More stories

  • in

    Fighting for the health of the planet with AI

    For Priya Donti, childhood trips to India were more than an opportunity to visit extended family. The biennial journeys activated in her a motivation that continues to shape her research and her teaching.Contrasting her family home in Massachusetts, Donti — now the Silverman Family Career Development Professor in the Department of Electrical Engineering and Computer Science (EECS), a shared position between the MIT Schwarzman College of Computing and EECS, and a principal investigator at the MIT Laboratory for Information and Decision Systems (LIDS) — was struck by the disparities in how people live.“It was very clear to me the extent to which inequity is a rampant issue around the world,” Donti says. “From a young age, I knew that I definitely wanted to address that issue.”That motivation was further stoked by a high school biology teacher, who focused his class on climate and sustainability.“We learned that climate change, this huge, important issue, would exacerbate inequity,” Donti says. “That really stuck with me and put a fire in my belly.”So, when Donti enrolled at Harvey Mudd College, she thought she would direct her energy toward the study of chemistry or materials science to create next-generation solar panels.Those plans, however, were jilted. Donti “fell in love” with computer science, and then discovered work by researchers in the United Kingdom who were arguing that artificial intelligence and machine learning would be essential to help integrate renewables into power grids.“It was the first time I’d seen those two interests brought together,” she says. “I got hooked and have been working on that topic ever since.”Pursuing a PhD at Carnegie Mellon University, Donti was able to design her degree to include computer science and public policy. In her research, she explored the need for fundamental algorithms and tools that could manage, at scale, power grids relying heavily on renewables.“I wanted to have a hand in developing those algorithms and tool kits by creating new machine learning techniques grounded in computer science,” she says. “But I wanted to make sure that the way I was doing the work was grounded both in the actual energy systems domain and working with people in that domain” to provide what was actually needed.While Donti was working on her PhD, she co-founded a nonprofit called Climate Change AI. Her objective, she says, was to help the community of people involved in climate and sustainability — “be they computer scientists, academics, practitioners, or policymakers” — to come together and access resources, connection, and education “to help them along that journey.”“In the climate space,” she says, “you need experts in particular climate change-related sectors, experts in different technical and social science tool kits, problem owners, affected users, policymakers who know the regulations — all of those — to have on-the-ground scalable impact.”When Donti came to MIT in September 2023, it was not surprising that she was drawn by its initiatives directing the application of computer science toward society’s biggest problems, especially the current threat to the health of the planet.“We’re really thinking about where technology has a much longer-horizon impact and how technology, society, and policy all have to work together,” Donti says. “Technology is not just one-and-done and monetizable in the context of a year.”Her work uses deep learning models to incorporate the physics and hard constraints of electric power systems that employ renewables for better forecasting, optimization, and control.“Machine learning is already really widely used for things like solar power forecasting, which is a prerequisite to managing and balancing power grids,” she says. “My focus is, how do you improve the algorithms for actually balancing power grids in the face of a range of time-varying renewables?”Among Donti’s breakthroughs is a promising solution for power grid operators to be able to optimize for cost, taking into account the actual physical realities of the grid, rather than relying on approximations. While the solution is not yet deployed, it appears to work 10 times faster, and far more cheaply, than previous technologies, and has attracted the attention of grid operators.Another technology she is developing works to provide data that can be used in training machine learning systems for power system optimization. In general, much data related to the systems is private, either because it is proprietary or because of security concerns. Donti and her research group are working to create synthetic data and benchmarks that, Donti says, “can help to expose some of the underlying problems” in making power systems more efficient.“The question is,” Donti says, “can we bring our datasets to a point such that they are just hard enough to drive progress?”For her efforts, Donti has been awarded the U.S. Department of Energy Computational Science Graduate Fellowship and the NSF Graduate Research Fellowship. She was recognized as part of MIT Technology Review’s 2021 list of “35 Innovators Under 35” and Vox’s 2023 “Future Perfect 50.”Next spring, Donti will co-teach a class called AI for Climate Action with Sara Beery, EECS assistant professor, whose focus is AI for biodiversity and ecosystems, and Abigail Bodner, assistant professor in the departments of EECS and Earth, Atmospheric and Planetary Sciences, whose focus is AI for climate and Earth science.“We’re all super-excited about it,” Donti says.Coming to MIT, Donti says, “I knew that there would be an ecosystem of people who really cared, not just about success metrics like publications and citation counts, but about the impact of our work on society.” More

  • in

    3 Questions: Addressing the world’s most pressing challenges

    The Center for International Studies (CIS) empowers students, faculty, and scholars to bring MIT’s interdisciplinary style of research and scholarship to address complex global challenges. In this Q&A, Mihaela Papa, the center’s director of research and a principal research scientist at MIT, describes her role as well as research within the BRICS Lab at MIT — a reference to the BRICS intergovernmental organization, which comprises the nations of Brazil, Russia, India, China, South Africa, Egypt, Ethiopia, Indonesia, Iran and the United Arab Emirates. She also discusses the ongoing mission of CIS to tackle the world’s most complex challenges in new and creative ways.Q: What is your role at CIS, and some of your key accomplishments since joining the center just over a year ago?A: I serve as director of research and principal research scientist at CIS, a role that bridges management and scholarship. I oversee grant and fellowship programs, spearhead new research initiatives, build research communities across our center’s area programs and MIT schools, and mentor the next generation of scholars. My academic expertise is in international relations, and I publish on global governance and sustainable development, particularly through my new BRICS Lab. This past year, I focused on building collaborative platforms that highlight CIS’ role as an interdisciplinary hub and expand its research reach. With Evan Lieberman, the director of CIS, I launched the CIS Global Research and Policy Seminar series to address current challenges in global development and governance, foster cross-disciplinary dialogue, and connect theoretical insights to policy solutions. We also convened a Climate Adaptation Workshop, which examined promising strategies for financing adaptation and advancing policy innovation. We documented the outcomes in a workshop report that outlines a broader research agenda contributing to MIT’s larger climate mission.In parallel, I have been reviewing CIS’ grant-making programs to improve how we serve our community, while also supporting regional initiatives such as research planning related to Ukraine. Together with the center’s MIT-Brazil faculty director Brad Olsen, I secured a MITHIC [MIT Human Insight Collaboration] Connectivity grant to build an MIT Amazonia research community that connects MIT scholars with regional partners and strengthens collaboration across the Amazon. Finally, I launched the BRICS Lab to analyze transformations in global governance and have ongoing research on BRICS and food security and data centers in BRICS. Q: Tell us more about the BRICS Lab.A: The BRICS countries comprise the majority of the world’s population and an expanding share of the global economy. [Originally comprising Brazil, Russia, India, and China, BRICS currently includes 11 nations.] As a group, they carry the collective weight to shape international rules, influence global markets, and redefine norms — yet the question remains: Will they use this power effectively? The BRICS Lab explores the implications of the bloc’s rise for international cooperation and its role in reshaping global politics. Our work focuses on three areas: the design and strategic use of informal groups like BRICS in world affairs; the coalition’s potential to address major challenges such as food security, climate change, and artificial intelligence; and the implications of U.S. policy toward BRICS for the future of multilateralism.Q: What are the center’s biggest research priorities right now?A: Our center was founded in response to rising geopolitical tensions and the urgent need for policy rooted in rigorous, evidence-based research. Since then, we have grown into a hub that combines interdisciplinary scholarship and actively engages with policymakers and the public. Today, as in our early years, the center brings together exceptional researchers with the ambition to address the world’s most pressing challenges in new and creative ways.Our core focus spans security, development, and human dignity. Security studies have been a priority for the center, and our new nuclear security programming advances this work while training the next generation of scholars in this critical field. On the development front, our work has explored how societies manage diverse populations, navigate international migration, as well as engage with human rights and the changing patterns of regime dynamics.We are pursuing new research in three areas. First, on climate change, we seek to understand how societies confront environmental risks and harms, from insurance to water and food security in the international context. Second, we examine shifting patterns of global governance as rising powers set new agendas and take on greater responsibilities in the international system. Finally, we are initiating research on the impact of AI — how it reshapes governance across international relations, what is the role of AI corporations, and how AI-related risks can be managed.As we approach our 75th anniversary in 2026, we are excited to bring researchers together to spark bold ideas that open new possibilities for the future. More

  • in

    MIT gears up to transform manufacturing

    “Manufacturing is the engine of society, and it is the backbone of robust, resilient economies,” says John Hart, head of MIT’s Department of Mechanical Engineering (MechE) and faculty co-director of the MIT Initiative for New Manufacturing (INM). “With manufacturing a lively topic in today’s news, there’s a renewed appreciation and understanding of the importance of manufacturing to innovation, to economic and national security, and to daily lives.”Launched this May, INM will “help create a transformation of manufacturing through new technology, through development of talent, and through an understanding of how to scale manufacturing in a way that enables imparts higher productivity and resilience, drives adoption of new technologies, and creates good jobs,” Hart says.INM is one of MIT’s strategic initiatives and builds on the successful three-year-old Manufacturing@MIT program. “It’s a recognition by MIT that manufacturing is an Institute-wide theme and an Institute-wide priority, and that manufacturing connects faculty and students across campus,” says Hart. Alongside Hart, INM’s faculty co-directors are Institute Professor Suzanne Berger and Chris Love, professor of chemical engineering.The initiative is pursuing four main themes: reimagining manufacturing technologies and systems, elevating the productivity and human experience of manufacturing, scaling up new manufacturing, and transforming the manufacturing base.Breaking manufacturing barriers for corporationsAmgen, Autodesk, Flex, GE Vernova, PTC, Sanofi, and Siemens are founding members of INM’s industry consortium. These industry partners will work closely with MIT faculty, researchers, and students across many aspects of manufacturing-related research, both in broad-scale initiatives and in particular areas of shared interests. Membership requires a minimum three-year commitment of $500,000 a year to manufacturing-related activities at MIT, including the INM membership fee of $275,000 per year, which supports several core activities that engage the industry members.One major thrust for INM industry collaboration is the deployment and adoption of AI and automation in manufacturing. This effort will include seed research projects at MIT, collaborative case studies, and shared strategy development.INM also offers companies participation in the MIT-wide New Manufacturing Research effort, which is studying the trajectories of specific manufacturing industries and examining cross-cutting themes such as technology and financing.Additionally, INM will concentrate on education for all professions in manufacturing, with alliances bringing together corporations, community colleges, government agencies, and other partners. “We’ll scale our curriculum to broader audiences, from aspiring manufacturing workers and aspiring production line supervisors all the way up to engineers and executives,” says Hart.In workforce training, INM will collaborate with companies broadly to help understand the challenges and frame its overall workforce agenda, and with individual firms on specific challenges, such as acquiring suitably prepared employees for a new factory.Importantly, industry partners will also engage directly with students. Founding member Flex, for instance, hosted MIT researchers and students at the Flex Institute of Technology in Sorocaba, Brazil, developing new solutions for electronics manufacturing.“History shows that you need to innovate in manufacturing alongside the innovation in products,” Hart comments. “At MIT, as more students take classes in manufacturing, they’ll think more about key manufacturing issues as they decide what research problems they want to solve, or what choices they make as they prototype their devices. The same is true for industry — companies that operate at the frontier of manufacturing, whether through internal capabilities or their supply chains, are positioned to be on the frontier of product innovation and overall growth.”“We’ll have an opportunity to bring manufacturing upstream to the early stage of research, designing new processes and new devices with scalability in mind,” he says.Additionally, MIT expects to open new manufacturing-related labs and to further broaden cooperation with industry at existing shared facilities, such as MIT.nano. Hart says that facilities will also invite tighter collaborations with corporations — not just providing advanced equipment, but working jointly on, say, new technologies for weaving textiles, or speeding up battery manufacturing.Homing in on the United StatesINM is a global project that brings a particular focus on the United States, which remains the world’s second-largest manufacturing economy, but has suffered a significant decline in manufacturing employment and innovation.One key to reversing this trend and reinvigorating the U.S. manufacturing base is advocacy for manufacturing’s critical role in society and the career opportunities it offers.“No one really disputes the importance of manufacturing,” Hart says. “But we need to elevate interest in manufacturing as a rewarding career, from the production workers to manufacturing engineers and leaders, through advocacy, education programs, and buy-in from industry, government, and academia.”MIT is in a unique position to convene industry, academic, and government stakeholders in manufacturing to work together on this vital issue, he points out.Moreover, in times of radical and rapid changes in manufacturing, “we need to focus on deploying new technologies into factories and supply chains,” Hart says. “Technology is not all of the solution, but for the U.S. to expand our manufacturing base, we need to do it with technology as a key enabler, embracing companies of all sizes, including small and medium enterprises.”“As AI becomes more capable, and automation becomes more flexible and more available, these are key building blocks upon which you can address manufacturing challenges,” he says. “AI and automation offer new accelerated ways to develop, deploy, and monitor production processes, which present a huge opportunity and, in some cases, a necessity.”“While manufacturing is always a combination of old technology, new technology, established practice, and new ways of thinking, digital technology gives manufacturers an opportunity to leapfrog competitors,” Hart says. “That’s very, very powerful for the U.S. and any company, or country, that aims to create differentiated capabilities.”Fortunately, in recent years, investors have increasingly bought into new manufacturing in the United States. “They see the opportunity to re-industrialize, to build the factories and production systems of the future,” Hart says.“That said, building new manufacturing is capital-intensive, and takes time,” he adds. “So that’s another area where it’s important to convene stakeholders and to think about how startups and growth-stage companies build their capital portfolios, how large industry can support an ecosystem of small businesses and young companies, and how to develop talent to support those growing companies.”All these concerns and opportunities in the manufacturing ecosystem play to MIT’s strengths. “MIT’s DNA of cross-disciplinary collaboration and working with industry can let us create a lot of impact,” Hart emphasizes. “We can understand the practical challenges. We can also explore breakthrough ideas in research and cultivate successful outcomes, all the way to new companies and partnerships. Sometimes those are seen as disparate approaches, but we like to bring them together.” More

  • in

    Jessika Trancik named director of the Sociotechnical Systems Research Center

    Jessika Trancik, a professor in MIT’s Institute for Data, Systems, and Society, has been named the new director of the Sociotechnical Systems Research Center (SSRC), effective July 1. The SSRC convenes and supports researchers focused on problems and solutions at the intersection of technology and its societal impacts.Trancik conducts research on technology innovation and energy systems. At the Trancik Lab, she and her team develop methods drawing on engineering knowledge, data science, and policy analysis. Their work examines the pace and drivers of technological change, helping identify where innovation is occurring most rapidly, how emerging technologies stack up against existing systems, and which performance thresholds matter most for real-world impact. Her models have been used to inform government innovation policy and have been applied across a wide range of industries.“Professor Trancik’s deep expertise in the societal implications of technology, and her commitment to developing impactful solutions across industries, make her an excellent fit to lead SSRC,” says Maria C. Yang, interim dean of engineering and William E. Leonhard (1940) Professor of Mechanical Engineering.Much of Trancik’s research focuses on the domain of energy systems, and establishing methods for energy technology evaluation, including of their costs, performance, and environmental impacts. She covers a wide range of energy services — including electricity, transportation, heating, and industrial processes. Her research has applications in solar and wind energy, energy storage, low-carbon fuels, electric vehicles, and nuclear fission. Trancik is also known for her research on extreme events in renewable energy availability.A prolific researcher, Trancik has helped measure progress and inform the development of solar photovoltaics, batteries, electric vehicle charging infrastructure, and other low-carbon technologies — and anticipate future trends. One of her widely cited contributions includes quantifying learning rates and identifying where targeted investments can most effectively accelerate innovation. These tools have been used by U.S. federal agencies, international organizations, and the private sector to shape energy R&D portfolios, climate policy, and infrastructure planning.Trancik is committed to engaging and informing the public on energy consumption. She and her team developed the app carboncounter.com, which helps users choose cars with low costs and low environmental impacts.As an educator, Trancik teaches courses for students across MIT’s five schools and the MIT Schwarzman College of Computing.“The question guiding my teaching and research is how do we solve big societal challenges with technology, and how can we be more deliberate in developing and supporting technologies to get us there?” Trancik said in an article about course IDS.521/IDS.065 (Energy Systems for Climate Change Mitigation).Trancik received her undergraduate degree in materials science and engineering from Cornell University. As a Rhodes Scholar, she completed her PhD in materials science at the University of Oxford. She subsequently worked for the United Nations in Geneva, Switzerland, and the Earth Institute at Columbia University. After serving as an Omidyar Research Fellow at the Santa Fe Institute, she joined MIT in 2010 as a faculty member.Trancik succeeds Fotini Christia, the Ford International Professor of Social Sciences in the Department of Political Science and director of IDSS, who previously served as director of SSRC. More

  • in

    Shaping the future through systems thinking

    Long before she stepped into a lab, Ananda Santos Figueiredo was stargazing in Brazil, captivated by the cosmos and feeding her curiosity of science through pop culture, books, and the internet. She was drawn to astrophysics for its blend of visual wonder and mathematics.Even as a child, Santos sensed her aspirations reaching beyond the boundaries of her hometown. “I’ve always been drawn to STEM,” she says. “I had this persistent feeling that I was meant to go somewhere else to learn more, explore, and do more.”Her parents saw their daughter’s ambitions as an opportunity to create a better future. The summer before her sophomore year of high school, her family moved from Brazil to Florida.  She recalls that moment as “a big leap of faith in something bigger and we had no idea how it would turn out.” She was certain of one thing: She wanted an education that was both technically rigorous and deeply expansive, one that would allow her to pursue all her passions.At MIT, she found exactly what she was seeking in a community and curriculum that matched her curiosity and ambition. “I’ve always associated MIT with something new and exciting that was grasping towards the very best we can achieve as humans,” Santos says, emphasizing the use of technology and science to significantly impact society. “It’s a place where people aren’t afraid to dream big and work hard to make it a reality.”As a first-generation college student, she carried the weight of financial stress and the uncertainty that comes with being the first in her family to navigate college in the U.S. But she found a sense of belonging in the MIT community. “Being a first-generation student helped me grow,” she says. “It inspired me to seek out opportunities and help support others too.”She channeled that energy into student government roles for the undergraduate residence halls. Through Dormitory Council (DormCon) and her dormitory, Simmons Hall, her voice could help shape life on campus. She began serving as reservations chair for her dormitory but ended up becoming president of the dormitory before being elected dining chair and vice president for DormCon. She’s worked to improve dining hall operations and has planned major community events like Simmons Hall’s 20th anniversary and DormCon’s inaugural Field Day.Now, a senior about to earn her bachelor’s degree, Santos says MIT’s motto, “mens et manus” — “mind and hand” — has deeply resonated with her from the start. “Learning here goes far beyond the classroom,” she says. “I’ve been surrounded by people who are passionate and purposeful. That energy is infectious. It’s changed how I see myself and what I believe is possible.”Charting her own courseInitially a physics major, Santos’ academic path took a turn after a transformative internship with the World Bank’s data science lab between her sophomore and junior years. There, she used her coding skills to study the impacts of heat waves in the Philippines. The experience opened her eyes to the role technology and data can play in improving lives and broadened her view of what a STEM career could look like.“I realized I didn’t want to just study the universe — I wanted to change it,” she says. “I wanted to join systems thinking with my interest in the humanities, to build a better world for people and communities.”When MIT launched a new major in climate system science and engineering (Course 1-12) in 2023, Santos was the first student to declare it. The interdisciplinary structure of the program, blending climate science, engineering, energy systems, and policy, gave her a framework to connect her technical skills to real-world sustainability challenges.She tailored her coursework to align with her passions and career goals, applying her physics background (now her minor) to understand problems in climate, energy, and sustainable systems. “One of the most powerful things about the major is the breadth,” she says. “Even classes that aren’t my primary focus have expanded how I think.”Hands-on fieldwork has been a cornerstone of her learning. During MIT’s Independent Activities Period (IAP), she studied climate impacts in Hawai’i in the IAP Course 1.091 (Traveling Research Environmental Experiences, or TREX). This year, she studied the design of sustainable polymer systems in Course 1.096/10.496 (Design of Sustainable Polymer Systems) under MISTI’s Global Classroom program. The IAP class brought her to the middle of the Amazon Rainforest to see what the future of plastic production could look like with products from the Amazon. “That experience was incredibly eye opening,” she explains. “It helped me build a bridge between my own background and the kind of problems that I want to solve in the future.”Santos also found enjoyment beyond labs and lectures. A member of the MIT Shakespeare Ensemble since her first year, she took to the stage in her final spring production of “Henry V,” performing as both the Chorus and Kate. “The ensemble’s collaborative spirit and the way it brings centuries-old texts to life has been transformative,” she adds.Her passion for the arts also intersected with her interest in the MIT Lecture Series Committee. She helped host a special screening of the film “Sing Sing,” in collaboration with MIT’s Educational Justice Institute (TEJI). That connection led her to enroll in a TEJI course, illustrating the surprising and meaningful ways that different parts of MIT’s ecosystem overlap. “It’s one of the beautiful things about MIT,” she says. “You stumble into experiences that deeply change you.”Throughout her time at MIT, the community of passionate, sustainability-focused individuals has been a major source of inspiration. She’s been actively involved with the MIT Office of Sustainability’s decarbonization initiatives and participated in the Climate and Sustainability Scholars Program.Santos acknowledges that working in sustainability can sometimes feel overwhelming. “Tackling the challenges of sustainability can be discouraging,” she says. “The urgency to create meaningful change in a short period of time can be intimidating. But being surrounded by people who are actively working on it is so much better than not working on it at all.”Looking ahead, she plans to pursue graduate studies in technology and policy, with aspirations to shape sustainable development, whether through academia, international organizations, or diplomacy.“The most fulfilling moments I’ve had at MIT are when I’m working on hard problems while also reflecting on who I want to be, what kind of future I want to help create, and how we can be better and kinder to each other,” she says. “That’s what excites me — solving real problems that matter.” More

  • in

    Workshop explores new advanced materials for a growing world

    It is clear that humankind needs increasingly more resources, from computing power to steel and concrete, to meet the growing demands associated with data centers, infrastructure, and other mainstays of society. New, cost-effective approaches for producing the advanced materials key to that growth were the focus of a two-day workshop at MIT on March 11 and 12.A theme throughout the event was the importance of collaboration between and within universities and industries. The goal is to “develop concepts that everybody can use together, instead of everybody doing something different and then trying to sort it out later at great cost,” said Lionel Kimerling, the Thomas Lord Professor of Materials Science and Engineering at MIT.The workshop was produced by MIT’s Materials Research Laboratory (MRL), which has an industry collegium, and MIT’s Industrial Liaison Program. The program included an address by Javier Sanfelix, lead of the Advanced Materials Team for the European Union. Sanfelix gave an overview of the EU’s strategy to developing advanced materials, which he said are “key enablers of the green and digital transition for European industry.”That strategy has already led to several initiatives. These include a material commons, or shared digital infrastructure for the design and development of advanced materials, and an advanced materials academy for educating new innovators and designers. Sanfelix also described an Advanced Materials Act for 2026 that aims to put in place a legislative framework that supports the entire innovation cycle.Sanfelix was visiting MIT to learn more about how the Institute is approaching the future of advanced materials. “We see MIT as a leader worldwide in technology, especially on materials, and there is a lot to learn about [your] industry collaborations and technology transfer with industry,” he said.Innovations in steel and concreteThe workshop began with talks about innovations involving two of the most common human-made materials in the world: steel and cement. We’ll need more of both but must reckon with the huge amounts of energy required to produce them and their impact on the environment due to greenhouse-gas emissions during that production.One way to address our need for more steel is to reuse what we have, said C. Cem Tasan, the POSCO Associate Professor of Metallurgy in the Department of Materials Science and Engineering (DMSE) and director of the Materials Research Laboratory.But most of the existing approaches to recycling scrap steel involve melting the metal. “And whenever you are dealing with molten metal, everything goes up, from energy use to carbon-dioxide emissions. Life is more difficult,” Tasan said.The question he and his team asked is whether they could reuse scrap steel without melting it. Could they consolidate solid scraps, then roll them together using existing equipment to create new sheet metal? From the materials-science perspective, Tasan said, that shouldn’t work, for several reasons.But it does. “We’ve demonstrated the potential in two papers and two patent applications already,” he said. Tasan noted that the approach focuses on high-quality manufacturing scrap. “This is not junkyard scrap,” he said.Tasan went on to explain how and why the new process works from a materials-science perspective, then gave examples of how the recycled steel could be used. “My favorite example is the stainless-steel countertops in restaurants. Do you really need the mechanical performance of stainless steel there?” You could use the recycled steel instead.Hessam Azarijafari addressed another common, indispensable material: concrete. This year marks the 16th anniversary of the MIT Concrete Sustainability Hub (CSHub), which began when a set of industry leaders and politicians reached out to MIT to learn more about the benefits and environmental impacts of concrete.The hub’s work now centers around three main themes: working toward a carbon-neutral concrete industry; the development of a sustainable infrastructure, with a focus on pavement; and how to make our cities more resilient to natural hazards through investment in stronger, cooler construction.Azarijafari, the deputy director of the CSHub, went on to give several examples of research results that have come out of the CSHub. These include many models to identify different pathways to decarbonize the cement and concrete sector. Other work involves pavements, which the general public thinks of as inert, Azarijafari said. “But we have [created] a state-of-the-art model that can assess interactions between pavement and vehicles.” It turns out that pavement surface characteristics and structural performance “can influence excess fuel consumption by inducing an additional rolling resistance.”Azarijafari emphasized  the importance of working closely with policymakers and industry. That engagement is key “to sharing the lessons that we have learned so far.”Toward a resource-efficient microchip industryConsider the following: In 2020 the number of cell phones, GPS units, and other devices connected to the “cloud,” or large data centers, exceeded 50 billion. And data-center traffic in turn is scaling by 1,000 times every 10 years.But all of that computation takes energy. And “all of it has to happen at a constant cost of energy, because the gross domestic product isn’t changing at that rate,” said Kimerling. The solution is to either produce much more energy, or make information technology much more energy-efficient. Several speakers at the workshop focused on the materials and components behind the latter.Key to everything they discussed: adding photonics, or using light to carry information, to the well-established electronics behind today’s microchips. “The bottom line is that integrating photonics with electronics in the same package is the transistor for the 21st century. If we can’t figure out how to do that, then we’re not going to be able to scale forward,” said Kimerling, who is director of the MIT Microphotonics Center.MIT has long been a leader in the integration of photonics with electronics. For example, Kimerling described the Integrated Photonics System Roadmap – International (IPSR-I), a global network of more than 400 industrial and R&D partners working together to define and create photonic integrated circuit technology. IPSR-I is led by the MIT Microphotonics Center and PhotonDelta. Kimerling began the organization in 1997.Last year IPSR-I released its latest roadmap for photonics-electronics integration, “which  outlines a clear way forward and specifies an innovative learning curve for scaling performance and applications for the next 15 years,” Kimerling said.Another major MIT program focused on the future of the microchip industry is FUTUR-IC, a new global alliance for sustainable microchip manufacturing. Begun last year, FUTUR-IC is funded by the National Science Foundation.“Our goal is to build a resource-efficient microchip industry value chain,” said Anuradha Murthy Agarwal, a principal research scientist at the MRL and leader of FUTUR-IC. That includes all of the elements that go into manufacturing future microchips, including workforce education and techniques to mitigate potential environmental effects.FUTUR-IC is also focused on electronic-photonic integration. “My mantra is to use electronics for computation, [and] shift to photonics for communication to bring this energy crisis in control,” Agarwal said.But integrating electronic chips with photonic chips is not easy. To that end, Agarwal described some of the challenges involved. For example, currently it is difficult to connect the optical fibers carrying communications to a microchip. That’s because the alignment between the two must be almost perfect or the light will disperse. And the dimensions involved are minuscule. An optical fiber has a diameter of only millionths of a meter. As a result, today each connection must be actively tested with a laser to ensure that the light will come through.That said, Agarwal went on to describe a new coupler between the fiber and chip that could solve the problem and allow robots to passively assemble the chips (no laser needed). The work, which was conducted by researchers including MIT graduate student Drew Wenninger, Agarwal, and Kimerling, has been patented, and is reported in two papers. A second recent breakthrough in this area involving a printed micro-reflector was described by Juejun “JJ” Hu, John F. Elliott Professor of Materials Science and Engineering.FUTUR-IC is also leading educational efforts for training a future workforce, as well as techniques for detecting — and potentially destroying — the perfluroalkyls (PFAS, or “forever chemicals”) released during microchip manufacturing. FUTUR-IC educational efforts, including virtual reality and game-based learning, were described by Sajan Saini, education director for FUTUR-IC. PFAS detection and remediation were discussed by Aristide Gumyusenge, an assistant professor in DMSE, and Jesus Castro Esteban, a postdoc in the Department of Chemistry.Other presenters at the workshop included Antoine Allanore, the Heather N. Lechtman Professor of Materials Science and Engineering; Katrin Daehn, a postdoc in the Allanore lab; Xuanhe Zhao, the Uncas (1923) and Helen Whitaker Professor in the Department of Mechanical Engineering; Richard Otte, CEO of Promex; and Carl Thompson, the Stavros V. Salapatas Professor in Materials Science and Engineering. More

  • in

    Study: Burning heavy fuel oil with scrubbers is the best available option for bulk maritime shipping

    When the International Maritime Organization enacted a mandatory cap on the sulfur content of marine fuels in 2020, with an eye toward reducing harmful environmental and health impacts, it left shipping companies with three main options.They could burn low-sulfur fossil fuels, like marine gas oil, or install cleaning systems to remove sulfur from the exhaust gas produced by burning heavy fuel oil. Biofuels with lower sulfur content offer another alternative, though their limited availability makes them a less feasible option.While installing exhaust gas cleaning systems, known as scrubbers, is the most feasible and cost-effective option, there has been a great deal of uncertainty among firms, policymakers, and scientists as to how “green” these scrubbers are.Through a novel lifecycle assessment, researchers from MIT, Georgia Tech, and elsewhere have now found that burning heavy fuel oil with scrubbers in the open ocean can match or surpass using low-sulfur fuels, when a wide variety of environmental factors is considered.The scientists combined data on the production and operation of scrubbers and fuels with emissions measurements taken onboard an oceangoing cargo ship.They found that, when the entire supply chain is considered, burning heavy fuel oil with scrubbers was the least harmful option in terms of nearly all 10 environmental impact factors they studied, such as greenhouse gas emissions, terrestrial acidification, and ozone formation.“In our collaboration with Oldendorff Carriers to broadly explore reducing the environmental impact of shipping, this study of scrubbers turned out to be an unexpectedly deep and important transitional issue,” says Neil Gershenfeld, an MIT professor, director of the Center for Bits and Atoms (CBA), and senior author of the study.“Claims about environmental hazards and policies to mitigate them should be backed by science. You need to see the data, be objective, and design studies that take into account the full picture to be able to compare different options from an apples-to-apples perspective,” adds lead author Patricia Stathatou, an assistant professor at Georgia Tech, who began this study as a postdoc in the CBA.Stathatou is joined on the paper by Michael Triantafyllou, the Henry L. and Grace Doherty and others at the National Technical University of Athens in Greece and the maritime shipping firm Oldendorff Carriers. The research appears today in Environmental Science and Technology.Slashing sulfur emissionsHeavy fuel oil, traditionally burned by bulk carriers that make up about 30 percent of the global maritime fleet, usually has a sulfur content around 2 to 3 percent. This is far higher than the International Maritime Organization’s 2020 cap of 0.5 percent in most areas of the ocean and 0.1 percent in areas near population centers or environmentally sensitive regions.Sulfur oxide emissions contribute to air pollution and acid rain, and can damage the human respiratory system.In 2018, fewer than 1,000 vessels employed scrubbers. After the cap went into place, higher prices of low-sulfur fossil fuels and limited availability of alternative fuels led many firms to install scrubbers so they could keep burning heavy fuel oil.Today, more than 5,800 vessels utilize scrubbers, the majority of which are wet, open-loop scrubbers.“Scrubbers are a very mature technology. They have traditionally been used for decades in land-based applications like power plants to remove pollutants,” Stathatou says.A wet, open-loop marine scrubber is a huge, metal, vertical tank installed in a ship’s exhaust stack, above the engines. Inside, seawater drawn from the ocean is sprayed through a series of nozzles downward to wash the hot exhaust gases as they exit the engines.The seawater interacts with sulfur dioxide in the exhaust, converting it to sulfates — water-soluble, environmentally benign compounds that naturally occur in seawater. The washwater is released back into the ocean, while the cleaned exhaust escapes to the atmosphere with little to no sulfur dioxide emissions.But the acidic washwater can contain other combustion byproducts like heavy metals, so scientists wondered if scrubbers were comparable, from a holistic environmental point of view, to burning low-sulfur fuels.Several studies explored toxicity of washwater and fuel system pollution, but none painted a full picture.The researchers set out to fill that scientific gap.A “well-to-wake” analysisThe team conducted a lifecycle assessment using a global environmental database on production and transport of fossil fuels, such as heavy fuel oil, marine gas oil, and very-low sulfur fuel oil. Considering the entire lifecycle of each fuel is key, since producing low-sulfur fuel requires extra processing steps in the refinery, causing additional emissions of greenhouse gases and particulate matter.“If we just look at everything that happens before the fuel is bunkered onboard the vessel, heavy fuel oil is significantly more low-impact, environmentally, than low-sulfur fuels,” she says.The researchers also collaborated with a scrubber manufacturer to obtain detailed information on all materials, production processes, and transportation steps involved in marine scrubber fabrication and installation.“If you consider that the scrubber has a lifetime of about 20 years, the environmental impacts of producing the scrubber over its lifetime are negligible compared to producing heavy fuel oil,” she adds.For the final piece, Stathatou spent a week onboard a bulk carrier vessel in China to measure emissions and gather seawater and washwater samples. The ship burned heavy fuel oil with a scrubber and low-sulfur fuels under similar ocean conditions and engine settings.Collecting these onboard data was the most challenging part of the study.“All the safety gear, combined with the heat and the noise from the engines on a moving ship, was very overwhelming,” she says.Their results showed that scrubbers reduce sulfur dioxide emissions by 97 percent, putting heavy fuel oil on par with low-sulfur fuels according to that measure. The researchers saw similar trends for emissions of other pollutants like carbon monoxide and nitrous oxide.In addition, they tested washwater samples for more than 60 chemical parameters, including nitrogen, phosphorus, polycyclic aromatic hydrocarbons, and 23 metals.The concentrations of chemicals regulated by the IMO were far below the organization’s requirements. For unregulated chemicals, the researchers compared the concentrations to the strictest limits for industrial effluents from the U.S. Environmental Protection Agency and European Union.Most chemical concentrations were at least an order of magnitude below these requirements.In addition, since washwater is diluted thousands of times as it is dispersed by a moving vessel, the concentrations of such chemicals would be even lower in the open ocean.These findings suggest that the use of scrubbers with heavy fuel oil can be considered as equal to or more environmentally friendly than low-sulfur fuels across many of the impact categories the researchers studied.“This study demonstrates the scientific complexity of the waste stream of scrubbers. Having finally conducted a multiyear, comprehensive, and peer-reviewed study, commonly held fears and assumptions are now put to rest,” says Scott Bergeron, managing director at Oldendorff Carriers and co-author of the study.“This first-of-its-kind study on a well-to-wake basis provides very valuable input to ongoing discussion at the IMO,” adds Thomas Klenum, executive vice president of innovation and regulatory affairs at the Liberian Registry, emphasizing the need “for regulatory decisions to be made based on scientific studies providing factual data and conclusions.”Ultimately, this study shows the importance of incorporating lifecycle assessments into future environmental impact reduction policies, Stathatou says.“There is all this discussion about switching to alternative fuels in the future, but how green are these fuels? We must do our due diligence to compare them equally with existing solutions to see the costs and benefits,” she adds.This study was supported, in part, by Oldendorff Carriers. More

  • in

    MIT Maritime Consortium sets sail

    Around 11 billion tons of goods, or about 1.5 tons per person worldwide, are transported by sea each year, representing about 90 percent of global trade by volume. Internationally, the merchant shipping fleet numbers around 110,000 vessels. These ships, and the ports that service them, are significant contributors to the local and global economy — and they’re significant contributors to greenhouse gas emissions.A new consortium, formalized in a signing ceremony at MIT last week, aims to address climate-harming emissions in the maritime shipping industry, while supporting efforts for environmentally friendly operation in compliance with the decarbonization goals set by the International Maritime Organization.“This is a timely collaboration with key stakeholders from the maritime industry with a very bold and interdisciplinary research agenda that will establish new technologies and evidence-based standards,” says Themis Sapsis, the William Koch Professor of Marine Technology at MIT and the director of MIT’s Center for Ocean Engineering. “It aims to bring the best from MIT in key areas for commercial shipping, such as nuclear technology for commercial settings, autonomous operation and AI methods, improved hydrodynamics and ship design, cybersecurity, and manufacturing.” Co-led by Sapsis and Fotini Christia, the Ford International Professor of the Social Sciences; director of the Institute for Data, Systems, and Society (IDSS); and director of the MIT Sociotechnical Systems Research Center, the newly-launched MIT Maritime Consortium (MC) brings together MIT collaborators from across campus, including the Center for Ocean Engineering, which is housed in the Department of Mechanical Engineering; IDSS, which is housed in the MIT Schwarzman College of Computing; the departments of Nuclear Science and Engineering and Civil and Environmental Engineering; MIT Sea Grant; and others, with a national and an international community of industry experts.The Maritime Consortium’s founding members are the American Bureau of Shipping (ABS), Capital Clean Energy Carriers Corp., and HD Korea Shipbuilding and Offshore Engineering. Innovation members are Foresight-Group, Navios Maritime Partners L.P., Singapore Maritime Institute, and Dorian LPG.“The challenges the maritime industry faces are challenges that no individual company or organization can address alone,” says Christia. “The solution involves almost every discipline from the School of Engineering, as well as AI and data-driven algorithms, and policy and regulation — it’s a true MIT problem.”Researchers will explore new designs for nuclear systems consistent with the techno-economic needs and constraints of commercial shipping, economic and environmental feasibility of alternative fuels, new data-driven algorithms and rigorous evaluation criteria for autonomous platforms in the maritime space, cyber-physical situational awareness and anomaly detection, as well as 3D printing technologies for onboard manufacturing. Collaborators will also advise on research priorities toward evidence-based standards related to MIT presidential priorities around climate, sustainability, and AI.MIT has been a leading center of ship research and design for over a century, and is widely recognized for contributions to hydrodynamics, ship structural mechanics and dynamics, propeller design, and overall ship design, and its unique educational program for U.S. Navy Officers, the Naval Construction and Engineering Program. Research today is at the forefront of ocean science and engineering, with significant efforts in fluid mechanics and hydrodynamics, acoustics, offshore mechanics, marine robotics and sensors, and ocean sensing and forecasting. The consortium’s academic home at MIT also opens the door to cross-departmental collaboration across the Institute.The MC will launch multiple research projects designed to tackle challenges from a variety of angles, all united by cutting-edge data analysis and computation techniques. Collaborators will research new designs and methods that improve efficiency and reduce greenhouse gas emissions, explore feasibility of alternative fuels, and advance data-driven decision-making, manufacturing and materials, hydrodynamic performance, and cybersecurity.“This consortium brings a powerful collection of significant companies that, together, has the potential to be a global shipping shaper in itself,” says Christopher J. Wiernicki SM ’85, chair and chief executive officer of ABS. “The strength and uniqueness of this consortium is the members, which are all world-class organizations and real difference makers. The ability to harness the members’ experience and know-how, along with MIT’s technology reach, creates real jet fuel to drive progress,” Wiernicki says. “As well as researching key barriers, bottlenecks, and knowledge gaps in the emissions challenge, the consortium looks to enable development of the novel technology and policy innovation that will be key. Long term, the consortium hopes to provide the gravity we will need to bend the curve.” More