More stories

  • in

    Governing for our descendants

    Social scientists worry that too often we think only of ourselves. 

    “There’s been an increasing recognition that over the last few decades the economy and society have become incredibly focused on the individual, to the detriment of our social fabric,” says Lily L. Tsai, the Ford Professor of Political Science at MIT.

    Tsai, who is also the director and founder of the MIT Governance LAB (MIT GOV/LAB) and is the current chair of the MIT faculty, is interested in distributive justice — allocating resources fairly across different groups of people. Typically, that might mean splitting resources between different socioeconomic groups, or between different nations. 

    But in an essay in the journal Dædalus, Tsai discusses policies and institutions that consider the needs of people in the future when determining who deserves what resources. That is, they broaden our concept of a collective society to include people who haven’t been born yet and will bear the brunt of climate change in the future.

    Some groups of people do actually consider the needs of future people when making decisions. For example, Wales has a Future Generations Commissioner who monitors whether the government’s actions compromise the needs of future generations. Norway’s Petroleum Fund invests parts of its oil profits for future generations. And MIT’s endowment “is explicitly charged” with ensuring that future students are just as well-off as current students, Tsai says.

    But in other ways, societies place a lower value on the needs of their descendants. For example, to determine the total return on an investment, governments use something called a discount rate that places more value in the present return on the investment than the future return on the investment. And humans are currently using up the planet’s resources at an unsustainable rate, which in turn is raising global temperatures and making earth less habitable for our children and our children’s children.

    The purpose of Tsai’s essay is not to suggest how, say, governments might set discount rates that more fairly consider future people. “I’m interested in the things that make people care about setting the discount rate lower and therefore valuing the future more,” she says. “What are the moral commitments and the kinds of cultural practices or social institutions that make people care more?”

    Tsai thinks the volatility of the modern world and anxiety about the future — say, the future habitability of the planet — make it harder for people to consider the needs of their descendants. In Tsai’s 2021 book “When People Want Punishment,” she argues that this volatility and anxiety make people seek out more stability and order. “The more uncertain the future is, the less you can be sure that saving for the future is going to be valuable to anybody,” she says. So, part of the solution could be making people feel less unsettled and more stable, which Tsai says can be done with institutions we already have, like social welfare systems.

    She also thinks the rate at which things change in the modern world has hurt our ability to consider the long view. “We no longer think in terms of decades and centuries the way in which we used to,” she says.

    MIT GOV/LAB is working with partners to figure out how to experiment in a lab setting with developing democratic practices or institutions that might better distribute resources between current people and future people. That would allow researchers to assess if structuring interactions or decision-making in a particular way encourages people to save more for future people. 

    Tsai thinks getting people to care about their descendants is a problem researchers can work on, and that humans have a natural inclination to consider the future. People have a desire to be entrusted with things of importance, to leave a legacy, and for conservation. “I think many humans actually naturally conserve things that are valuable and scarce, and there’s a strange way in which society has eroded that human instinct in favor of a culture of consumption,” she says. We need to “re-imagine the kinds of practices that encourage conservation rather than consumption,” she adds. More

  • in

    Exploring new sides of climate and sustainability research

    When the MIT Climate and Sustainability Consortium (MCSC) launched its Climate and Sustainability Scholars Program in fall 2022, the goal was to offer undergraduate students a unique way to develop and implement research projects with the strong support of each other and MIT faculty. Now into its second semester, the program is underscoring the value of fostering this kind of network — a community with MIT students at its core, exploring their diverse interests and passions in the climate and sustainability realms.Inspired by MIT’s successful SuperUROP [Undergraduate Research Opportunities Program], the yearlong MCSC Climate and Sustainability Scholars Program includes a classroom component combined with experiential learning opportunities and mentorship, all centered on climate and sustainability topics.“Harnessing the innovation, passion, and expertise of our talented students is critical to MIT’s mission of tackling the climate crisis,” says Anantha P. Chandrakasan, dean of the School of Engineering, Vannevar Bush Professor of Electrical Engineering and Computer Science, and chair of the MCSC. “The program is helping train students from a variety of disciplines and backgrounds to be effective leaders in climate and sustainability-focused roles in the future.”

    “What we found inspiring about MIT’s existing SuperUROP program was how it provides students with the guidance, training, and resources they need to investigate the world’s toughest problems,” says Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director. “This incredible level of support and mentorship encourages students to think and explore in creative ways, make new connections, and develop strategies and solutions that propel their work forward.”The first and current cohort of Climate and Sustainability Scholars consists of 19 students, representing MIT’s School of Engineering, MIT Schwarzman College of Computing, School of Science, School of Architecture and Planning, and MIT Sloan School of Management. These students are learning new perspectives, approaches, and angles in climate and sustainability — from each other, MIT faculty, and industry professionals.Projects with real-world applicationsStudents in the program work directly with faculty and principal investigators across MIT to develop their research projects focused on a large scope of sustainability topics.

    “This broad scope is important,” says Desirée Plata, MIT’s Gilbert W. Winslow Career Development Professor in Civil and Environmental Engineering, “because climate and sustainability solutions are needed in every facet of society. For a long time, people were searching for a ‘silver bullet’ solution to the climate change problems, but we didn’t get to this point with a single technological decision. This problem was created across a spectrum of sociotechnological activities, and fundamentally different thinking across a spectrum of solutions is what’s needed to move us forward. MCSC students are working to provide those solutions.”

    Undergraduate student and physics major M. (MG) Geogdzhayeva is working with Raffaele Ferrari, Cecil and Ida Green Professor of Oceanography in the Department of Earth, Atmospheric and Planetary Sciences, and director of the Program in Atmospheres, Oceans, and Climate, on their project “Using Continuous Time Markov Chains to Project Extreme Events under Climate.” Geogdzhayeva’s research supports the Flagship Climate Grand Challenges project that Ferrari is leading along with Professor Noelle Eckley Selin.

    “The project I am working on has a similar approach to the Climate Grand Challenges project entitled “Bringing computation to the climate challenge,” says Geogdzhayeva. “I am designing an emulator for climate extremes. Our goal is to boil down climate information to what is necessary and to create a framework that can deliver specific information — in order to develop valuable forecasts. As someone who comes from a physics background, the Climate and Sustainability Scholars Program has helped me think about how my research fits into the real world, and how it could be implemented.”

    Investigating technology and stakeholders

    Within technology development, Jade Chongsathapornpong, also a physics major, is diving into photo-modulated catalytic reactions for clean energy applications. Chongsathapornpong, who has worked with the MCSC on carbon capture and sequestration through the Undergraduate Research Opportunities Program (UROP), is now working with Harry Tuller, MIT’s R.P. Simmons Professor of Ceramics and Electronic Materials. Louise Anderfaas, majoring in materials science and engineering, is also working with Tuller on her project “Robust and High Sensitivity Detectors for Exploration of Deep Geothermal Wells.”Two other students who have worked with the MCSC through UROP include Paul Irvine, electrical engineering and computer science major, who is now researching American conservatism’s current relation to and views about sustainability and climate change, and Pamela Duke, management major, now investigating the use of simulation tools to empower industrial decision-makers around climate change action.Other projects focusing on technology development include the experimental characterization of poly(arylene ethers) for energy-efficient propane/propylene separations by Duha Syar, who is a chemical engineering major and working with Zachary Smith, the Robert N. Noyce Career Development Professor of Chemical Engineering; developing methods to improve sheet steel recycling by Rebecca Lizarde, who is majoring in materials science and engineering; and ion conduction in polymer-ceramic composite electrolytes by Melissa Stok, also majoring in materials science and engineering.

    Melissa Stok, materials science and engineering major, during a classroom discussion.

    Photo: Andrew Okyere

    Previous item
    Next item

    “My project is very closely connected to developing better Li-Ion batteries, which are extremely important in our transition towards clean energy,” explains Stok, who is working with Bilge Yildiz, MIT’s Breene M. Kerr (1951) Professor of Nuclear Science and Engineering. “Currently, electric cars are limited in their range by their battery capacity, so working to create more effective batteries with higher energy densities and better power capacities will help make these cars go farther and faster. In addition, using safer materials that do not have as high of an environmental toll for extraction is also important.” Claire Kim, a chemical engineering major, is focusing on batteries as well, but is honing in on large form factor batteries more relevant for grid-scale energy storage with Fikile Brushett, associate professor of chemical engineering.Some students in the program chose to focus on stakeholders, which, when it comes to climate and sustainability, can range from entities in business and industry to farmers to Indigenous people and their communities. Shivani Konduru, an electrical engineering and computer science major, is exploring the “backfire effects” in climate change communication, focusing on perceptions of climate change and how the messenger may change outcomes, and Einat Gavish, mathematics major, on how different stakeholders perceive information on driving behavior.Two students are researching the impact of technology on local populations. Anushree Chaudhuri, who is majoring in urban studies and planning, is working with Lawrence Susskind, Ford Professor of Urban and Environmental Planning, on community acceptance of renewable energy siting, and Amelia Dogan, also an urban studies and planning major, is working with Danielle Wood, assistant professor of aeronautics and astronautics and media arts and sciences, on Indigenous data sovereignty in environmental contexts.

    “I am interviewing Indigenous environmental activists for my project,” says Dogan. “This course is the first one directly related to sustainability that I have taken, and I am really enjoying it. It has opened me up to other aspects of climate beyond just the humanity side, which is my focus. I did MIT’s SuperUROP program and loved it, so was excited to do this similar opportunity with the climate and sustainability focus.”

    Other projects include in-field monitoring of water quality by Dahlia Dry, a physics major; understanding carbon release and accrual in coastal wetlands by Trinity Stallins, an urban studies and planning major; and investigating enzyme synthesis for bioremediation by Delight Nweneka, an electrical engineering and computer science major, each linked to the MCSC’s impact pathway work in nature-based solutions.

    The wide range of research topics underscores the Climate and Sustainability Program’s goal of bringing together diverse interests, backgrounds, and areas of study even within the same major. For example, Helena McDonald is studying pollution impacts of rocket launches, while Aviva Intveld is analyzing the paleoclimate and paleoenvironment background of the first peopling of the Americas. Both students are Earth, atmospheric and planetary sciences majors but are researching climate impacts from very different perspectives. Intveld was recently named a 2023 Gates Cambridge Scholar.

    “There are students represented from several majors in the program, and some people are working on more technical projects, while others are interpersonal. Both approaches are really necessary in the pursuit of climate resilience,” says Grace Harrington, who is majoring in civil and environmental engineering and whose project investigates ways to optimize the power of the wind farm. “I think it’s one of the few classes I’ve taken with such an interdisciplinary nature.”

    Shivani Konduru, electrical engineering and computer science major, during a classroom lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Perspectives and guidance from MIT and industry expertsAs students are developing these projects, they are also taking the program’s course (Climate.UAR), which covers key topics in climate change science, decarbonization strategies, policy, environmental justice, and quantitative methods for evaluating social and environmental impacts. The course is cross-listed in departments across all five schools and is taught by an experienced and interdisciplinary team. Desirée Plata was central to developing the Climate and Sustainability Scholars Programs and course with Associate Professor Elsa Olivetti, who taught the first semester. Olivetti is now co-teaching the second semester with Jeffrey C. Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, head of the Department of Materials Science and Engineering, and MCSC co-director. The course’s writing instructors are Caroline Beimford and David Larson.  

    “I have been introduced to a lot of new angles in the climate space through the weekly guest lecturers, who each shared a different sustainability-related perspective,” says Claire Kim. “As a chemical engineering major, I have mostly looked into the technologies for decarbonization, and how to scale them, so learning about policy, for example, was helpful for me. Professor Black from the Department of History spoke about how we can analyze the effectiveness of past policy to guide future policy, while Professor Selin talked about framing different climate policies as having co-benefits. These perspectives are really useful because no matter how good a technology is, you need to convince other people to adopt it, or have strong policy in place to encourage its use, in order for it to be effective.”

    Bringing the industry perspective, guests have presented from MCSC member companies such as PepsiCo, Holcim, Apple, Cargill, and Boeing. As an example, in one class, climate leaders from three companies presented together on their approaches to setting climate goals, barriers to reaching them, and ways to work together. “When I presented to the class, alongside my counterparts at Apple and Boeing, the student questions pushed us to explain how can collaborate on ways to achieve our climate goals, reflecting the broader opportunity we find within the MCSC,” says Dana Boyer, sustainability manager at Cargill.

    Witnessing the cross-industry dynamics unfold in class was particularly engaging for the students. “The most beneficial part of the program for me is the number of guest lectures who have come in to the class, not only from MIT but also from the industry side,” Grace Harrington adds. “The diverse range of people talking about their own fields has allowed me to make connections between all my classes.”Bringing in perspectives from both academia and industry is a reflection of the MCSC’s larger mission of linking its corporate members with each other and with the MIT community to develop scalable climate solutions.“In addition to focusing on an independent research project and engaging with a peer community, we’ve had the opportunity to hear from speakers across the sustainability space who are also part of or closely connected to the MIT ecosystem,” says Anushree Chaudhuri. “These opportunities have helped me make connections and learn about initiatives at the Institute that are closely related to existing or planned student sustainability projects. These connections — across topics like waste management, survey best practices, and climate communications — have strengthened student projects and opened pathways for future collaborations.

    Basuhi Ravi, MIT PhD candidate, giving a guest lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Having a positive impact as students and after graduation

    At the start of the program, students identified several goals, including developing focused independent research questions, drawing connections and links with real-world challenges, strengthening their critical thinking skills, and reflecting on their future career ambitions. A common thread throughout them all: the commitment to having a meaningful impact on climate and sustainability challenges both as students now, and as working professionals after graduation.“I’ve absolutely loved connecting with like-minded peers through the program. I happened to know most of the students coming in from various other communities on campus, so it’s been a really special experience for all of these people who I couldn’t connect with as a cohesive cohort before to come together. Whenever we have small group discussions in class, I’m always grateful for the time to learn about the interdisciplinary research projects everyone is involved with,” concludes Chaudhuri. “I’m looking forward to staying in touch with this group going forward, since I think most of us are planning on grad school and/or careers related to climate and sustainability.”

    The MCSC Climate and Sustainability Scholars Program is representative of MIT’s ambitious and bold initiatives on climate and sustainability — bringing together faculty and students across MIT to collaborate with industry on developing climate and sustainability solutions in the context of undergraduate education and research. Learn about how you can get involved. More

  • in

    Engineering for social impact

    A desire to make meaningful contributions to society has influenced Runako Gentles’ path in life. Gentles grew up in Jamaica with a supportive extended family that instilled in him his connection to his faith and his aspiration to aim for greatness.

    “While growing up, I was encouraged to live a life that could potentially bring about major positive changes in my family and many other people’s lives,” says the MIT junior.

    One of those pathways his parents encouraged is pursuing excellence in academics.

    Gentles attended Campion College, a Jesuit high school in Jamaica for academically high-achieving students. Gentles was valedictorian and even won an award “for the member of the valedictory class who most closely resembles the ideal of intellectual competence, openness to growth, and commitment to social justice.”

    Although he did well in all subjects, he naturally gravitated toward biology and chemistry. “There are certain subjects people just make sense of material much faster, and high school biology and chemistry were those subjects for me,” he says. His love of learning often surprised friends and classmates when he could recall science concepts and definitions years later.  

    For several years Gentles wanted to pursue the field of medicine. He remembers becoming more excited about the career of a surgeon after reading a book on the story of retired neurosurgeon Ben Carson. During his advanced studies at Campion, he attended a career event and met with a neurosurgeon who invited him and other classmates to watch a surgical procedure. Gentles had the unique learning experience to observe a spinal operation. Around that same time another learning opportunity presented itself. His biology teacher recommended he apply to a Caribbean Science Foundation initiative called Student Program for Innovation, Science, and Engineering (SPISE) to explore careers in science, technology, engineering, and math. The intensive residential summer program for Caribbean students is modeled after the Minority Introduction to Engineering and Science (MITES) program at MIT. Cardinal Warde, a professor of electrical engineering at MIT who is also from the Caribbean, serves as the faculty director for both MITES and SPISE. The program was Gentles’ first major exposure to engineering.

    “I felt like I was in my first year of college at SPISE. It was an amazing experience and it helped me realize the opportunities that an engineering career path offers,” Gentles says. He excelled in the SPISE program, even winning one of the program’s highest honors for demonstrating overall excellence and leadership.

    SPISE was profoundly impactful to Gentles and he decided to pursue engineering at MIT. While further exploring his engineering interests before his first year at MIT, he remembers reading an article that piqued his interest in industry sectors that met basic human and societal needs.

    “I started thinking more about engineering and ethics,” says Gentles. He wanted to spend his time learning how to use science and engineering to make meaningful change in society.  “I think back to wanting to be a doctor for many years to help sick people, but I took it a step further. I wanted to get closer to addressing some of the root causes of deaths, illnesses, and the poor quality of life for billions of people,” he says of his decision to pursue a degree in civil and environmental engineering.

    Gentles spent his first semester at MIT working as a remote student when the Covid pandemic shut down in-person learning. He participated in 1.097 (Introduction to Civil and Environmental Engineering Research) during the January Independent Activities Period, in which undergraduates work one-on-one with graduate students or postdoc mentors on research projects that align with their interests. Gentles worked in the lab of Ruben Juanes exploring the use of machine learning to analyze earthquake data to determine whether different geologic faults in Puerto Rico resulted in distinguishable earthquake clusters. He joined the lab of Desiree Plata in the summer of his sophomore year on another undergraduate research opportunity (UROP) project, analyzing diesel range organic compounds in water samples collected from shallow groundwater sources near hydraulic fracking sites in West Virginia. The experience even led Gentles to be a co-author in his graduate student mentor’s abstract proposal for the American Geophysical Union Fall Meeting 2022 conference.  

    Gentles says he found the Department of Civil and Environmental Engineering a place for him to have the big-picture mindset of thinking about how technology is going to affect the environment, which ultimately affects society. “Choosing this department was not just about gaining the technical knowledge that most interested me. I wanted to be in a space where I would significantly develop my mindset of using innovation to bring more harmony between society and the environment,” says Gentles.

    Outside of the classroom, learning acoustic guitar is a passion for Gentles. He plays at social events for Cru, a Christian community at MIT, where he serves as a team leader. He credits Cru with helping him feel connected to a lot of different people, even outside of MIT.

    He’s also a member of the Bernard M. Gordon-MIT Engineering Leadership Program, which helps undergraduates gain and hone leadership skills to prepare them for careers in engineering. After learning and exploring more UROPs and classes in civil and environmental engineering, he aspires to hold a position of leadership where he can use his environmental knowledge to impact human lives.

    “Mitigating environmental issues can sometimes be a very complicated endeavor involving many stakeholders,” Gentles says. “We need more bright minds to be thinking of creative ways to address these pressing problems. We need more leaders helping to make society more harmonious with our planet.” More

  • in

    Minimizing electric vehicles’ impact on the grid

    National and global plans to combat climate change include increasing the electrification of vehicles and the percentage of electricity generated from renewable sources. But some projections show that these trends might require costly new power plants to meet peak loads in the evening when cars are plugged in after the workday. What’s more, overproduction of power from solar farms during the daytime can waste valuable electricity-generation capacity.

    In a new study, MIT researchers have found that it’s possible to mitigate or eliminate both these problems without the need for advanced technological systems of connected devices and real-time communications, which could add to costs and energy consumption. Instead, encouraging the placing of charging stations for electric vehicles (EVs) in strategic ways, rather than letting them spring up anywhere, and setting up systems to initiate car charging at delayed times could potentially make all the difference.

    The study, published today in the journal Cell Reports Physical Science, is by Zachary Needell PhD ’22, postdoc Wei Wei, and Professor Jessika Trancik of MIT’s Institute for Data, Systems, and Society.

    In their analysis, the researchers used data collected in two sample cities: New York and Dallas. The data were gathered from, among other sources, anonymized records collected via onboard devices in vehicles, and surveys that carefully sampled populations to cover variable travel behaviors. They showed the times of day cars are used and for how long, and how much time the vehicles spend at different kinds of locations — residential, workplace, shopping, entertainment, and so on.

    The findings, Trancik says, “round out the picture on the question of where to strategically locate chargers to support EV adoption and also support the power grid.”

    Better availability of charging stations at workplaces, for example, could help to soak up peak power being produced at midday from solar power installations, which might otherwise go to waste because it is not economical to build enough battery or other storage capacity to save all of it for later in the day. Thus, workplace chargers can provide a double benefit, helping to reduce the evening peak load from EV charging and also making use of the solar electricity output.

    These effects on the electric power system are considerable, especially if the system must meet charging demands for a fully electrified personal vehicle fleet alongside the peaks in other demand for electricity, for example on the hottest days of the year. If unmitigated, the evening peaks in EV charging demand could require installing upwards of 20 percent more power-generation capacity, the researchers say.

    “Slow workplace charging can be more preferable than faster charging technologies for enabling a higher utilization of midday solar resources,” Wei says.

    Meanwhile, with delayed home charging, each EV charger could be accompanied by a simple app to estimate the time to begin its charging cycle so that it charges just before it is needed the next day. Unlike other proposals that require a centralized control of the charging cycle, such a system needs no interdevice communication of information and can be preprogrammed — and can accomplish a major shift in the demand on the grid caused by increasing EV penetration. The reason it works so well, Trancik says, is because of the natural variability in driving behaviors across individuals in a population.

    By “home charging,” the researchers aren’t only referring to charging equipment in individual garages or parking areas. They say it’s essential to make charging stations available in on-street parking locations and in apartment building parking areas as well.

    Trancik says the findings highlight the value of combining the two measures — workplace charging and delayed home charging — to reduce peak electricity demand, store solar energy, and conveniently meet drivers’ charging needs on all days. As the team showed in earlier research, home charging can be a particularly effective component of a strategic package of charging locations; workplace charging, they have found, is not a good substitute for home charging for meeting drivers’ needs on all days.

    “Given that there’s a lot of public money going into expanding charging infrastructure,” Trancik says, “how do you incentivize the location such that this is going to be efficiently and effectively integrated into the power grid without requiring a lot of additional capacity expansion?” This research offers some guidance to policymakers on where to focus rules and incentives.

    “I think one of the fascinating things about these findings is that by being strategic you can avoid a lot of physical infrastructure that you would otherwise need,” she adds. “Your electric vehicles can displace some of the need for stationary energy storage, and you can also avoid the need to expand the capacity of power plants, by thinking about the location of chargers as a tool for managing demands — where they occur and when they occur.”

    Delayed home charging could make a surprising amount of difference, the team found. “It’s basically incentivizing people to begin charging later. This can be something that is preprogrammed into your chargers. You incentivize people to delay the onset of charging by a bit, so that not everyone is charging at the same time, and that smooths out the peak.”

    Such a program would require some advance commitment on the part of participants. “You would need to have enough people committing to this program in advance to avoid the investment in physical infrastructure,” Trancik says. “So, if you have enough people signing up, then you essentially don’t have to build those extra power plants.”

    It’s not a given that all of this would line up just right, and putting in place the right mix of incentives would be crucial. “If you want electric vehicles to act as an effective storage technology for solar energy, then the [EV] market needs to grow fast enough in order to be able to do that,” Trancik says.

    To best use public funds to help make that happen, she says, “you can incentivize charging installations, which would go through ideally a competitive process — in the private sector, you would have companies bidding for different projects, but you can incentivize installing charging at workplaces, for example, to tap into both of these benefits.” Chargers people can access when they are parked near their residences are also important, Trancik adds, but for other reasons. Home charging is one of the ways to meet charging needs while avoiding inconvenient disruptions to people’s travel activities.

    The study was supported by the European Regional Development Fund Operational Program for Competitiveness and Internationalization, the Lisbon Portugal Regional Operation Program, and the Portuguese Foundation for Science and Technology. More

  • in

    Titanic robots make farming more sustainable

    There’s a lot riding on farmers’ ability to fight weeds, which can strangle crops and destroy yields. To protect crops, farmers have two options: They can spray herbicides that pollute the environment and harm human health, or they can hire more workers.

    Unfortunately, both choices are becoming less tenable. Herbicide resistance is a growing problem in crops around the world, while widespread labor shortages have hit the agricultural sector particularly hard.

    Now the startup FarmWise, co-founded by Sebastien Boyer SM ’16, is giving farmers a third option. The company has developed autonomous weeding robots that use artificial intelligence to cut out weeds while leaving crops untouched.

    The company’s first robot, fittingly called the Titan — picture a large tractor that makes use of a trailer in lieu of a driver’s seat — uses machine vision to distinguish weeds from crops including leafy greens, cauliflower, artichokes, and tomatoes while snipping weeds with sub-inch precision.

    About 15 Titans have been roaming the fields of 30 large farms in California and Arizona for the last few years, providing weeding as a service while being directed by an iPad. Last month, the company unveiled its newest robot, Vulcan, which is more lightweight and pulled by a tractor.

    “We have growing population, and we can’t expand the land or water we have, so we need to drastically increase the efficiency of the farming industry,” Boyer says. “I think AI and data are going to be major players in that journey.”

    Finding a road to impact

    Boyer came to MIT in 2014 and earned masters’ degrees in technology and policy as well as electrical engineering and computer science over the next two years.

    “What stood out is the passion that my classmates had for what they did — the drive and passion people had to change the world,” Boyer says.

    As part of his graduate work, Boyer researched machine learning and machine vision techniques, and he soon began exploring ways to apply those technologies to environmental problems. He received a small amount of funding from MIT Sandbox to further develop the idea.

    “That helped me make the decision to not take a real job,” Boyer recalls.

    Following graduation, he and FarmWise co-founder Thomas Palomares, a graduate of Stanford University whom Boyer met in his home country of France, began going to farmers’ markets, introducing themselves to small farmers and asking for tours of their farms. About one in three farmers were happy to show them around. From there they’d ask for referrals to larger farmers and service providers in the industry.

    “We realized agriculture is a large contributor of both emissions and, more broadly, to the negative impact of human activities on the environment,” Boyer says. “It also hasn’t been as disrupted by software, cloud computing, AI, and robotics as other industries. That combination really excites us.”

    Through their conversations, the founders learned herbicides are becoming less effective as weeds develop genetic resistance. The only alternative is to hire more workers, which itself was becoming more difficult for farmers.

    “Labor is extremely tight,” says Boyer, adding that bending over and weeding for 10 hours a day is one of the hardest jobs out there. “The labor supply is shrinking if not collapsing in the U.S., and it’s a worldwide trend. That has real environmental implications because of the tradeoff [between labor and herbicides].”

    The problem is especially acute for farmers of specialty crops, including many fruits, vegetables, and nuts, which grow on smaller farms than corn and soybean and each require slightly different growing practices, limiting the effectiveness of many technical and chemical solutions.

    “We don’t harvest corn by hand today, but we still harvest lettuces and nuts and apples by hand,” Boyer says.

    The Titan was built to complement field workers’ efforts to grow and maintain crops. An operator directs it using an iPad, walking alongside the machine and inspecting progress. Both the Titan and Vulcan are powered by an AI that directs hundreds of tiny blades to snip out weeds around each crop. The Vulcan is controlled directly from the tractor cab, where the operator has a touchscreen interface Boyer compares to those found in a Tesla.

    With more than 15,000 commercial hours under its belt, FarmWise hopes the data it collects can be used for more than just weeding in the near future.

    “It’s all about precision,” Boyer says. “We’re going to better understand what the plant needs and make smarter decisions for each one. That will bring us to a point where we can use the same amount of land, much less water, almost no chemicals, much less fertilizer, and still produce more food than we’re producing today. That’s the mission. That’s what excites me.”

    Weeding out farming challenges

    A customer recently told Boyer that without the Titan, he would have to switch all of his organic crops back to conventional because he couldn’t find enough workers.

    “That’s happening with a lot of customers,” Boyer says. “They have no choice but to rely on herbicides. Acres are staying organic because of our product, and conventional farms are reducing their use of herbicides.”

    Now FarmWise is expanding its database to support weeding for six to 12 new crops each year, and Boyer says adding new crops is getting easier and easier for its system.

    As early partners have sought to expand their deployments, Boyer says the only thing limiting the company’s growth is how fast it can build new robots. FarmWise’s new machines will begin being deployed later this year.

    Although the hulking Titan robots are the face of the company today, the founders hope to leverage the data they’ve collected to further improve farming operations.

    “The mission of the company is to turn AI into a tool that is as reliable and dependable as GPS is now in the farming industry,” Boyer says. “Twenty-five years ago, GPS was a very complicated technology. You had to connect to satellites and do some crazy computation to define your position. But a few companies brought GPS to a new level of reliability and simplicity. Today, every farmer in the world uses GPS. We think AI can have an even deeper impact than GPS has had on the farming industry, and we want to be the company that makes it available and easy to use for every farmer in the world.” More

  • in

    MIT Solve announces 2023 global challenges and Indigenous Communities Fellowship

    MIT Solve, an MIT initiative with a mission to drive innovation to solve world challenges, announced today the 2023 Global Challenges and the Indigenous Communities Fellowship. 

    Solve invites anyone from anywhere in the world to submit a solution to this year’s challenges by 12 p.m. EST on May 9. The 40 innovators — including eight new Indigenous Communities Fellows — will form the 2023 Solver Class, and pitch their solutions during Solve Challenge Finals on Sept. 17-18 in New York City. These selected teams will share over $1 million in available funding, take part in a nine-month support program, and join the Solve community made of cross-sector social impact leaders, to scale their solutions.

    Solve’s 2023 Global Challenges are: 

    For its second year, Solve will select a cohort of entrepreneurs among the 2023 Solver Class to join the Black and Brown Innovators in the U.S. Program. The program offers culturally-responsive support and partnership opportunities, and selected teams will participate in Solve’s annual U.S. Equity Summit. 

    In addition to the Global Challenges, Solve is also opening applications for the 2023 Indigenous Communities Fellowship. The fellowship, which looks for Native innovators in the United States and its territories, has now expanded eligibility to Canada. 

    “Every year we are inspired by people’s ingenuity and their determination to solve the most pressing issues of our time,” says Hala Hanna, acting executive director of MIT Solve. “We are excited to shine a spotlight on the most promising ones and grateful for our supporters who will help scale their impact.”

    Interested applicants can learn more and apply online at solve.mit.edu/challenges. 

    To date, the funding available for selected Solver teams and fellows includes:

    MIT Solve Funding — $400,000 with a $10,000 grant to each Solver team and fellow selected
    The GM Prize (supported by General Motors) — up to $150,000 across up to six solutions from the Learning for Civic Action Challenge, the Climate Adaptation & Low-Carbon Housing Challenge, and the 2023 Indigenous Communities Fellowship
    The AI for Humanity Prize (supported by The Patrick J. McGovern Foundation) — up to $150,000 to solutions that leverage data science, artificial intelligence, and/or machine learning to benefit humanity, selected from any of the 2023 Global Challenges
    The GSR Foundation Prize (supported by GSR Foundation) — up to $200,000 to innovative technology solutions from any of the 2023 Global Challenges, with a focus on solutions that use blockchain to improve financial inclusion
    Living Forests Prize (supported by Good Energies Foundation) — up to $100,000 across up to four solutions that help restore ecosystems or increase the use of sustainable forest products, selected from the Climate Adaptation & Low-Carbon Housing Challenge
    Those interested in sponsoring a prize should contact sue.kim@solve.mit.edu.

    Additionally, Solve Innovation Future will offer investment capital to Solver teams selected as a part of the 2023 class. To date, Solve Innovation Future has deployed over $1.3 million to more than 13 for-profit Solver team companies that are driving impact toward UN Sustainable Development Goals, and has catalyzed nearly seven times its investment in additional investment capital toward the Solver teams.

    The Solve community will convene on MIT’s campus for its flagship event Solve at MIT May 4-6 to celebrate the 2022 Solver Class. You may request an invitation here. Press interested in attending the event should contact maya.bingaman@solve.mit.edu. 

    Solve is a marketplace for social impact innovation. Through open innovation challenges, Solve finds incredible tech-based social entrepreneurs all around the world. Solve then brings together MIT’s innovation ecosystem and a community of members to fund and support these entrepreneurs to drive lasting, transformational impact. Solve has catalyzed over $60 million in commitments for Solver teams and entrepreneurs to date. More

  • in

    Mining for the clean energy transition

    In a world powered increasingly by clean energy, drilling for oil and gas will gradually give way to digging for metals and minerals. Today, the “critical minerals” used to make electric cars, solar panels, wind turbines, and grid-scale battery storage are facing soaring demand — and some acute bottlenecks as miners race to catch up.

    According to a report from the International Energy Agency, by 2040, the worldwide demand for copper is expected to roughly double; demand for nickel and cobalt will grow at least sixfold; and the world’s hunger for lithium could reach 40 times what we use today.

    “Society is looking to the clean energy transition as a way to solve the environmental and social harms of climate change,” says Scott Odell, a visiting scientist at the MIT Environmental Solutions Initiative (ESI), where he helps run the ESI Mining, Environment, and Society Program, who is also a visiting assistant professor at George Washington University. “Yet mining the materials needed for that transition would also cause social and environmental impacts. So we need to look for ways to reduce our demand for minerals, while also improving current mining practices to minimize social and environmental impacts.”

    ESI recently hosted the inaugural MIT Conference on Mining, Environment, and Society to discuss how the clean energy transition may affect mining and the people and environments in mining areas. The conference convened representatives of mining companies, environmental and human rights groups, policymakers, and social and natural scientists to identify key concerns and possible collaborative solutions.

    “We can’t replace an abusive fossil fuel industry with an abusive mining industry that expands as we move through the energy transition,” said Jim Wormington, a senior researcher at Human Rights Watch, in a panel on the first day of the conference. “There’s a recognition from governments, civil society, and companies that this transition potentially has a really significant human rights and social cost, both in terms of emissions […] but also for communities and workers who are on the front lines of mining.”

    That focus on communities and workers was consistent throughout the three-day conference, as participants outlined the economic and social dimensions of standing up large numbers of new mines. Corporate mines can bring large influxes of government revenue and local investment, but the income is volatile and can leave policymakers and communities stranded when production declines or mineral prices fall. On the other hand, “artisanal” mining operations are an important source of critical minerals, but are hard to regulate and subject to abuses from brokers. And large reserves of minerals are found in conservation areas, regions with fragile ecosystems and experiencing water shortages that can be exacerbated by mining, in particular on Indigenous-controlled lands and other places where mine openings are deeply fraught.

    “One of the real triggers of conflict is a dissatisfaction with the current model of resource extraction,” said Jocelyn Fraser of the University of British Columbia in a panel discussion. “One that’s failed to support the long-term sustainable development of regions that host mining operations, and yet imposes significant local social and environmental impacts.”

    All these challenges point toward solutions in policy and in mining companies’ relationships with the communities where they work. Participants highlighted newer models of mining governance that can create better incentives for the ways mines operate — from full community ownership of mines to recognizing community rights to the benefits of mining to end-of-life planning for mines at the time they open.

    Many of the conference speakers also shared technological innovations that may help reduce mining challenges. Some operations are investing in desalination as alternative water sources in water-scarce regions; low-carbon alternatives are emerging to many of the fossil fuel-powered heavy machines that are mainstays of the industry; and work is being done to reclaim valuable minerals from mine tailings, helping to minimize both waste and the need to open new extraction sites.

    Increasingly, the mining industry itself is recognizing that reforms will allow it to thrive in a rapid clean-energy transition. “Decarbonization is really a profitability imperative,” said Kareemah Mohammed, managing director for sustainability services at the technology consultancy Accenture, on the conference’s second day. “It’s about securing a low-cost and steady supply of either minerals or metals, but it’s also doing so in an optimal way.”

    The three-day conference attracted over 350 attendees, from large mining companies, industry groups, consultancies, multilateral institutions, universities, nongovernmental organizations (NGOs), government, and more. It was held entirely virtually, a choice that helped make the conference not only truly international — participants joined from over 27 countries on six continents — but also accessible to members of nonprofits and professionals in the developing world.

    “Many people are concerned about the environmental and social challenges of supplying the clean energy revolution, and we’d heard repeatedly that there wasn’t a forum for government, industry, academia, NGOs, and communities to all sit at the same table and explore collaborative solutions,” says Christopher Noble, ESI’s director of corporate engagement. “Convening, and researching best practices, are roles that universities can play. The conversations at this conference have generated valuable ideas and consensus to pursue three parallel programs: best-in-class models for community engagement, improving ESG metrics and their use, and civil-society contributions to government/industry relations. We are developing these programs to keep the momentum going.”

    The MIT Conference on Mining, Environment, and Society was funded, in part, by Accenture, as part of the MIT/Accenture Convergence Initiative. Additional funding was provided by the Inter-American Development Bank. More

  • in

    A breakthrough on “loss and damage,” but also disappointment, at UN climate conference

    As the 2022 United Nations climate change conference, known as COP27, stretched into its final hours on Saturday, Nov. 19, it was uncertain what kind of agreement might emerge from two weeks of intensive international negotiations.

    In the end, COP27 produced mixed results: on the one hand, a historic agreement for wealthy countries to compensate low-income countries for “loss and damage,” but on the other, limited progress on new plans for reducing the greenhouse gas emissions that are warming the planet.

    “We need to drastically reduce emissions now — and this is an issue this COP did not address,” said U.N. Secretary-General António Guterres in a statement at the conclusion of COP27. “A fund for loss and damage is essential — but it’s not an answer if the climate crisis washes a small island state off the map — or turns an entire African country to desert.”

    Throughout the two weeks of the conference, a delegation of MIT students, faculty, and staff was at the Sharm El-Sheikh International Convention Center to observe the negotiations, conduct and share research, participate in panel discussions, and forge new connections with researchers, policymakers, and advocates from around the world.

    Loss and damage

    A key issue coming in to COP27 (COP stands for “conference of the parties” to the U.N. Framework Convention on Climate Change, held for the 27th time) was loss and damage: a term used by the U.N. to refer to harms caused by climate change — either through acute catastrophes like extreme weather events or slower-moving impacts like sea level rise — to which communities and countries are unable to adapt. 

    Ultimately, a deal on loss and damage proved to be COP27’s most prominent accomplishment. Negotiators reached an eleventh-hour agreement to “establish new funding arrangements for assisting developing countries that are particularly vulnerable to the adverse effects of climate change.” 

    “Providing financial assistance to developing countries so they can better respond to climate-related loss and damage is not only a moral issue, but also a pragmatic one,” said Michael Mehling, deputy director of the MIT Center for Energy and Environmental Policy Research, who attended COP27 and participated in side events. “Future emissions growth will be squarely centered in the developing world, and offering support through different channels is key to building the trust needed for more robust global cooperation on mitigation.”

    Youssef Shaker, a graduate student in the MIT Technology and Policy Program and a research assistant with the MIT Energy Initiative, attended the second week of the conference, where he followed the negotiations over loss and damage closely. 

    “While the creation of a fund is certainly an achievement,” Shaker said, “significant questions remain to be answered, such as the size of the funding available as well as which countries receive access to it.” A loss-and-damage fund that is not adequately funded, Shaker noted, “would not be an impactful outcome.” 

    The agreement on loss and damage created a new committee, made up of 24 country representatives, to “operationalize” the new funding arrangements, including identifying funding sources. The committee is tasked with delivering a set of recommendations at COP28, which will take place next year in Dubai.

    Advising the U.N. on net zero

    Though the decisions reached at COP27 did not include major new commitments on reducing emissions from the combustion of fossil fuels, the transition to a clean global energy system was nevertheless a key topic of conversation throughout the conference.

    The Council of Engineers for the Energy Transition (CEET), an independent, international body of engineers and energy systems experts formed to provide advice to the U.N. on achieving net-zero emissions globally by 2050, convened for the first time at COP27. Jessika Trancik, a professor in the MIT Institute for Data, Systems, and Society and a member of CEET, spoke on a U.N.-sponsored panel on solutions for the transition to clean energy.

    Trancik noted that the energy transition will look different in different regions of the world. “As engineers, we need to understand those local contexts and design solutions around those local contexts — that’s absolutely essential to support a rapid and equitable energy transition.”

    At the same time, Trancik noted that there is now a set of “low-cost, ready-to-scale tools” available to every region — tools that resulted from a globally competitive process of innovation, stimulated by public policies in different countries, that dramatically drove down the costs of technologies like solar energy and lithium-ion batteries. The key, Trancik said, is for regional transition strategies to “tap into global processes of innovation.”

    Reinventing climate adaptation

    Elfatih Eltahir, the H. M. King Bhumibol Professor of Hydrology and Climate, traveled to COP27 to present plans for the Jameel Observatory Climate Resilience Early Warning System (CREWSnet), one of the five projects selected in April 2022 as a flagship in MIT’s Climate Grand Challenges initiative. CREWSnet focuses on climate adaptation, the term for adapting to climate impacts that are unavoidable.

    The aim of CREWSnet, Eltahir told the audience during a panel discussion, is “nothing short of reinventing the process of climate change adaptation,” so that it is proactive rather than reactive; community-led; data-driven and evidence-based; and so that it integrates different climate risks, from heat waves to sea level rise, rather than treating them individually.

    “However, it’s easy to talk about these changes,” said Eltahir. “The real challenge, which we are now just launching and engaging in, is to demonstrate that on the ground.” Eltahir said that early demonstrations will happen in a couple of key locations, including southwest Bangladesh, where multiple climate risks — rising sea levels, increasing soil salinity, and intensifying heat waves and cyclones — are combining to threaten the area’s agricultural production.

    Building on COP26

    Some members of MIT’s delegation attended COP27 to advance efforts that had been formally announced at last year’s U.N. climate conference, COP26, in Glasgow, Scotland.

    At an official U.N. side event co-organized by MIT on Nov. 11, Greg Sixt, the director of the Food and Climate Systems Transformation (FACT) Alliance led by the Abdul Latif Jameel Water and Food Systems Lab, provided an update on the alliance’s work since its launch at COP26.

    Food systems are a major source of greenhouse gas emissions — and are increasingly vulnerable to climate impacts. The FACT Alliance works to better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders to make food systems (which include food production, consumption, and waste) more sustainable and resilient. 

    Sixt told the audience that the FACT Alliance now counts over 20 research and stakeholder institutions around the world among its members, but also collaborates with other institutions in an “open network model” to advance work in key areas — such as a new research project exploring how climate scenarios could affect global food supply chains.

    Marcela Angel, research program director for the Environmental Solutions Initiative (ESI), helped convene a meeting at COP27 of the Afro-InterAmerican Forum on Climate Change, which also launched at COP26. The forum works with Afro-descendant leaders across the Americas to address significant environmental issues, including climate risks and biodiversity loss. 

    At the event — convened with the Colombian government and the nonprofit Conservation International — ESI brought together leaders from six countries in the Americas and presented recent work that estimates that there are over 178 million individuals who identify as Afro-descendant living in the Americas, in lands of global environmental importance. 

    “There is a significant overlap between biodiversity hot spots, protected areas, and areas of high Afro-descendant presence,” said Angel. “But the role and climate contributions of these communities is understudied, and often made invisible.”    

    Limiting methane emissions

    Methane is a short-lived but potent greenhouse gas: When released into the atmosphere, it immediately traps about 120 times more heat than carbon dioxide does. More than 150 countries have now signed the Global Methane Pledge, launched at COP26, which aims to reduce methane emissions by at least 30 percent by 2030 compared to 2020 levels.

    Sergey Paltsev, the deputy director of the Joint Program on the Science and Policy of Global Change and a senior research scientist at the MIT Energy Initiative, gave the keynote address at a Nov. 17 event on methane, where he noted the importance of methane reductions from the oil and gas sector to meeting the 2030 goal.

    “The oil and gas sector is where methane emissions reductions could be achieved the fastest,” said Paltsev. “We also need to employ an integrated approach to address methane emissions in all sectors and all regions of the world because methane emissions reductions provide a near-term pathway to avoiding dangerous tipping points in the global climate system.”

    “Keep fighting relentlessly”

    Arina Khotimsky, a senior majoring in materials science and engineering and a co-president of the MIT Energy and Climate Club, attended the first week of COP27. She reflected on the experience in a social media post after returning home. 

    “COP will always have its haters. Is there greenwashing? Of course! Is everyone who should have a say in this process in the room? Not even close,” wrote Khotimsky. “So what does it take for COP to matter? It takes everyone who attended to not only put ‘climate’ on front-page news for two weeks, but to return home and keep fighting relentlessly against climate change. I know that I will.” More