solving. This is where Ilic’s toolbox comes in: a mathematical modeling strategy and companion software that simplifies the input and output of electrical systems, no matter how large or how small. “In the last part of the course, we take up modeling different solutions to electric service in a way that is technology-agnostic, where it only matters how much a black-box energy source produces, and the rates of production and consumption,” says Ilic.

    This black-box modeling approach, which Ilic pioneered in her research, enables students to see, for instance, “what is happening with their own household consumption, and how it affects the larger system,” says Rupamathi Jaddivada PhD ’20, a co-instructor of the edX class and a postdoc in electrical engineering and computer science. “Without getting lost in details of current or voltage, or how different components work, we think about electric energy systems as dynamical components interacting with each other, at different spatial scales.” This means that with just a basic knowledge of physical laws, high school and undergraduate students can take advantage of the course “and get excited about cleaner and more reliable energy,” adds Ilic.

    What Jaddivada and Ilic describe as “zoom in, zoom out” systems thinking leverages the ubiquity of digital communications and the so-called “internet of things.” Energy devices of all scales can link directly to other devices in a network instead of just to a central operations hub, allowing for real-time adjustments in voltage, for instance, vastly improving the potential for optimizing energy flows.

    “In the course, we discuss how information exchange will be key to integrating new end-to-end energy resources and, because of this interactivity, how we can model better ways of controlling entire energy networks,” says Ilic. “It’s a big lesson of the course to show the value of information and software in enabling us to decarbonize the system and build resilience, rather than just building hardware.”

    By the end of the course, students are invited to pursue independent research projects. Some might model the impact of a new energy source on a local grid or investigate different options for reducing energy loss in transmission lines.

    “It would be nice if they see that we don’t have to rely on hardware or large-scale solutions to bring about improved electric service and a clean and resilient grid, but instead on information technologies such as smart components exchanging data in real time, or microgrids in neighborhoods that sustain themselves even when they lose power,” says Ilic. “I hope students walk away convinced that it does make sense to rethink how we operate our basic power systems and that with systematic, physics-based modeling and IT methods we can enable better, more flexible operation in the future.”

    This article appears in the Autumn 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative More

  • in

    3 Questions: Anuradha Annaswamy on building smart infrastructures

    Much of Anuradha Annaswamy’s research hinges on uncertainty. How does cloudy weather affect a grid powered by solar energy? How do we ensure that electricity is delivered to the consumer if a grid is powered by wind and the wind does not blow? What’s the best course of action if a bird hits a plane engine on takeoff? How can you predict the behavior of a cyber attacker?

    A senior research scientist in MIT’s Department of Mechanical Engineering, Annaswamy spends most of her research time dealing with decision-making under uncertainty. Designing smart infrastructures that are resilient to uncertainty can lead to safer, more reliable systems, she says.

    Annaswamy serves as the director of MIT’s Active Adaptive Control Laboratory. A world-leading expert in adaptive control theory, she was named president of the Institute of Electrical and Electronics Engineers Control Systems Society for 2020. Her team uses adaptive control and optimization to account for various uncertainties and anomalies in autonomous systems. In particular, they are developing smart infrastructures in the energy and transportation sectors.

    Using a combination of control theory, cognitive science, economic modeling, and cyber-physical systems, Annaswamy and her team have designed intelligent systems that could someday transform the way we travel and consume energy. Their research includes a diverse range of topics such as safer autopilot systems on airplanes, the efficient dispatch of resources in electrical grids, better ride-sharing services, and price-responsive railway systems.

    In a recent interview, Annaswamy spoke about how these smart systems could help support a safer and more sustainable future.

    Q: How is your team using adaptive control to make air travel safer?

    A: We want to develop an advanced autopilot system that can safely recover the airplane in the event of a severe anomaly — such as the wing becoming damaged mid-flight, or a bird flying into the engine. In the airplane, you have a pilot and autopilot to make decisions. We’re asking: How do you combine those two decision-makers?

    The answer we landed on was developing a shared pilot-autopilot control architecture. We collaborated with David Woods, an expert in cognitive engineering at The Ohio State University, to develop an intelligent system that takes the pilot’s behavior into account. For example, all humans have something known as “capacity for maneuver” and “graceful command degradation” that inform how we react in the face of adversity. Using mathematical models of pilot behavior, we proposed a shared control architecture where the pilot and the autopilot work together to make an intelligent decision on how to react in the face of uncertainties. In this system, the pilot reports the anomaly to an adaptive autopilot system that ensures resilient flight control.

    Q: How does your research on adaptive control fit into the concept of smart cities?

    A: Smart cities are an interesting way we can use intelligent systems to promote sustainability. Our team is looking at ride-sharing services in particular. Services like Uber and Lyft have provided new transportation options, but their impact on the carbon footprint has to be considered. We’re looking at developing a system where the number of passenger-miles per unit of energy is maximized through something called “shared mobility on demand services.” Using the alternating minimization approach, we’ve developed an algorithm that can determine the optimal route for multiple passengers traveling to various destinations.

    As with the pilot-autopilot dynamic, human behavior is at play here. In sociology there is an interesting concept of behavioral dynamics known as Prospect Theory. If we give passengers options with regards to which route their shared ride service will take, we are empowering them with free will to accept or reject a route. Prospect Theory shows that if you can use pricing as an incentive, people are much more loss-averse so they would be willing to walk a bit extra or wait a few minutes longer to join a low-cost ride with an optimized route. If everyone utilized a system like this, the carbon footprint of ride-sharing services could decrease substantially.

    Q: What other ways are you using intelligent systems to promote sustainability?

    A: Renewable energy and sustainability are huge drivers for our research. To enable a world where all of our energy is coming from renewable sources like solar or wind, we need to develop a smart grid that can account for the fact that the sun isn’t always shining and wind isn’t always blowing. These uncertainties are the biggest hurdles to achieving an all-renewable grid. Of course, there are many technologies being developed for batteries that can help store renewable energy, but we are taking a different approach.

    We have created algorithms that can optimally schedule distributed energy resources within the grid — this includes making decisions on when to use onsite generators, how to operate storage devices, and when to call upon demand response technologies, all in response to the economics of using such resources and their physical constraints. If we can develop an interconnected smart grid where, for example, the air conditioning setting in a house is set to 72 degrees instead of 69 degrees automatically when demand is high, there could be a substantial savings in energy usage without impacting human comfort. In one of our studies, we applied a distributed proximal atomic coordination algorithm to the grid in Tokyo to demonstrate how this intelligent system could account for the uncertainties present in a grid powered by renewable resources. More

  • in

    MIT Energy Initiative launches the Future Energy Systems Center

    The MIT Energy Initiative (MITEI) has launched a new research consortium — the Future Energy Systems Center — to address the climate crisis and the role energy systems can play in solving it. This integrated effort engages researchers from across all of MIT to help the global community reach its goal of net-zero carbon emissions. The center examines the accelerating energy transition and collaborates with industrial leaders to reform the world’s energy systems. The center is part of “Fast Forward: MIT’s Climate Action Plan for the Decade,” MIT’s multi-pronged effort announced last year to address the climate crisis.

    The Future Energy Systems Center investigates the emerging technology, policy, demographics, and economics reshaping the landscape of energy supply and demand. The center conducts integrative analysis of the entire energy system — a holistic approach essential to understanding the cross-sectorial impact of the energy transition.

    “We must act quickly to get to net-zero greenhouse gas emissions. At the same time, we have a billion people around the world with inadequate access, or no access, to electricity — and we need to deliver it to them,” says MITEI Director Robert C. Armstrong, the Chevron Professor of Chemical Engineering. “The Future Energy Systems Center combines MIT’s deep knowledge of energy science and technology with advanced tools for systems analysis to examine how advances in technology and system economics may respond to various policy scenarios.”  

    The overarching focus of the center is integrative analysis of the entire energy system, providing insights into the complex multi-sectorial transformations needed to alter the three major energy-consuming sectors of the economy — transportation, industry, and buildings — in conjunction with three major decarbonization-enabling technologies — electricity, energy storage and low-carbon fuels, and carbon management. “Deep decarbonization of our energy system requires an economy-wide perspective on the technology options, energy flows, materials flows, life-cycle emissions, costs, policies, and socioeconomics consequences,” says Randall Field, the center’s executive director. “A systems approach is essential in enabling cross-disciplinary teams to work collaboratively together to address the existential crisis of climate change.”

    Through techno-economic and systems-oriented research, the center analyzes these important interactions. For example:

    •  Increased reliance on variable renewable energy, such as wind and solar, and greater electrification of transportation, industry, and buildings will require expansion of demand management and other solutions for balancing of electricity supply and demand across these areas.

    •  Likewise, balancing supply and demand will require deploying grid-scale energy storage and converting the electricity to low-carbon fuels (hydrogen and liquid fuels), which can in turn play a vital role in the energy transition for hard-to-decarbonize segments of transportation, industry, and buildings.

    •  Carbon management (carbon dioxide capture from industry point sources and from air and oceans; utilization/conversion to valuable products; transport; storage) will also play a critical role in decarbonizing industry, electricity, and fuels — both as carbon-mitigation and negative-carbon solutions.

    As a member-supported research consortium, the center collaborates with industrial experts and leaders — from both energy’s consumer and supplier sides — to gain insights to help researchers anticipate challenges and opportunities of deploying technology at the scale needed to achieve decarbonization. “The Future Energy Systems Center gives us a powerful way to engage with industry to accelerate the energy transition,” says Armstrong. “Working together, we can better understand how our current technology toolbox can be more effectively put to use now to reduce emissions, and what new technologies and policies will ultimately be needed to reach net-zero.”

    A steering committee, made up of 11 MIT professors and led by Armstrong, selects projects to create a research program with high impact on decarbonization, while leveraging MIT strengths and addressing interests of center members in pragmatic and scalable solutions. “MIT — through our recently released climate action plan — is committed to moving with urgency and speed to help wring carbon dioxide emissions out the global economy to resolve the growing climate crisis,” says Armstrong. “We have no time to waste.”

    The center members to date are: AECI, Analog Devices, Chevron, ConocoPhillips, Copec, Dominion, Duke Energy, Enerjisa, Eneva, Eni, Equinor, Eversource, Exelon, ExxonMobil, Ferrovial, Iberdrola, IHI, National Grid, Raizen, Repsol, Rio Tinto, Shell, Tata Power, Toyota Research Institute, and Washington Gas. More

  • in

    Pricing carbon, valuing people

    In November, inflation hit a 39-year high in the United States. The consumer price index was up 6.8 percent from the previous year due to major increases in the cost of rent, food, motor vehicles, gasoline, and other common household expenses. While inflation impacts the entire country, its effects are not felt equally. At greatest risk are low- and middle-income Americans who may lack sufficient financial reserves to absorb such economic shocks.

    Meanwhile, scientists, economists, and activists across the political spectrum continue to advocate for another potential systemic economic change that many fear will also put lower-income Americans at risk: the imposition of a national carbon price, fee, or tax. Framed by proponents as the most efficient and cost-effective way to reduce greenhouse gas emissions and meet climate targets, a carbon penalty would incentivize producers and consumers to shift expenditures away from carbon-intensive products and services (e.g., coal or natural gas-generated electricity) and toward low-carbon alternatives (e.g., 100 percent renewable electricity). But if not implemented in a way that takes differences in household income into account, this policy strategy, like inflation, could place an unequal and untenable economic burden on low- and middle-income Americans.         

    To garner support from policymakers, carbon-penalty proponents have advocated for policies that recycle revenues from carbon penalties to all or lower-income taxpayers in the form of payroll tax reductions or lump-sum payments. And yet some of these proposed policies run the risk of reducing the overall efficiency of the U.S. economy, which would lower the nation’s GDP and impede its economic growth.

    Which begs the question: Is there a sweet spot at which a national carbon-penalty revenue-recycling policy can both avoid inflicting economic harm on lower-income Americans at the household level and degrading economic efficiency at the national level?

    In search of that sweet spot, researchers at the MIT Joint Program on the Science and Policy of Global Change assess the economic impacts of four different carbon-penalty revenue-recycling policies: direct rebates from revenues to households via lump-sum transfers; indirect refunding of revenues to households via a proportional reduction in payroll taxes; direct rebates from revenues to households, but only for low- and middle-income groups, with remaining revenues recycled via a proportional reduction in payroll taxes; and direct, higher rebates for poor households, with remaining revenues recycled via a proportional reduction in payroll taxes.

    To perform the assessment, the Joint Program researchers integrate a U.S. economic model (MIT U.S. Regional Energy Policy) with a dataset (Bureau of Labor Statistics’ Consumer Expenditure Survey) providing consumption patterns and other socioeconomic characteristics for 15,000 U.S. households. Using the combined model, they evaluate the distributional impacts and potential trade-offs between economic equity and efficiency of all four carbon-penalty revenue-recycling policies.

    The researchers find that household rebates have progressive impacts on consumers’ financial well-being, with the greatest benefits going to the lowest-income households, while policies centered on improving the efficiency of the economy (e.g., payroll tax reductions) have slightly regressive household-level financial impacts. In a nutshell, the trade-off is between rebates that provide more equity and less economic efficiency versus tax cuts that deliver the opposite result. The latter two policy options, which combine rebates to lower-income households with payroll tax reductions, result in an optimal blend of sufficiently progressive financial results at the household level and economy efficiency at the national level. Results of the study are published in the journal Energy Economics.

    “We have determined that only a portion of carbon-tax revenues is needed to compensate low-income households and thus reduce inequality, while the rest can be used to improve the economy by reducing payroll or other distortionary taxes,” says Xaquin García-Muros, lead author of the study, a postdoc at the MIT Joint Program who is affiliated with the Basque Centre for Climate Change in Spain. “Therefore, we can eliminate potential trade-offs between efficiency and equity, and promote a just and efficient energy transition.”

    “If climate policies increase the gap between rich and poor households or reduce the affordability of energy services, then these policies might be rejected by the public and, as a result, attempts to decarbonize the economy will be less efficient,” says Joint Program Deputy Director Sergey Paltsev, a co-author of the study. “Our findings provide guidance to decision-makers to advance more well-designed policies that deliver economic benefits to the nation as a whole.” 

    The study’s novel integration of a national economic model with household microdata creates a new and powerful platform to further investigate key differences among households that can help inform policies aimed at a just transition to a low-carbon economy. More

  • in

    A dirt cheap solution? Common clay materials may help curb methane emissions

    Methane is a far more potent greenhouse gas than carbon dioxide, and it has a pronounced effect within first two decades of its presence in the atmosphere. In the recent international climate negotiations in Glasgow, abatement of methane emissions was identified as a major priority in attempts to curb global climate change quickly.

    Now, a team of researchers at MIT has come up with a promising approach to controlling methane emissions and removing it from the air, using an inexpensive and abundant type of clay called zeolite. The findings are described in the journal ACS Environment Au, in a paper by doctoral student Rebecca Brenneis, Associate Professor Desiree Plata, and two others.

    Although many people associate atmospheric methane with drilling and fracking for oil and natural gas, those sources only account for about 18 percent of global methane emissions, Plata says. The vast majority of emitted methane comes from such sources as slash-and-burn agriculture, dairy farming, coal and ore mining, wetlands, and melting permafrost. “A lot of the methane that comes into the atmosphere is from distributed and diffuse sources, so we started to think about how you could take that out of the atmosphere,” she says.

    The answer the researchers found was something dirt cheap — in fact, a special kind of “dirt,” or clay. They used zeolite clays, a material so inexpensive that it is currently used to make cat litter. Treating the zeolite with a small amount of copper, the team found, makes the material very effective at absorbing methane from the air, even at extremely low concentrations.

    The system is simple in concept, though much work remains on the engineering details. In their lab tests, tiny particles of the copper-enhanced zeolite material, similar to cat litter, were packed into a reaction tube, which was then heated from the outside as the stream of gas, with methane levels ranging from just 2 parts per million up to 2 percent concentration, flowed through the tube. That range covers everything that might exist in the atmosphere, down to subflammable levels that cannot be burned or flared directly.

    The process has several advantages over other approaches to removing methane from air, Plata says. Other methods tend to use expensive catalysts such as platinum or palladium, require high temperatures of at least 600 degrees Celsius, and tend to require complex cycling between methane-rich and oxygen-rich streams, making the devices both more complicated and more risky, as methane and oxygen are highly combustible on their own and in combination.

    “The 600 degrees where they run these reactors makes it almost dangerous to be around the methane,” as well as the pure oxygen, Brenneis says. “They’re solving the problem by just creating a situation where there’s going to be an explosion.” Other engineering complications also arise from the high operating temperatures. Unsurprisingly, such systems have not found much use.

    As for the new process, “I think we’re still surprised at how well it works,” says Plata, who is the Gilbert W. Winslow Associate Professor of Civil and Environmental Engineering. The process seems to have its peak effectiveness at about 300 degrees Celsius, which requires far less energy for heating than other methane capture processes. It also can work at concentrations of methane lower than other methods can address, even small fractions of 1 percent, which most methods cannot remove, and does so in air rather than pure oxygen, a major advantage for real-world deployment.

    The method converts the methane into carbon dioxide. That might sound like a bad thing, given the worldwide efforts to combat carbon dioxide emissions. “A lot of people hear ‘carbon dioxide’ and they panic; they say ‘that’s bad,’” Plata says. But she points out that carbon dioxide is much less impactful in the atmosphere than methane, which is about 80 times stronger as a greenhouse gas over the first 20 years, and about 25 times stronger for the first century. This effect arises from that fact that methane turns into carbon dioxide naturally over time in the atmosphere. By accelerating that process, this method would drastically reduce the near-term climate impact, she says. And, even converting half of the atmosphere’s methane to carbon dioxide would increase levels of the latter by less than 1 part per million (about 0.2 percent of today’s atmospheric carbon dioxide) while saving about 16 percent of total radiative warming.

    The ideal location for such systems, the team concluded, would be in places where there is a relatively concentrated source of methane, such as dairy barns and coal mines. These sources already tend to have powerful air-handling systems in place, since a buildup of methane can be a fire, health, and explosion hazard. To surmount the outstanding engineering details, the team has just been awarded a $2 million grant from the U.S. Department of Energy to continue to develop specific equipment for methane removal in these types of locations.

    “The key advantage of mining air is that we move a lot of it,” she says. “You have to pull fresh air in to enable miners to breathe, and to reduce explosion risks from enriched methane pockets. So, the volumes of air that are moved in mines are enormous.” The concentration of methane is too low to ignite, but it’s in the catalysts’ sweet spot, she says.

    Adapting the technology to specific sites should be relatively straightforward. The lab setup the team used in their tests consisted of  “only a few components, and the technology you would put in a cow barn could be pretty simple as well,” Plata says. However, large volumes of gas do not flow that easily through clay, so the next phase of the research will focus on ways of structuring the clay material in a multiscale, hierarchical configuration that will aid air flow.

    “We need new technologies for oxidizing methane at concentrations below those used in flares and thermal oxidizers,” says Rob Jackson, a professor of earth systems science at Stanford University, who was not involved in this work. “There isn’t a cost-effective technology today for oxidizing methane at concentrations below about 2,000 parts per million.”

    Jackson adds, “Many questions remain for scaling this and all similar work: How quickly will the catalyst foul under field conditions? Can we get the required temperatures closer to ambient conditions? How scaleable will such technologies be when processing large volumes of air?”

    One potential major advantage of the new system is that the chemical process involved releases heat. By catalytically oxidizing the methane, in effect the process is a flame-free form of combustion. If the methane concentration is above 0.5 percent, the heat released is greater than the heat used to get the process started, and this heat could be used to generate electricity.

    The team’s calculations show that “at coal mines, you could potentially generate enough heat to generate electricity at the power plant scale, which is remarkable because it means that the device could pay for itself,” Plata says. “Most air-capture solutions cost a lot of money and would never be profitable. Our technology may one day be a counterexample.”

    Using the new grant money, she says, “over the next 18 months we’re aiming to demonstrate a proof of concept that this can work in the field,” where conditions can be more challenging than in the lab. Ultimately, they hope to be able to make devices that would be compatible with existing air-handling systems and could simply be an extra component added in place. “The coal mining application is meant to be at a stage that you could hand to a commercial builder or user three years from now,” Plata says.

    In addition to Plata and Brenneis, the team included Yale University PhD student Eric Johnson and former MIT postdoc Wenbo Shi. The work was supported by the Gerstner Philanthropies, Vanguard Charitable Trust, the Betty Moore Inventor Fellows Program, and MIT’s Research Support Committee. More

  • in

    Seeing the plasma edge of fusion experiments in new ways with artificial intelligence

    To make fusion energy a viable resource for the world’s energy grid, researchers need to understand the turbulent motion of plasmas: a mix of ions and electrons swirling around in reactor vessels. The plasma particles, following magnetic field lines in toroidal chambers known as tokamaks, must be confined long enough for fusion devices to produce significant gains in net energy, a challenge when the hot edge of the plasma (over 1 million degrees Celsius) is just centimeters away from the much cooler solid walls of the vessel.

    Abhilash Mathews, a PhD candidate in the Department of Nuclear Science and Engineering working at MIT’s Plasma Science and Fusion Center (PSFC), believes this plasma edge to be a particularly rich source of unanswered questions. A turbulent boundary, it is central to understanding plasma confinement, fueling, and the potentially damaging heat fluxes that can strike material surfaces — factors that impact fusion reactor designs.

    To better understand edge conditions, scientists focus on modeling turbulence at this boundary using numerical simulations that will help predict the plasma’s behavior. However, “first principles” simulations of this region are among the most challenging and time-consuming computations in fusion research. Progress could be accelerated if researchers could develop “reduced” computer models that run much faster, but with quantified levels of accuracy.

    For decades, tokamak physicists have regularly used a reduced “two-fluid theory” rather than higher-fidelity models to simulate boundary plasmas in experiment, despite uncertainty about accuracy. In a pair of recent publications, Mathews begins directly testing the accuracy of this reduced plasma turbulence model in a new way: he combines physics with machine learning.

    “A successful theory is supposed to predict what you’re going to observe,” explains Mathews, “for example, the temperature, the density, the electric potential, the flows. And it’s the relationships between these variables that fundamentally define a turbulence theory. What our work essentially examines is the dynamic relationship between two of these variables: the turbulent electric field and the electron pressure.”

    In the first paper, published in Physical Review E, Mathews employs a novel deep-learning technique that uses artificial neural networks to build representations of the equations governing the reduced fluid theory. With this framework, he demonstrates a way to compute the turbulent electric field from an electron pressure fluctuation in the plasma consistent with the reduced fluid theory. Models commonly used to relate the electric field to pressure break down when applied to turbulent plasmas, but this one is robust even to noisy pressure measurements.

    In the second paper, published in Physics of Plasmas, Mathews further investigates this connection, contrasting it against higher-fidelity turbulence simulations. This first-of-its-kind comparison of turbulence across models has previously been difficult — if not impossible — to evaluate precisely. Mathews finds that in plasmas relevant to existing fusion devices, the reduced fluid model’s predicted turbulent fields are consistent with high-fidelity calculations. In this sense, the reduced turbulence theory works. But to fully validate it, “one should check every connection between every variable,” says Mathews.

    Mathews’ advisor, Principal Research Scientist Jerry Hughes, notes that plasma turbulence is notoriously difficult to simulate, more so than the familiar turbulence seen in air and water. “This work shows that, under the right set of conditions, physics-informed machine-learning techniques can paint a very full picture of the rapidly fluctuating edge plasma, beginning from a limited set of observations. I’m excited to see how we can apply this to new experiments, in which we essentially never observe every quantity we want.”

    These physics-informed deep-learning methods pave new ways in testing old theories and expanding what can be observed from new experiments. David Hatch, a research scientist at the Institute for Fusion Studies at the University of Texas at Austin, believes these applications are the start of a promising new technique.

    “Abhi’s work is a major achievement with the potential for broad application,” he says. “For example, given limited diagnostic measurements of a specific plasma quantity, physics-informed machine learning could infer additional plasma quantities in a nearby domain, thereby augmenting the information provided by a given diagnostic. The technique also opens new strategies for model validation.”

    Mathews sees exciting research ahead.

    “Translating these techniques into fusion experiments for real edge plasmas is one goal we have in sight, and work is currently underway,” he says. “But this is just the beginning.”

    Mathews was supported in this work by the Manson Benedict Fellowship, Natural Sciences and Engineering Research Council of Canada, and U.S. Department of Energy Office of Science under the Fusion Energy Sciences program.​ More

  • in

    MIT students explore food sustainability

    As students approached the homestretch of the fall semester, many were focused on completing final projects and preparing for exams. During this time of year, some students may neglect their well-being to the point of skipping meals. To help alleviate end-of-term stress and to give students a delicious study break, the Food Security Action Team recently offered a group of first-year students the opportunity to join a food tour of Daily Table, a new grocer located in Cambridge’s Central Square.

    Seventeen students along with staff from Student Financial Services, Office of the First Year, and the Office of Sustainability led the group from the steps of 77 Massachusetts Avenue a few blocks down the street to Daily Table in Central Square. As part of participating in the program, students were given a $25 TechCash gift card to shop for grocery items during the trip. To make things even more fun, MIT staff created a recipe challenge to encourage students to work together on making their own variation of quesadillas.

    Healthy, affordable, sustainable

    At Daily Table, students were greeted by Celia Grant, director of community engagement and programs from Daily Table, who led them through a tour of the space and highlighted the history and model of the grocery store, as well as some of its unique features. Founded by former Trader Joe’s president Doug Rauch in 2015, Daily Table operates three retail stores in Dorchester, Roxbury, and Central Square, and a commissary kitchen in the Boston metro area. Two more stores are in the works: one in Mattapan and another in Salem. For added convenience, Daily Table also offers free grocery delivery within a two-mile radius of its three locations.

    The Daily Table’s ethos is that delicious and wholesome food should be available, accessible, and affordable for everyone. To achieve these goals, Daily Table provides a wide selection of fresh produce, nutritious grocery staples, and made-from-scratch prepared grab-n-go foods at affordable prices. “All of our products meet strict nutritional guidelines for sodium and sugar so that customers can make food choices based on their diets, not based on price,” says Grant.

    In addition to a large network of farmers, manufacturers, and distributors who supply food to their stores, Daily Table often recovers and rescues perfectly good food that would have otherwise been sent to landfills. Surplus food, packaging and/or label changes, and items with close expiration dates are often discarded by larger grocery stores in the supply chain. But Daily Table steps in to break this cycle of waste and sell these products to customers at a much lower cost. 

    The pandemic has uncovered how difficult it can be for individuals and families to budget for necessities like utilities, rent, and even food. Daily Table seeks to create a more sustainable future by providing access to more well-balanced, nutritious food. “Even before the pandemic, it was challenging for families on limited incomes to meet the nutrition needs of their families. Post-pandemic, this challenge has now encompassed even more households, even those that have never before been challenged in this way,” says Grant. “As winter moves through, and inflation increases, the need for more affordable food and nutrition will rise. Daily Table is prepared to help meet those needs, and more.” 

    Food resources at MIT

    Downstairs at the Daily Table Central Square store, MIT staff members led a discussion about the components of a sustainable food system at MIT and beyond, shared advice on how to budget for food, and offered tips on how to make grocery shopping or cooking fun with fellow classmates and peers. “Shopping at Daily Table provides an experiential case study in solving for multiple goals at once — from the environmental impacts of food waste to healthy eating to affordability — an important framework to consider when tackling climate challenges.” says Susy Jones, senior sustainability project manager in the MIT Office of Sustainability.

    The group also discussed budgeting expenses, including food. “By taking students to the grocery store and providing some small but meaningful tips, we provided them the opportunity to put their learning into practice!” says Erica Aguiar, associate director for financial education in Student Financial Services. “We saw students taking a closer look at prices and even coming together to share groceries.”

    MIT senior and DormCon Dining Chair Ashley Holton shared her grocery shopping strategies with the group, and how she utilizes resources available at MIT. “Having a plan before you enter the grocery store is really important,” says Holton. “Not only does it save time, but it helps you avoid potentially getting more than what your budget allows for, while also making sure you get all the food you’ll need.”

    This program, along with many others, is part of MIT’s larger effort on fostering a more food-secure and sustainable campus for all students. Food Security Action Team members, including students, staff, and campus partners, are striving to achieve this goal by ensuring that there continues to be a well-organized and coordinated action around food security that can be implemented effectively each year. For example, to make shopping at Daily Table even easier, MIT has made it a priority to ensure the store accepts TechCash.

    No MIT student should go hungry due to lack of money or resources, and no student should feel like they need to be “really hungry” to ask for help. MIT offers several other resources to help students find the nutrition and other support they need. In addition, the Office of Student Wellbeing launched their DoingWell website, which offers programs and resources to help students prioritize their well-being by practicing healthy habits and getting support when they need it.

    “In my own cost-analysis comparison of staple grocery items of all the local grocery stores, no other store comes close to being able to offer what Daily Table does for the prices it does. It’s really remarkable to learn and experience just how Daily Table is changing the food system,” says Holton. “Its model is one of the many ways that will continue to foster a more food-secure community where everyone — including MIT students — can access affordable, nutritious food.” More