More stories

  • in

    Q&A: Climate Grand Challenges finalists on using data and science to forecast climate-related risk

    Note: This is the final article in a four-part interview series featuring the work of the 27 MIT Climate Grand Challenges finalist teams, which received a total of $2.7 million in startup funding to advance their projects. This month, the Institute will name a subset of the finalists as multiyear flagship projects.

    Advances in computation, artificial intelligence, robotics, and data science are enabling a new generation of observational tools and scientific modeling with the potential to produce timely, reliable, and quantitative analysis of future climate risks at a local scale. These projections can increase the accuracy and efficacy of early warning systems, improve emergency planning, and provide actionable information for climate mitigation and adaptation efforts, as human actions continue to change planetary conditions.

    In conversations prepared for MIT News, faculty from four Climate Grand Challenges teams with projects in the competition’s “Using data and science to forecast climate-related risk” category describe the promising new technologies that can help scientists understand the Earth’s climate system on a finer scale than ever before. (The other Climate Grand Challenges research themes include building equity and fairness into climate solutions, removing, managing, and storing greenhouse gases, and decarbonizing complex industries and processes.) The following responses have been edited for length and clarity.

    An observational system that can initiate a climate risk forecasting revolution

    Despite recent technological advances and massive volumes of data, climate forecasts remain highly uncertain. Gaps in observational capabilities create substantial challenges to predicting extreme weather events and establishing effective mitigation and adaptation strategies. R. John Hansman, the T. Wilson Professor of Aeronautics and Astronautics and director of the MIT International Center for Air Transportation, discusses the Stratospheric Airborne Climate Observatory System (SACOS) being developed together with Brent Minchew, the Cecil and Ida Green Career Development Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS), and a team that includes researchers from MIT Lincoln Laboratory and Harvard University.

    Q: How does SACOS reduce uncertainty in climate risk forecasting?

    A: There is a critical need for higher spatial and temporal resolution observations of the climate system than are currently available through remote (satellite or airborne) and surface (in-situ) sensing. We are developing an ensemble of high-endurance, solar-powered aircraft with instrument systems capable of performing months-long climate observing missions that satellites or aircraft alone cannot fulfill. Summer months are ideal for SACOS operations, as many key climate phenomena are active and short night periods reduce the battery mass, vehicle size, and technical risks. These observations hold the potential to inform and predict, allowing emergency planners, policymakers, and the rest of society to better prepare for the changes to come.

    Q: Describe the types of observing missions where SACOS could provide critical improvements.

    A: The demise of the Antarctic Ice Sheet, which is leading to rising sea levels around the world and threatening the displacement of millions of people, is one example. Current sea level forecasts struggle to account for giant fissures that create massive icebergs and cause the Antarctic Ice Sheet to flow more rapidly into the ocean. SACOS can track these fissures to accurately forecast ice slippage and give impacted populations enough time to prepare or evacuate. Elsewhere, widespread droughts cause rampant wildfires and water shortages. SACOS has the ability to monitor soil moisture and humidity in critically dry regions to identify where and when wildfires and droughts are imminent. SACOS also offers the most effective method to measure, track, and predict local ozone depletion over North America, which has resulted in increasingly severe summer thunderstorms.

    Quantifying and managing the risks of sea-level rise

    Prevailing estimates of sea-level rise range from approximately 20 centimeters to 2 meters by the end of the century, with the associated costs on the order of trillions of dollars. The instability of certain portions of the world’s ice sheets creates vast uncertainties, complicating how the world prepares for and responds to these potential changes. EAPS Professor Brent Minchew is leading another Climate Grand Challenges finalist team working on an integrated, multidisciplinary effort to improve the scientific understanding of sea-level rise and provide actionable information and tools to manage the risks it poses.

    Q: What have been the most significant challenges to understanding the potential rates of sea-level rise?

    A: West Antarctica is one of the most remote, inaccessible, and hostile places on Earth — to people and equipment. Thus, opportunities to observe the collapse of the West Antarctic Ice Sheet, which contains enough ice to raise global sea levels by about 3 meters, are limited and current observations crudely resolved. It is essential that we understand how the floating edge of the ice sheets, often called ice shelves, fracture and collapse because they provide critical forces that govern the rate of ice mass loss and can stabilize the West Antarctic Ice Sheet.

    Q: How will your project advance what is currently known about sea-level rise?

    A: We aim to advance global-scale projections of sea-level rise through novel observational technologies and computational models of ice sheet change and to link those predictions to region- to neighborhood-scale estimates of costs and adaptation strategies. To do this, we propose two novel instruments: a first-of-its-kind drone that can fly for months at a time over Antarctica making continuous observations of critical areas and an airdropped seismometer and GPS bundle that can be deployed to vulnerable and hard-to-reach areas of the ice sheet. This technology will provide greater data quality and density and will observe the ice sheet at frequencies that are currently inaccessible — elements that are essential for understanding the physics governing the evolution of the ice sheet and sea-level rise.

    Changing flood risk for coastal communities in the developing world

    Globally, more than 600 million people live in low-elevation coastal areas that face an increasing risk of flooding from sea-level rise. This includes two-thirds of cities with populations of more than 5 million and regions that conduct the vast majority of global trade. Dara Entekhabi, the Bacardi and Stockholm Water Foundations Professor in the Department of Civil and Environmental Engineering and professor in the Department of Earth, Atmospheric, and Planetary Sciences, outlines an interdisciplinary partnership that leverages data and technology to guide short-term and chart long-term adaptation pathways with Miho Mazereeuw, associate professor of architecture and urbanism and director of the Urban Risk Lab in the School of Architecture and Planning, and Danielle Wood, assistant professor in the Program in Media Arts and Sciences and the Department of Aeronautics and Astronautics.

    Q: What is the key problem this program seeks to address?

    A: The accumulated heating of the Earth system due to fossil burning is largely absorbed by the oceans, and the stored heat expands the ocean volume leading to increased base height for tides. When the high tides inundate a city, the condition is referred to as “sunny day” flooding, but the saline waters corrode infrastructure and wreak havoc on daily routines. The danger ahead for many coastal cities in the developing world is the combination of increasing high tide intrusions, coupled with heavy precipitation storm events.

    Q: How will your proposed solutions impact flood risk management?

    A: We are producing detailed risk maps for coastal cities in developing countries using newly available, very high-resolution remote-sensing data from space-borne instruments, as well as historical tides records and regional storm characteristics. Using these datasets, we aim to produce street-by-street risk maps that provide local decision-makers and stakeholders with a way to estimate present and future flood risks. With the model of future tides and probabilistic precipitation events, we can forecast future inundation by a flooding event, decadal changes with various climate-change and sea-level rise projections, and an increase in the likelihood of sunny-day flooding. Working closely with local partners, we will develop toolkits to explore short-term emergency response, as well as long-term mitigation and adaptation techniques in six pilot locations in South and Southeast Asia, Africa, and South America.

    Ocean vital signs

    On average, every person on Earth generates fossil fuel emissions equivalent to an 8-pound bag of carbon, every day. Much of this is absorbed by the ocean, but there is wide variability in the estimates of oceanic absorption, which translates into differences of trillions of dollars in the required cost of mitigation. In the Department of Earth, Atmospheric and Planetary Sciences, Christopher Hill, a principal research engineer specializing in Earth and planetary computational science, works with Ryan Woosley, a principal research scientist focusing on the carbon cycle and ocean acidification. Hill explains that they hope to use artificial intelligence and machine learning to help resolve this uncertainty.

    Q: What is the current state of knowledge on air-sea interactions?

    A: Obtaining specific, accurate field measurements of critical physical, chemical, and biological exchanges between the ocean and the planet have historically entailed expensive science missions with large ship-based infrastructure that leave gaps in real-time data about significant ocean climate processes. Recent advances in highly scalable in-situ autonomous observing and navigation combined with airborne, remote sensing, and machine learning innovations have the potential to transform data gathering, provide more accurate information, and address fundamental scientific questions around air-sea interaction.

    Q: How will your approach accelerate real-time, autonomous surface ocean observing from an experimental research endeavor to a permanent and impactful solution?

    A: Our project seeks to demonstrate how a scalable surface ocean observing network can be launched and operated, and to illustrate how this can reduce uncertainties in estimates of air-sea carbon dioxide exchange. With an initial high-impact goal of substantially eliminating the vast uncertainties that plague our understanding of ocean uptake of carbon dioxide, we will gather critical measurements for improving extended weather and climate forecast models and reducing climate impact uncertainty. The results have the potential to more accurately identify trillions of dollars worth of economic activity. More

  • in

    MIT Energy Conference focuses on climate’s toughest challenges

    This year’s MIT Energy Conference, the largest student-led event of its kind, included keynote talks and panels that tackled some of the thorniest remaining challenges in the global effort to cut back on climate-altering emissions. These include the production of construction materials such as steel and cement, and the role of transportation including aviation and shipping. While the challenges are formidable, approaches incorporating methods such as fusion, heat pumps, energy efficiency, and the use of hydrogen hold promise, participants said.

    The two-day conference, held on March 31 and April 1 for more than 900 participants, included keynote lectures, 14 panel discussions, a fireside chat, networking events, and more. The event this year included the final round of the annual MIT Climate and Energy Prize, whose winning team receives $100,000 and other support. The prize, awarded since 2007, has led to the creation of more than 220 companies and $1.1 billion in investments.

    This year’s winner is a project that hopes to provide an innovative, efficient waterless washing machine aimed at the vast majority of the world’s people, who still do laundry by hand.

    “A truly consequential moment in history”

    In his opening keynote address Fatih Birol, executive director of the International Energy Agency, noted that this year’s conference was taking place during the unprovoked invasion of Ukraine by Russia, a leading gas and oil exporter. As a result, “global oil markets are going through a major turmoil,” he said.

    He said that Russian oil exports are expected to drop by 3 million barrels a day, and that international efforts to release reserves and promote increased production elsewhere will help, but will not suffice. “We have to look to other measures” to make up the shortfall, he said, noting that his agency has produced a 10-point plan of measures to help reduce global demand for oil.

    Europe gets 45 percent of its natural gas from Russia, and the agency also has developed a 10-point plan to help alleviate expected shortages there, including measures to improve energy efficiency in homes and industries, promote renewable heating sources, and postpone retirement of some nuclear plants. But he emphasized that “our goals to reach our climate targets should not be yet another victim of Mr. Putin and his allies.”  Unfortunately, Birol said, “I see that addressing climate change is sliding down in the policy agenda of many governments.”

    But he sees reasons for optimism as well, in terms of the feasibility of achieving the global emissions reduction target, agreed to by countries representing 80 percent of the global economy, of reaching net zero carbon dioxide emissions by 2050. The IEA has developed a roadmap for the entire energy sector to get there, which is now used by many governments as a benchmark, according to Birol.

    In addition, the trend is already clear, he said. “More than 90 percent of all power plants installed in the world [last year] were renewable energy,” mainly solar and wind. And 10 percent of cars sold worldwide last year, and 20 percent in Europe, were electric cars. “Please remember that in 2019 it was only 2 percent!” he said. He also predicted that “nuclear is going to make a comeback in many countries,” both in terms of large plants and newer small modular reactors.

    Birol said that “I hope that the current crisis gives governments the impetus to address the energy security concerns, to reach our climate goals, and … [to] choose the right direction at this very important turning point.”

    The conference’s second day began with keynote talks by Gina McCarthy, national climate advisor at the White House Office of Domestic Climate Policy, and Maria Zuber, MIT’s vice president for research. In her address, Zuber said, “This conference comes at a truly consequential moment in history — a moment that puts into stark relief the enormous risks created by our current fossil-fuel based energy system — risks we cannot continue to accept.”

    She added that “time is not on our side.” To meet global commitments for limiting climate impacts, the world needs to reduce emissions by about half by 2030, and get to net zero by 2050. “In other words, we need to transform our entire global energy system in a few decades,” she said. She cited MIT’s “Fast Forward” climate action plan, issued last year, as presenting the two tracks that the world needs to pursue simultaneously: going as far as possible, as fast as possible, with the tools that exist now, while also innovating and investing in new ideas, technologies, practices, and institutions that may be needed to reach the net-zero goal.

    On the first track, she said, citing an IEA report, “from here until 2040, we can get most of the emissions reductions we need with technologies that are currently available or on the verge of becoming commercially available.” These include electrifying and boosting efficiency in buildings, industry, and transportation; increasing the portion of electricity coming from emissions-free sources; and investing in new infrastructure such as electric vehicle charging stations.

    But more than that is needed, she pointed out. For example, the amount of methane that leaks away into the atmosphere from fossil fuel operations is equivalent to all the natural gas used in Europe’s power sector, Zuber said. Recovering and selling that methane can dramatically reduce global methane emissions, often at little or no cost.

    For the longer run, “we need track-two solutions to decarbonize tough industries like aviation, shipping, chemicals, concrete, and steel,” and to remove carbon dioxide from the atmosphere. She described some of the promising technologies that are in the pipeline. Fusion, for example, has moved from being a scientific challenge to an engineering problem whose solution seems well underway, she said.

    Another important area is food-related systems, which currently account for a third of all global emissions. For example, fertilizer production uses a very energy-intensive process, but work on plants engineered to fix nitrogen directly could make a significant dent.

    These and several other advanced research areas may not all pan out, but some undoubtedly will, and will help curb climate change as well as create new jobs and reduce pollution.

    Though the problems we face are complex, they are not insurmountable, Zuber said. “We don’t need a miracle. What we need is to move along the two tracks I’ve outlined with determination, ingenuity, and fierce urgency.”

    The promise and challenges of hydrogen

    Other conference speakers took on some of the less-discussed but crucial areas that also need to be addressed in order to limit global warming to 1.5 degrees. Heavy transportation, and aviation in particular, have been considered especially challenging. In his keynote address, Glenn Llewellyn, vice president for zero-emission aircraft at Airbus, outlined several approaches his company is working on to develop competitive midrange alternative airliners by 2035 that use either batteries or fuel cells powered by hydrogen. The early-stage designs demonstrate that, contrary to some projections, there is a realistic pathway to weaning that industry from its present reliance on fossil fuel, chiefly kerosene.

    Hydrogen has real potential as an aviation fuel, he said, either directly for use in fuel cells for power or burned directly for propulsion, or indirectly as a feedstock for synthetic fuels. Both are being studied by the company, he said, including a hybrid model that uses both hydrogen fuel cells and hydrogen-fueled jet engines. The company projects a range of 2,000 nautical miles for a jet carrying 200 to 300 passengers, he said — all with no direct emissions and no contrails.

    But this vision will not be practical, Llewellyn said, unless economies of scale help to significantly lower the cost of hydrogen production. “Hydrogen is at the hub of aviation decarbonization,” he said. But that kind of price reduction seems quite feasible, he said, given that other major industries are also seriously looking at the use of hydrogen for their own decarbonization plans, including the production of steel and cement.

    Such uses were the subject of a panel discussion entitled “Deploying the Hydrogen Economy.” Hydrogen production technology exists, but not nearly at the scale that’s needed, which is about 500 million tons a year, pointed out moderator Dharik Mallapragada of the MIT Energy Initiative.

    Yet in some applications, the use of hydrogen both reduces emissions and is economically competitive. Preeti Pande of Plug Power said that her company, which produces hydrogen fuel cells, has found a significant market in an unexpected place: fork lifts, used in warehouses and factories worldwide. It turns out that replacing current battery-operated versions with fuel cell versions is a win-win for the companies that use them, saving money while helping to meet decarbonization goals.

    Lindsay Ashby of Avangrid Renewables said that the company has installed fuel-cell buses in Barcelona that run entirely on hydrogen generated by solar panels. The company is also building a 100-megawatt solar facility to produce hydrogen for the production of fertilizer, another major industry in need of decarbonization because of its large emissions footprint. And Brett Perleman of the Center for Houston’s Future said of his city that “we’re already a hydrogen hub today, just not green hydrogen” since the gas is currently mostly produced as a byproduct of fossil fuels. But that is changing rapidly, he said, and Houston, along with several other cities, aims to be a center of activity for hydrogen produced from renewable, non-carbon-emitting sources. They aim to be producing 1,000 tons a day by 2028, “and I think we’ll end up exceeding that,” he said.

    For industries that can switch to renewably generated electricity, that is typically the best choice, Perleman said. “But for those that can’t, hydrogen is a great option,” and that includes aviation, shipping, and rail. “The big oil companies all have plans in place” to develop clean hydrogen production, he said. “It’s not just a dream, but a reality.”

    For shipping, which tends to rely on bunker fuel, a particularly high-emissions fossil fuel, another potential option could be a new generation of small nuclear plants, said Jeff Navin of Terrapower, a company currently developing such units. “Finding replacements for coal, oil, or natural gas for industrial purposes is very hard,” he said, but often what these processes require is consistent high heat, which nuclear can deliver, as long as costs and regulatory issues can be resolved.  

    MIT professor of nuclear engineering Jacopo Buongiorno pointed out that the primary reasons for delays and cost overruns in nuclear plants have had to do with issues at the construction site, many of which could be alleviated by having smaller, factory-built modular plants, or by building multiple units at a time of a standardized design. If the government would take on the nuclear waste disposal, as some other countries have done, then nuclear power could play an important part in the decarbonization of many industries, he said.

    Student-led startups

    The two-day conference concluded with the final round of the annual MIT Climate and Energy Prize, consisting of the five finalist teams presenting brief pitches for their startup company ideas, followed by questions from the panel of judges. This year’s finalists included a team called Muket, dedicated to finding ways of reducing methane emissions from cattle and dairy farms. Feed additives or other measures could cut the emissions by 50 percent, the team estimates.

    A team called Ivu Biologics described a system for incorporating nitrogen-fixing microbes into the coatings of seeds, thereby reducing the need for added fertilizers, whose production is a major greenhouse gas source. The company is making use of seed-coating technology developed at MIT over the last few years. Another team, called Mesophase, also based on MIT-developed technology, aims to replace the condensers used in power plants and other industrial systems with much more efficient versions, thus increasing the energy output from a given amount of fuel or other heat source.

    A team called TerraTrade aims to facilitate the adoption of power purchase agreements by companies, institutions and governments, by acting as a kind of broker to create and administer such agreements, making it easier for even smaller entities to take part in these plans, which help to enable rapid development of renewable fossil-fuel-free energy production.

    The grand prize of $100,000 was awarded to a team called Ultropia, which is developing a combined clothes washer and drier that uses ultrasound instead of water for its cleaning. The system does use a small amount of water, but this can be recycled, making these usable even in areas where water availability is limited. The devices could have a great impact on the estimated 6 billion people in the world today who are still limited to washing clothes by hand, the team says, and because the machines would be so efficient, they would require very little energy to run — a significant improvement over the wider adoption of conventional washers and driers. More

  • in

    Ocean vital signs

    Without the ocean, the climate crisis would be even worse than it is. Each year, the ocean absorbs billions of tons of carbon from the atmosphere, preventing warming that greenhouse gas would otherwise cause. Scientists estimate about 25 to 30 percent of all carbon released into the atmosphere by both human and natural sources is absorbed by the ocean.

    “But there’s a lot of uncertainty in that number,” says Ryan Woosley, a marine chemist and a principal research scientist in the Department of Earth, Atmospheric and Planetary Sciences (EAPS) at MIT. Different parts of the ocean take in different amounts of carbon depending on many factors, such as the season and the amount of mixing from storms. Current models of the carbon cycle don’t adequately capture this variation.

    To close the gap, Woosley and a team of other MIT scientists developed a research proposal for the MIT Climate Grand Challenges competition — an Institute-wide campaign to catalyze and fund innovative research addressing the climate crisis. The team’s proposal, “Ocean Vital Signs,” involves sending a fleet of sailing drones to cruise the oceans taking detailed measurements of how much carbon the ocean is really absorbing. Those data would be used to improve the precision of global carbon cycle models and improve researchers’ ability to verify emissions reductions claimed by countries.

    “If we start to enact mitigation strategies—either through removing CO2 from the atmosphere or reducing emissions — we need to know where CO2 is going in order to know how effective they are,” says Woosley. Without more precise models there’s no way to confirm whether observed carbon reductions were thanks to policy and people, or thanks to the ocean.

    “So that’s the trillion-dollar question,” says Woosley. “If countries are spending all this money to reduce emissions, is it enough to matter?”

    In February, the team’s Climate Grand Challenges proposal was named one of 27 finalists out of the almost 100 entries submitted. From among this list of finalists, MIT will announce in April the selection of five flagship projects to receive further funding and support.

    Woosley is leading the team along with Christopher Hill, a principal research engineer in EAPS. The team includes physical and chemical oceanographers, marine microbiologists, biogeochemists, and experts in computational modeling from across the department, in addition to collaborators from the Media Lab and the departments of Mathematics, Aeronautics and Astronautics, and Electrical Engineering and Computer Science.

    Today, data on the flux of carbon dioxide between the air and the oceans are collected in a piecemeal way. Research ships intermittently cruise out to gather data. Some commercial ships are also fitted with sensors. But these present a limited view of the entire ocean, and include biases. For instance, commercial ships usually avoid storms, which can increase the turnover of water exposed to the atmosphere and cause a substantial increase in the amount of carbon absorbed by the ocean.

    “It’s very difficult for us to get to it and measure that,” says Woosley. “But these drones can.”

    If funded, the team’s project would begin by deploying a few drones in a small area to test the technology. The wind-powered drones — made by a California-based company called Saildrone — would autonomously navigate through an area, collecting data on air-sea carbon dioxide flux continuously with solar-powered sensors. This would then scale up to more than 5,000 drone-days’ worth of observations, spread over five years, and in all five ocean basins.

    Those data would be used to feed neural networks to create more precise maps of how much carbon is absorbed by the oceans, shrinking the uncertainties involved in the models. These models would continue to be verified and improved by new data. “The better the models are, the more we can rely on them,” says Woosley. “But we will always need measurements to verify the models.”

    Improved carbon cycle models are relevant beyond climate warming as well. “CO2 is involved in so much of how the world works,” says Woosley. “We’re made of carbon, and all the other organisms and ecosystems are as well. What does the perturbation to the carbon cycle do to these ecosystems?”

    One of the best understood impacts is ocean acidification. Carbon absorbed by the ocean reacts to form an acid. A more acidic ocean can have dire impacts on marine organisms like coral and oysters, whose calcium carbonate shells and skeletons can dissolve in the lower pH. Since the Industrial Revolution, the ocean has become about 30 percent more acidic on average.

    “So while it’s great for us that the oceans have been taking up the CO2, it’s not great for the oceans,” says Woosley. “Knowing how this uptake affects the health of the ocean is important as well.” More

  • in

    Chemical reactions for the energy transition

    One challenge in decarbonizing the energy system is knowing how to deal with new types of fuels. Traditional fuels such as natural gas and oil can be combined with other materials and then heated to high temperatures so they chemically react to produce other useful fuels or substances, or even energy to do work. But new materials such as biofuels can’t take as much heat without breaking down.

    A key ingredient in such chemical reactions is a specially designed solid catalyst that is added to encourage the reaction to happen but isn’t itself consumed in the process. With traditional materials, the solid catalyst typically interacts with a gas; but with fuels derived from biomass, for example, the catalyst must work with a liquid — a special challenge for those who design catalysts.

    For nearly a decade, Yogesh Surendranath, an associate professor of chemistry at MIT, has been focusing on chemical reactions between solid catalysts and liquids, but in a different situation: rather than using heat to drive reactions, he and his team input electricity from a battery or a renewable source such as wind or solar to give chemically inactive molecules more energy so they react. And key to their research is designing and fabricating solid catalysts that work well for reactions involving liquids.

    Recognizing the need to use biomass to develop sustainable liquid fuels, Surendranath wondered whether he and his team could take the principles they have learned about designing catalysts to drive liquid-solid reactions with electricity and apply them to reactions that occur at liquid-solid interfaces without any input of electricity.

    To their surprise, they found that their knowledge is directly relevant. Why? “What we found — amazingly — is that even when you don’t hook up wires to your catalyst, there are tiny internal ‘wires’ that do the reaction,” says Surendranath. “So, reactions that people generally think operate without any flow of current actually do involve electrons shuttling from one place to another.” And that means that Surendranath and his team can bring the powerful techniques of electrochemistry to bear on the problem of designing catalysts for sustainable fuels.

    A novel hypothesis

    Their work has focused on a class of chemical reactions important in the energy transition that involve adding oxygen to small organic (carbon-containing) molecules such as ethanol, methanol, and formic acid. The conventional assumption is that the reactant and oxygen chemically react to form the product plus water. And a solid catalyst — often a combination of metals — is present to provide sites on which the reactant and oxygen can interact.

    But Surendranath proposed a different view of what’s going on. In the usual setup, two catalysts, each one composed of many nanoparticles, are mounted on a conductive carbon substrate and submerged in water. In that arrangement, negatively charged electrons can flow easily through the carbon, while positively charged protons can flow easily through water.

    Surendranath’s hypothesis was that the conversion of reactant to product progresses by means of two separate “half-reactions” on the two catalysts. On one catalyst, the reactant turns into a product, in the process sending electrons into the carbon substrate and protons into the water. Those electrons and protons are picked up by the other catalyst, where they drive the oxygen-to-water conversion. So, instead of a single reaction, two separate but coordinated half-reactions together achieve the net conversion of reactant to product.

    As a result, the overall reaction doesn’t actually involve any net electron production or consumption. It is a standard “thermal” reaction resulting from the energy in the molecules and maybe some added heat. The conventional approach to designing a catalyst for such a reaction would focus on increasing the rate of that reactant-to-product conversion. And the best catalyst for that kind of reaction could turn out to be, say, gold or palladium or some other expensive precious metal.

    However, if that reaction actually involves two half-reactions, as Surendranath proposed, there is a flow of electrical charge (the electrons and protons) between them. So Surendranath and others in the field could instead use techniques of electrochemistry to design not a single catalyst for the overall reaction but rather two separate catalysts — one to speed up one half-reaction and one to speed up the other half-reaction. “That means we don’t have to design one catalyst to do all the heavy lifting of speeding up the entire reaction,” says Surendranath. “We might be able to pair up two low-cost, earth-abundant catalysts, each of which does half of the reaction well, and together they carry out the overall transformation quickly and efficiently.”

    But there’s one more consideration: Electrons can flow through the entire catalyst composite, which encompasses the catalyst particle(s) and the carbon substrate. For the chemical conversion to happen as quickly as possible, the rate at which electrons are put into the catalyst composite must exactly match the rate at which they are taken out. Focusing on just the electrons, if the reaction-to-product conversion on the first catalyst sends the same number of electrons per second into the “bath of electrons” in the catalyst composite as the oxygen-to-water conversion on the second catalyst takes out, the two half-reactions will be balanced, and the electron flow — and the rate of the combined reaction — will be fast. The trick is to find good catalysts for each of the half-reactions that are perfectly matched in terms of electrons in and electrons out.

    “A good catalyst or pair of catalysts can maintain an electrical potential — essentially a voltage — at which both half-reactions are fast and are balanced,” says Jaeyune Ryu PhD ’21, a former member of the Surendranath lab and lead author of the study; Ryu is now a postdoc at Harvard University. “The rates of the reactions are equal, and the voltage in the catalyst composite won’t change during the overall thermal reaction.”

    Drawing on electrochemistry

    Based on their new understanding, Surendranath, Ryu, and their colleagues turned to electrochemistry techniques to identify a good catalyst for each half-reaction that would also pair up to work well together. Their analytical framework for guiding catalyst development for systems that combine two half-reactions is based on a theory that has been used to understand corrosion for almost 100 years, but has rarely been applied to understand or design catalysts for reactions involving small molecules important for the energy transition.

    Key to their work is a potentiostat, a type of voltmeter that can either passively measure the voltage of a system or actively change the voltage to cause a reaction to occur. In their experiments, Surendranath and his team use the potentiostat to measure the voltage of the catalyst in real time, monitoring how it changes millisecond to millisecond. They then correlate those voltage measurements with simultaneous but separate measurements of the overall rate of catalysis to understand the reaction pathway.

    For their study of the conversion of small, energy-related molecules, they first tested a series of catalysts to find good ones for each half-reaction — one to convert the reactant to product, producing electrons and protons, and another to convert the oxygen to water, consuming electrons and protons. In each case, a promising candidate would yield a rapid reaction — that is, a fast flow of electrons and protons out or in.

    To help identify an effective catalyst for performing the first half-reaction, the researchers used their potentiostat to input carefully controlled voltages and measured the resulting current that flowed through the catalyst. A good catalyst will generate lots of current for little applied voltage; a poor catalyst will require high applied voltage to get the same amount of current. The team then followed the same procedure to identify a good catalyst for the second half-reaction.

    To expedite the overall reaction, the researchers needed to find two catalysts that matched well — where the amount of current at a given applied voltage was high for each of them, ensuring that as one produced a rapid flow of electrons and protons, the other one consumed them at the same rate.

    To test promising pairs, the researchers used the potentiostat to measure the voltage of the catalyst composite during net catalysis — not changing the voltage as before, but now just measuring it from tiny samples. In each test, the voltage will naturally settle at a certain level, and the goal is for that to happen when the rate of both reactions is high.

    Validating their hypothesis and looking ahead

    By testing the two half-reactions, the researchers could measure how the reaction rate for each one varied with changes in the applied voltage. From those measurements, they could predict the voltage at which the full reaction would proceed fastest. Measurements of the full reaction matched their predictions, supporting their hypothesis.

    The team’s novel approach of using electrochemistry techniques to examine reactions thought to be strictly thermal in nature provides new insights into the detailed steps by which those reactions occur and therefore into how to design catalysts to speed them up. “We can now use a divide-and-conquer strategy,” says Ryu. “We know that the net thermal reaction in our study happens through two ‘hidden’ but coupled half-reactions, so we can aim to optimize one half-reaction at a time” — possibly using low-cost catalyst materials for one or both.

    Adds Surendranath, “One of the things that we’re excited about in this study is that the result is not final in and of itself. It has really seeded a brand-new thrust area in our research program, including new ways to design catalysts for the production and transformation of renewable fuels and chemicals.”

    This research was supported primarily by the Air Force Office of Scientific Research. Jaeyune Ryu PhD ’21 was supported by a Samsung Scholarship. Additional support was provided by a National Science Foundation Graduate Research Fellowship.

    This article appears in the Autumn 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Improving predictions of sea level rise for the next century

    When we think of climate change, one of the most dramatic images that comes to mind is the loss of glacial ice. As the Earth warms, these enormous rivers of ice become a casualty of the rising temperatures. But, as ice sheets retreat, they also become an important contributor to one the more dangerous outcomes of climate change: sea-level rise. At MIT, an interdisciplinary team of scientists is determined to improve sea level rise predictions for the next century, in part by taking a closer look at the physics of ice sheets.

    Last month, two research proposals on the topic, led by Brent Minchew, the Cecil and Ida Green Career Development Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS), were announced as finalists in the MIT Climate Grand Challenges initiative. Launched in July 2020, Climate Grand Challenges fielded almost 100 project proposals from collaborators across the Institute who heeded the bold charge: to develop research and innovations that will deliver game-changing advances in the world’s efforts to address the climate challenge.

    As finalists, Minchew and his collaborators from the departments of Urban Studies and Planning, Economics, Civil and Environmental Engineering, the Haystack Observatory, and external partners, received $100,000 to develop their research plans. A subset of the 27 proposals tapped as finalists will be announced next month, making up a portfolio of multiyear “flagship” projects receiving additional funding and support.

    One goal of both Minchew proposals is to more fully understand the most fundamental processes that govern rapid changes in glacial ice, and to use that understanding to build next-generation models that are more predictive of ice sheet behavior as they respond to, and influence, climate change.

    “We need to develop more accurate and computationally efficient models that provide testable projections of sea-level rise over the coming decades. To do so quickly, we want to make better and more frequent observations and learn the physics of ice sheets from these data,” says Minchew. “For example, how much stress do you have to apply to ice before it breaks?”

    Currently, Minchew’s Glacier Dynamics and Remote Sensing group uses satellites to observe the ice sheets on Greenland and Antarctica primarily with interferometric synthetic aperture radar (InSAR). But the data are often collected over long intervals of time, which only gives them “before and after” snapshots of big events. By taking more frequent measurements on shorter time scales, such as hours or days, they can get a more detailed picture of what is happening in the ice.

    “Many of the key unknowns in our projections of what ice sheets are going to look like in the future, and how they’re going to evolve, involve the dynamics of glaciers, or our understanding of how the flow speed and the resistances to flow are related,” says Minchew.

    At the heart of the two proposals is the creation of SACOS, the Stratospheric Airborne Climate Observatory System. The group envisions developing solar-powered drones that can fly in the stratosphere for months at a time, taking more frequent measurements using a new lightweight, low-power radar and other high-resolution instrumentation. They also propose air-dropping sensors directly onto the ice, equipped with seismometers and GPS trackers to measure high-frequency vibrations in the ice and pinpoint the motions of its flow.

    How glaciers contribute to sea level rise

    Current climate models predict an increase in sea levels over the next century, but by just how much is still unclear. Estimates are anywhere from 20 centimeters to two meters, which is a large difference when it comes to enacting policy or mitigation. Minchew points out that response measures will be different, depending on which end of the scale it falls toward. If it’s closer to 20 centimeters, coastal barriers can be built to protect low-level areas. But with higher surges, such measures become too expensive and inefficient to be viable, as entire portions of cities and millions of people would have to be relocated.

    “If we’re looking at a future where we could get more than a meter of sea level rise by the end of the century, then we need to know about that sooner rather than later so that we can start to plan and to do our best to prepare for that scenario,” he says.

    There are two ways glaciers and ice sheets contribute to rising sea levels: direct melting of the ice and accelerated transport of ice to the oceans. In Antarctica, warming waters melt the margins of the ice sheets, which tends to reduce the resistive stresses and allow ice to flow more quickly to the ocean. This thinning can also cause the ice shelves to be more prone to fracture, facilitating the calving of icebergs — events which sometimes cause even further acceleration of ice flow.

    Using data collected by SACOS, Minchew and his group can better understand what material properties in the ice allow for fracturing and calving of icebergs, and build a more complete picture of how ice sheets respond to climate forces. 

    “What I want is to reduce and quantify the uncertainties in projections of sea level rise out to the year 2100,” he says.

    From that more complete picture, the team — which also includes economists, engineers, and urban planning specialists — can work on developing predictive models and methods to help communities and governments estimate the costs associated with sea level rise, develop sound infrastructure strategies, and spur engineering innovation.

    Understanding glacier dynamics

    More frequent radar measurements and the collection of higher-resolution seismic and GPS data will allow Minchew and the team to develop a better understanding of the broad category of glacier dynamics — including calving, an important process in setting the rate of sea level rise which is currently not well understood.  

    “Some of what we’re doing is quite similar to what seismologists do,” he says. “They measure seismic waves following an earthquake, or a volcanic eruption, or things of this nature and use those observations to better understand the mechanisms that govern these phenomena.”

    Air-droppable sensors will help them collect information about ice sheet movement, but this method comes with drawbacks — like installation and maintenance, which is difficult to do out on a massive ice sheet that is moving and melting. Also, the instruments can each only take measurements at a single location. Minchew equates it to a bobber in water: All it can tell you is how the bobber moves as the waves disturb it.

    But by also taking continuous radar measurements from the air, Minchew’s team can collect observations both in space and in time. Instead of just watching the bobber in the water, they can effectively make a movie of the waves propagating out, as well as visualize processes like iceberg calving happening in multiple dimensions.

    Once the bobbers are in place and the movies recorded, the next step is developing machine learning algorithms to help analyze all the new data being collected. While this data-driven kind of discovery has been a hot topic in other fields, this is the first time it has been applied to glacier research.

    “We’ve developed this new methodology to ingest this huge amount of data,” he says, “and from that create an entirely new way of analyzing the system to answer these fundamental and critically important questions.”  More

  • in

    Q&A: Climate Grand Challenges finalists on new pathways to decarbonizing industry

    Note: This is the third article in a four-part interview series highlighting the work of the 27 MIT Climate Grand Challenges finalist teams, which received a total of $2.7 million in startup funding to advance their projects. In April, the Institute will name a subset of the finalists as multiyear flagship projects.

    The industrial sector is the backbone of today’s global economy, yet its activities are among the most energy-intensive and the toughest to decarbonize. Efforts to reach net-zero targets and avert runaway climate change will not succeed without new solutions for replacing sources of carbon emissions with low-carbon alternatives and developing scalable nonemitting applications of hydrocarbons.

    In conversations prepared for MIT News, faculty from three of the teams with projects in the competition’s “Decarbonizing complex industries and processes” category discuss strategies for achieving impact in hard-to-abate sectors, from long-distance transportation and building construction to textile manufacturing and chemical refining. The other Climate Grand Challenges research themes include using data and science to forecast climate-related risk, building equity and fairness into climate solutions, and removing, managing, and storing greenhouse gases. The following responses have been edited for length and clarity.

    Moving toward an all-carbon material approach to building

    Faced with the prospect of building stock doubling globally by 2050, there is a great need for sustainable alternatives to conventional mineral- and metal-based construction materials. Mark Goulthorpe, associate professor in the Department of Architecture, explains the methods behind Carbon >Building, an initiative to develop energy-efficient building materials by reorienting hydrocarbons from current use as fuels to environmentally benign products, creating an entirely new genre of lightweight, all-carbon buildings that could actually drive decarbonization.

    Q: What are all-carbon buildings and how can they help mitigate climate change?

    A: Instead of burning hydrocarbons as fuel, which releases carbon dioxide and other greenhouse gases that contribute to atmospheric pollution, we seek to pioneer a process that uses carbon materially to build at macro scale. New forms of carbon — carbon nanotube, carbon foam, etc. — offer salient properties for building that might effectively displace the current material paradigm. Only hydrocarbons offer sufficient scale to beat out the billion-ton mineral and metal markets, and their perilous impact. Carbon nanotube from methane pyrolysis is of special interest, as it offers hydrogen as a byproduct.

    Q: How will society benefit from the widespread use of all-carbon buildings?

    A: We anticipate reducing costs and timelines in carbon composite buildings, while increasing quality, longevity, and performance, and diminishing environmental impact. Affordability of buildings is a growing problem in all global markets as the cost of labor and logistics in multimaterial assemblies creates a burden that is very detrimental to economic growth and results in overcrowding and urban blight.

    Alleviating these challenges would have huge societal benefits, especially for those in lower income brackets who cannot afford housing, but the biggest benefit would be in drastically reducing the environmental footprint of typical buildings, which account for nearly 40 percent of global energy consumption.

    An all-carbon building sector will not only reduce hydrocarbon extraction, but can produce higher value materials for building. We are looking to rethink the building industry by greatly streamlining global production and learning from the low-labor methods pioneered by composite manufacturing such as wind turbine blades, which are quick and cheap to produce. This technology can improve the sustainability and affordability of buildings — and holds the promise of faster, cheaper, greener, and more resilient modes of dwelling.

    Emissions reduction through innovation in the textile industry

    Collectively, the textile industry is responsible for over 4 billion metric tons of carbon dioxide equivalent per year, or 5 to 10 percent of global greenhouse gas emissions — more than aviation and maritime shipping combined. And the problem is only getting worse with the industry’s rapid growth. Under the current trajectory, consumption is projected to increase 30 percent by 2030, reaching 102 million tons. A diverse group of faculty and researchers led by Gregory Rutledge, the Lammot du Pont Professor in the Department of Chemical Engineering, and Yuly Fuentes-Medel, project manager for fiber technologies and research advisor to the MIT Innovation Initiative, is developing groundbreaking innovations to reshape how textiles are selected, sourced, designed, manufactured, and used, and to create the structural changes required for sustained reductions in emissions by this industry.

    Q: Why has the textile industry been difficult to decarbonize?

    A: The industry currently operates under a linear model that relies heavily on virgin feedstock, at roughly 97 percent, yet recycles or downcycles less than 15 percent. Furthermore, recent trends in “fast fashion” have led to massive underutilization of apparel, such that products are discarded on average after only seven to 10 uses. In an industry with high volume and low margins, replacement technologies must achieve emissions reduction at scale while maintaining performance and economic efficiency.

    There are also technical barriers to adopting circular business models, from the challenge of dealing with products comprising fiber blends and chemical additives to the low maturity of recycling technologies. The environmental impacts of textiles and apparel have been estimated using life cycle analysis, and industry-standard indexes are under development to assess sustainability throughout the life cycle of a product, but information and tools are needed to model how new solutions will alter those impacts and include the consumer as an active player to keep our planet safe. This project seeks to deliver both the new solutions and the tools to evaluate their potential for impact.

    Q: Describe the five components of your program. What is the anticipated timeline for implementing these solutions?

    A: Our plan comprises five programmatic sections, which include (1) enabling a paradigm shift to sustainable materials using nontraditional, carbon-negative polymers derived from biomass and additives that facilitate recycling; (2) rethinking manufacturing with processes to structure fibers and fabrics for performance, waste reduction, and increased material efficiency; (3) designing textiles for value by developing products that are customized, adaptable, and multifunctional, and that interact with their environment to reduce energy consumption; (4) exploring consumer behavior change through human interventions that reduce emissions by encouraging the adoption of new technologies, increased utilization of products, and circularity; and (5) establishing carbon transparency with systems-level analyses that measure the impact of these strategies and guide decision making.

    We have proposed a five-year timeline with annual targets for each project. Conservatively, we estimate our program could reduce greenhouse gas emissions in the industry by 25 percent by 2030, with further significant reductions to follow.

    Tough-to-decarbonize transportation

    Airplanes, transoceanic ships, and freight trucks are critical to transporting people and delivering goods, and the cornerstone of global commerce, manufacturing, and tourism. But these vehicles also emit 3.7 billion tons of carbon dioxide annually and, left unchecked, they could take up a quarter of the remaining carbon budget by 2050. William Green, the Hoyt C. Hottel Professor in the Department Chemical Engineering, co-leads a multidisciplinary team with Steven Barrett, professor of aeronautics and astronautics and director of the MIT Laboratory for Aviation and the Environment, that is working to identify and advance economically viable technologies and policies for decarbonizing heavy duty trucking, shipping, and aviation. The Tough to Decarbonize Transportation research program aims to design and optimize fuel chemistry and production, vehicles, operations, and policies to chart the course to net-zero emissions by midcentury.

    Q: What are the highest priority focus areas of your research program?

    A: Hydrocarbon fuels made from biomass are the least expensive option, but it seems impractical, and probably damaging to the environment, to harvest the huge amount of biomass that would be needed to meet the massive and growing energy demands from these sectors using today’s biomass-to-fuel technology. We are exploring strategies to increase the amount of useful fuel made per ton of biomass harvested, other methods to make low-climate-impact hydrocarbon fuels, such as from carbon dioxide, and ways to make fuels that do not contain carbon at all, such as with hydrogen, ammonia, and other hydrogen carriers.

    These latter zero-carbon options free us from the need for biomass or to capture gigatons of carbon dioxide, so they could be a very good long-term solution, but they would require changing the vehicles significantly, and the construction of new refueling infrastructure, with high capital costs.

    Q: What are the scientific, technological, and regulatory barriers to scaling and implementing potential solutions?

    A: Reimagining an aviation, trucking, and shipping sector that connects the world and increases equity without creating more environmental damage is challenging because these vehicles must operate disconnected from the electrical grid and have energy requirements that cannot be met by batteries alone. Some of the concepts do not even exist in prototype yet, and none of the appealing options have been implemented at anywhere near the scale required.

    In most cases, we do not know the best way to make the fuel, and for new fuels the vehicles and refueling systems all need to be developed. Also, new fuels, or large-scale use of biomass, will introduce new environmental problems that need to be carefully considered, to ensure that decarbonization solutions do not introduce big new problems.

    Perhaps most difficult are the policy, economic, and equity issues. A new long-haul transportation system will be expensive, and everyone will be affected by the increased cost of shipping freight. To have the desired climate impact, the transport system must change in almost every country. During the transition period, we will need both the existing vehicle and fuel system to keep running smoothly, even as a new low-greenhouse system is introduced. We will also examine what policies could make that work and how we can get countries around the world to agree to implement them. More

  • in

    A better way to separate gases

    Industrial processes for chemical separations, including natural gas purification and the production of oxygen and nitrogen for medical or industrial uses, are collectively responsible for about 15 percent of the world’s energy use. They also contribute a corresponding amount to the world’s greenhouse gas emissions. Now, researchers at MIT and Stanford University have developed a new kind of membrane for carrying out these separation processes with roughly 1/10 the energy use and emissions.

    Using membranes for separation of chemicals is known to be much more efficient than processes such as distillation or absorption, but there has always been a tradeoff between permeability — how fast gases can penetrate through the material — and selectivity — the ability to let the desired molecules pass through while blocking all others. The new family of membrane materials, based on “hydrocarbon ladder” polymers, overcomes that tradeoff, providing both high permeability and extremely good selectivity, the researchers say.

    The findings are reported today in the journal Science, in a paper by Yan Xia, an associate professor of chemistry at Stanford; Zachary Smith, an assistant professor of chemical engineering at MIT; Ingo Pinnau, a professor at King Abdullah University of Science and Technology, and five others.

    Gas separation is an important and widespread industrial process whose uses include removing impurities and undesired compounds from natural gas or biogas, separating oxygen and nitrogen from air for medical and industrial purposes, separating carbon dioxide from other gases for carbon capture, and producing hydrogen for use as a carbon-free transportation fuel. The new ladder polymer membranes show promise for drastically improving the performance of such separation processes. For example, separating carbon dioxide from methane, these new membranes have five times the selectivity and 100 times the permeability of existing cellulosic membranes for that purpose. Similarly, they are 100 times more permeable and three times as selective for separating hydrogen gas from methane.

    The new type of polymers, developed over the last several years by the Xia lab, are referred to as ladder polymers because they are formed from double strands connected by rung-like bonds, and these linkages provide a high degree of rigidity and stability to the polymer material. These ladder polymers are synthesized via an efficient and selective chemistry the Xia lab developed called CANAL, an acronym for catalytic arene-norbornene annulation, which stitches readily available chemicals into ladder structures with hundreds or even thousands of rungs. The polymers are synthesized in a solution, where they form rigid and kinked ribbon-like strands that can easily be made into a thin sheet with sub-nanometer-scale pores by using industrially available polymer casting processes. The sizes of the resulting pores can be tuned through the choice of the specific hydrocarbon starting compounds. “This chemistry and choice of chemical building blocks allowed us to make very rigid ladder polymers with different configurations,” Xia says.

    To apply the CANAL polymers as selective membranes, the collaboration made use of Xia’s expertise in polymers and Smith’s specialization in membrane research. Holden Lai, a former Stanford doctoral student, carried out much of the development and exploration of how their structures impact gas permeation properties. “It took us eight years from developing the new chemistry to finding the right polymer structures that bestow the high separation performance,” Xia says.

    The Xia lab spent the past several years varying the structures of CANAL polymers to understand how their structures affect their separation performance. Surprisingly, they found that adding additional kinks to their original CANAL polymers significantly improved the mechanical robustness of their membranes and boosted their selectivity  for molecules of similar sizes, such as oxygen and nitrogen gases, without losing permeability of the more permeable gas. The selectivity actually improves as the material ages. The combination of high selectivity and high permeability makes these materials outperform all other polymer materials in many gas separations, the researchers say.

    Today, 15 percent of global energy use goes into chemical separations, and these separation processes are “often based on century-old technologies,” Smith says. “They work well, but they have an enormous carbon footprint and consume massive amounts of energy. The key challenge today is trying to replace these nonsustainable processes.” Most of these processes require high temperatures for boiling and reboiling solutions, and these often are the hardest processes to electrify, he adds.

    For the separation of oxygen and nitrogen from air, the two molecules only differ in size by about 0.18 angstroms (ten-billionths of a meter), he says. To make a filter capable of separating them efficiently “is incredibly difficult to do without decreasing throughput.” But the new ladder polymers, when manufactured into membranes produce tiny pores that achieve high selectivity, he says. In some cases, 10 oxygen molecules permeate for every nitrogen, despite the razor-thin sieve needed to access this type of size selectivity. These new membrane materials have “the highest combination of permeability and selectivity of all known polymeric materials for many applications,” Smith says.

    “Because CANAL polymers are strong and ductile, and because they are soluble in certain solvents, they could be scaled for industrial deployment within a few years,” he adds. An MIT spinoff company called Osmoses, led by authors of this study, recently won the MIT $100K entrepreneurship competition and has been partly funded by The Engine to commercialize the technology.

    There are a variety of potential applications for these materials in the chemical processing industry, Smith says, including the separation of carbon dioxide from other gas mixtures as a form of emissions reduction. Another possibility is the purification of biogas fuel made from agricultural waste products in order to provide carbon-free transportation fuel. Hydrogen separation for producing a fuel or a chemical feedstock, could also be carried out efficiently, helping with the transition to a hydrogen-based economy.

    The close-knit team of researchers is continuing to refine the process to facilitate the development from laboratory to industrial scale, and to better understand the details on how the macromolecular structures and packing result in the ultrahigh selectivity. Smith says he expects this platform technology to play a role in multiple decarbonization pathways, starting with hydrogen separation and carbon capture, because there is such a pressing need for these technologies in order to transition to a carbon-free economy.

    “These are impressive new structures that have outstanding gas separation performance,” says Ryan Lively, am associate professor of chemical and biomolecular engineering at Georgia Tech, who was not involved in this work. “Importantly, this performance is improved during membrane aging and when the membranes are challenged with concentrated gas mixtures. … If they can scale these materials and fabricate membrane modules, there is significant potential practical impact.”

    The research team also included Jun Myun Ahn and Ashley Robinson at Stanford, Francesco Benedetti at MIT, now the chief executive officer at Osmoses, and Yingge Wang at King Abdullah University of Science and Technology in Saudi Arabia. The work was supported by the Stanford Natural Gas Initiative, the Sloan Research Fellowship, the U.S. Department of Energy Office of Basic Energy Sciences, and the National Science Foundation. More

  • in

    Finding her way to fusion

    “I catch myself startling people in public.”

    Zoe Fisher’s animated hands carry part of the conversation as she describes how her naturally loud and expressive laughter turned heads in the streets of Yerevan. There during MIT’s Independent Activities period (IAP), she was helping teach nuclear science at the American University of Armenia, before returning to MIT to pursue fusion research at the Plasma Science and Fusion Center (PSFC).

    Startling people may simply be in Fisher’s DNA. She admits that when she first arrived at MIT, knowing nothing about nuclear science and engineering (NSE), she chose to join that department’s Freshman Pre-Orientation Program (FPOP) “for the shock value.” It was a choice unexpected by family, friends, and mostly herself. Now in her senior year, a 2021 recipient of NSE’s Irving Kaplan Award for academic achievements by a junior and entering a fifth-year master of science program in nuclear fusion, Fisher credits that original spontaneous impulse for introducing her to a subject she found so compelling that, after exploring multiple possibilities, she had to return to it.

    Fisher’s venture to Armenia, under the guidance of NSE associate professor Areg Danagoulian, is not the only time she has taught oversees with MISTI’s Global Teaching Labs, though it is the first time she has taught nuclear science, not to mention thermodynamics and materials science. During IAP 2020 she was a student teacher at a German high school, teaching life sciences, mathematics, and even English to grades five through 12. And after her first year she explored the transportation industry with a mechanical engineering internship in Tuscany, Italy.

    By the time she was ready to declare her NSE major she had sampled the alternatives both overseas and at home, taking advantage of MIT’s Undergraduate Research Opportunities Program (UROP). Drawn to fusion’s potential as an endless source of carbon-free energy on earth, she decided to try research at the PSFC, to see if the study was a good fit. 

    Much fusion research at MIT has favored heating hydrogen fuel inside a donut-shaped device called a tokamak, creating plasma that is hot and dense enough for fusion to occur. Because plasma will follow magnetic field lines, these devices are wrapped with magnets to keep the hot fuel from damaging the chamber walls.

    Fisher was assigned to SPARC, the PSFC’s new tokamak collaboration with MIT startup Commonwealth Fusion Systems (CSF), which uses a game-changing high-temperature superconducting (HTS) tape to create fusion magnets that minimize tokamak size and maximize performance. Working on a database reference book for SPARC materials, she was finding purpose even in the most repetitive tasks. “Which is how I knew I wanted to stay in fusion,” she laughs.

    Fisher’s latest UROP assignment takes her — literally — deeper into SPARC research. She works in a basement laboratory in building NW13 nicknamed “The Vault,” on a proton accelerator whose name conjures an underworld: DANTE. Supervised by PSFC Director Dennis Whyte and postdoc David Fischer, she is exploring the effects of radiation damage on the thin HTS tape that is key to SPARC’s design, and ultimately to the success of ARC, a prototype working fusion power plant.

    Because repetitive bombardment with neutrons produced during the fusion process can diminish the superconducting properties of the HTS, it is crucial to test the tape repeatedly. Fisher assists in assembling and testing the experimental setups for irradiating the HTS samples. Fisher recalls her first project was installing a “shutter” that would allow researchers to control exactly how much radiation reached the tape without having to turn off the entire experiment.

    “You could just push the button — block the radiation — then unblock it. It sounds super simple, but it took many trials. Because first I needed the right size solenoid, and then I couldn’t find a piece of metal that was small enough, and then we needed cryogenic glue…. To this day the actual final piece is made partially of paper towels.”

    She shrugs and laughs. “It worked, and it was the cheapest option.”

    Fisher is always ready to find the fun in fusion. Referring to DANTE as “A really cool dude,” she admits, “He’s perhaps a bit fickle. I may or may not have broken him once.” During a recent IAP seminar, she joined other PSFC UROP students to discuss her research, and expanded on how a mishap can become a gateway to understanding.

    “The grad student I work with and I got to repair almost the entire internal circuit when we blew the fuse — which originally was a really bad thing. But it ended up being great because we figured out exactly how it works.”

    Fisher’s upbeat spirit makes her ideal not only for the challenges of fusion research, but for serving the MIT community. As a student representative for NSE’s Diversity, Equity and Inclusion Committee, she meets monthly with the goal of growing and supporting diversity within the department.

    “This opportunity is impactful because I get my voice, and the voices of my peers, taken seriously,” she says. “Currently, we are spending most of our efforts trying to identify and eliminate hurdles based on race, ethnicity, gender, and income that prevent people from pursuing — and applying to — NSE.”

    To break from the lab and committees, she explores the Charles River as part of MIT’s varsity sailing team, refusing to miss a sunset. She also volunteers as an FPOP mentor, seeking to provide incoming first-years with the kind of experience that will make them want to return to the topic, as she did.

    She looks forward to continuing her studies on the HTS tapes she has been irradiating, proposing to send a current pulse above the critical current through the tape, to possibly anneal any defects from radiation, which would make repairs on future fusion power plants much easier.

    Fisher credits her current path to her UROP mentors and their infectious enthusiasm for the carbon-free potential of fusion energy.

    “UROPing around the PSFC showed me what I wanted to do with my life,” she says. “Who doesn’t want to save the world?” More