More stories

  • in

    Unlocking ammonia as a fuel source for heavy industry

    At a high level, ammonia seems like a dream fuel: It’s carbon-free, energy-dense, and easier to move and store than hydrogen. Ammonia is also already manufactured and transported at scale, meaning it could transform energy systems using existing infrastructure. But burning ammonia creates dangerous nitrous oxides, and splitting ammonia molecules to create hydrogen fuel typically requires lots of energy and specialized engines.The startup Amogy, founded by four MIT alumni, believes it has the technology to finally unlock ammonia as a major fuel source. The company has developed a catalyst it says can split — or “crack” — ammonia into hydrogen and nitrogen up to 70 percent more efficiently than state-of-the-art systems today. The company is planning to sell its catalysts as well as modular systems including fuel cells and engines to convert ammonia directly to power. Those systems don’t burn or combust ammonia, and thus bypass the health concerns related to nitrous oxides.Since Amogy’s founding in 2020, the company has used its ammonia-cracking technology to create the world’s first ammonia-powered drone, tractor, truck, and tugboat. It has also attracted partnerships with industry leaders including Samsung, Saudi Aramco, KBR, and Hyundai, raising more than $300 million along the way.“No one has showcased that ammonia can be used to power things at the scale of ships and trucks like us,” says CEO Seonghoon Woo PhD ’15, who founded the company with Hyunho Kim PhD ’18, Jongwon Choi PhD ’17, and Young Suk Jo SM ’13, PhD ’16. “We’ve demonstrated this approach works and is scalable.”Earlier this year, Amogy completed a research and manufacturing facility in Houston and announced a pilot deployment of its catalyst with the global engineering firm JGC Holdings Corporation. Now, with a manufacturing contract secured with Samsung Heavy Industries, Amogy is set to start delivering more of its systems to customers next year. The company will deploy a 1-megawatt ammonia-to-power pilot project with the South Korean city of Pohang in 2026, with plans to scale up to 40 megawatts at that site by 2028 or 2029. Woo says dozens of other projects with multinational corporations are in the works.Because of the power density advantages of ammonia over renewables and batteries, the company is targeting power-hungry industries like maritime shipping, power generation, construction, and mining for its early systems.“This is only the beginning,” Woo says. “We’ve worked hard to build the technology and the foundation of our company, but the real value will be generated as we scale. We’ve proved the potential for ammonia to decarbonize heavy industry, and now we really want to accelerate adoption of our technology. We’re thinking long term about the energy transition.”Unlocking a new fuel sourceWoo completed his PhD in MIT’s Department of Materials Science and Engineering before his eventual co-founders, Kim, Choi, and Jo, completed their PhDs in MIT’s Department of Mechanical Engineering. Jo worked on energy science and ran experiments to make engines run more efficiently as part of his PhD.“The PhD programs at MIT teach you how to think deeply about solving technical problems using systems-based approaches,” Woo says. “You also realize the value in learning from failures, and that mindset of iteration is similar to what you need to do in startups.”In 2020, Woo was working in the semiconductor industry when he reached out to his eventual co-founders asking if they were working on anything interesting. At that time, Jo was still working on energy systems based on hydrogen and ammonia while Kim was developing new catalysts to create ammonia fuel.“I wanted to start a company and build a business to do good things for society,” Woo recalls. “People had been talking about hydrogen as a more sustainable fuel source, but it had never come to fruition. We thought there might be a way to improve ammonia catalyst technology and accelerate the hydrogen economy.”The founders started experimenting with Jo’s technology for ammonia cracking, the process in which ammonia (NH3) molecules split into their nitrogen (N2) and hydrogen (H2) constituent parts. Ammonia cracking to date has been done at huge plants in high-temperature reactors that require large amounts of energy. Those high temperatures limited the catalyst materials that could be used to drive the reaction.Starting from scratch, the founders were able to identify new material recipes that could be used to miniaturize the catalyst and work at lower temperatures. The proprietary catalyst materials allow the company to create a system that can be deployed in new places at lower costs.“We really had to redevelop the whole technology, including the catalyst and reformer, and even the integration with the larger system,” Woo says. “One of the most important things is we don’t combust ammonia — we don’t need pilot fuel, and we don’t generate any nitrogen gas or CO2.”Today Amogy has a portfolio of proprietary catalyst technologies that use base metals along with precious metals. The company has proven the efficiency of its catalysts in demonstrations beginning with the first ammonia-powered drone in 2021. The catalyst can be used to produce hydrogen more efficiently, and by integrating the catalyst with hydrogen fuel cells or engines, Amogy also offers modular ammonia-to-power systems that can scale to meet customer energy demands.“We’re enabling the decarbonization of heavy industry,” Woo says. “We are targeting transportation, chemical production, manufacturing, and industries that are carbon-heavy and need to decarbonize soon, for example to achieve domestic goals. Our vision in the longer term is to enable ammonia as a fuel in a variety of applications, including power generation, first at microgrids and then eventually full grid-scale.”Scaling with industryWhen Amogy completed its facility in Houston, one of their early visitors was MIT Professor Evelyn Wang, who is also MIT’s vice president for energy and climate. Woo says other people involved in the Climate Project at MIT have been supportive.Another key partner for Amogy is Samsung Heavy Industries, which announced a multiyear deal to manufacturing Amogy’s ammonia-to-power systems on Nov. 12.“Our strategy is to partner with the existing big players in heavy industry to accelerate the commercialization of our technology,” Woo says. “We have worked with big oil and gas companies like BHP and Saudi Aramco, companies interested in hydrogen fuel like KBR and Mitsubishi, and many more industrial companies.”When paired with other clean energy technologies to provide the power for its systems, Woo says Amogy offers a way to completely decarbonize sectors of the economy that can’t electrify on their own.“In heavy transport, you have to use high-energy density liquid fuel because of the long distances and power requirements,” Woo says. “Batteries can’t meet those requirements. It’s why hydrogen is such an exciting molecule for heavy industry and shipping. But hydrogen needs to be kept super cold, whereas ammonia can be liquid at room temperature. Our job now is to provide that power at scale.” More

  • in

    MIT Energy Initiative conference spotlights research priorities amidst a changing energy landscape

    “We’re here to talk about really substantive changes, and we want you to be a participant in that,” said Desirée Plata, the School of Engineering Distinguished Professor of Climate and Energy in MIT’s Department of Civil and Environmental Engineering, at Energizing@MIT: the MIT Energy Initiative’s (MITEI) Annual Research Conference that was held on Sept. 9-10.Plata’s words resonated with the 150-plus participants from academia, industry, and government meeting in Cambridge for the conference, whose theme was “tackling emerging energy challenges.” Meeting such challenges and ultimately altering the trajectory of global climate outcomes requires partnerships, speakers agreed.“We have to be humble and open,” said Giacomo Silvestri, chair of Eniverse Ventures at Eni, in a shared keynote address. “We cannot develop innovation just focusing on ourselves and our competencies … so we need to partner with startups, venture funds, universities like MIT and other public and private institutions.” Added his Eni colleague, Annalisa Muccioli, head of research and technology, “The energy transition is a race we can win only by combining mature solutions ready to deploy, together with emerging technologies that still require acceleration and risk management.”Research targetsIn a conference that showcased a suite of research priorities MITEI has identified as central to ensuring a low-carbon energy future, participants shared both promising discoveries and strategies for advancing proven technologies in the face of shifting political winds and policy uncertainties.One panel focused on grid resiliency — a topic that has moved from the periphery to the center of energy discourse as climate-driven disruptions, cyber threats, and the integration of renewables challenge legacy systems. A dramatic case in point: the April 2025 outage in Spain and Portugal that left millions without power for eight to 15 hours. “I want to emphasize that this failure was about more than the power system,” said MITEI research scientist Pablo Duenas-Martinez. While he pinpointed technical problems with reactive power and voltage control behind the system collapse, Duenas-Martinez also called out a lack of transmission capacity with Central Europe and out-of-date operating procedures, and recommended better preparation and communication among transmission systems and utility operators.“You can’t plan for every single eventuality, which means we need to broaden the portfolio of extreme events we prepare for,” noted Jennifer Pearce, vice president at energy company Avangrid. “We are making the system smarter, stronger, and more resilient to better protect from a wide range of threats such as storms, flooding, and extreme heat events.” Pearce noted that Avangrid’s commitment to deliver safe, reliable power to its customers necessitates “meticulous emergency planning procedures.”The resiliency of the electric grid under greatly increased demand is an important motivation behind MITEI’s September 2025 launch of the Data Center Power Forum, which was also announced during the annual research conference. The forum will include research projects, webinars, and other content focused on energy supply and storage, grid design and management, infrastructure, and public and economic policy related to data centers. The forum’s members include MITEI companies that also participate in MIT’s Center for Environmental and Energy Policy Research (CEEPR).Storage and transportation: Staggering challengesMeeting climate goals to decarbonize the world by 2050 requires building around 300 terawatt-hours of storage, according to Asegun Henry, a professor in the MIT Department of Mechanical Engineering. “It’s an unbelievably enormous problem people have to wrap their minds around,” he said. Henry has been developing a high-temperature thermal energy storage system he has nicknamed “sun in a box.” His system uses liquid metal and graphite to hold electricity as heat and then convert it back to electricity, enabling storage anywhere from five to 500 hours.“At the end of the day, storage provides a service, and the type of technology that you need is a function of the service that you value the most,” said Nestor Sepulveda, commercial lead for advanced energy investments and partnerships at Google. “I don’t think there is one winner-takes-all type of market here.”Another panel explored sustainable fuels that could help decarbonize hard-to-electrify sectors like aviation, shipping, and long-haul trucking. Randall Field, MITEI’s director of research, noted that sustainably produced drop-in fuels — fuels that are largely compatible with existing engines — “could eliminate potentially trillions of dollars of cost for fleet replacement and for infrastructure build-out, while also helping us to accelerate the rate of decarbonization of the transportation sectors.”Erik G. Birkerts is the chief growth officer of LanzaJet, which produces a drop-in, high-energy-density aviation fuel derived from agricultural residue and other waste carbon sources. “The key to driving broad sustainable aviation fuel adoption is solving both the supply-side challenge through more production and the demand-side hurdle by reducing costs,” he said.“We think a good policy framework [for sustainable fuels] would be something that is technology-neutral, does not exclude any pathways to produce, is based on life cycle accounting practices, and on market mechanisms,” said Veronica L. Robertson, energy products technology portfolio manager at ExxonMobil.MITEI plans a major expansion of its research on sustainable fuels, announcing a two-year study, “The future of fuels: Pathways to sustainable transportation,” starting in early 2026. According to Field, the study will analyze and assess biofuels and e-fuels.Solutions from labs big and smallGlobal energy leaders offered glimpses of their research projects. A panel on carbon capture in power generation featured three takes on the topic: Devin Shaw, commercial director of decarbonization technologies at Shell, described post-combustion carbon capture in power plants using steam for heat recovery; Jan Marsh, a global program lead at Siemens Energy, discussed deploying novel materials to capture carbon dioxide directly from the air; and Jeffrey Goldmeer, senior director of technology strategy at GE Vernova, explained integrating carbon capture into gas-powered turbine systems.During a panel on vehicle electrification, Brian Storey, vice president of energy and materials at the Toyota Research Institute, provided an overview of Toyota’s portfolio of projects for decarbonization, including solid-state batteries, flexible manufacturing lines, and grid-forming inverters to support EV charging infrastructure.A session on MITEI seed fund projects revealed promising early-stage research inside MIT’s own labs. A new process for decarbonizing the production of ethylene was presented by Yogesh Surendranath, Donner Professor of Science in the MIT Department of Chemistry. Materials Science and Engineering assistant professor Aristide Gumyusenge also discussed the development of polymers essential for a new kind of sodium-ion battery.Shepherding bold, new technologies like these from academic labs into the real world cannot succeed without ample support and deft management. A panel on paths to commercialization featured the work of Iwnetim Abate, Chipman Career Development Professor and assistant professor in the MIT Department of Materials Science and Engineering, who has spun out a company, Addis Energy, based on a novel geothermal process for harvesting clean hydrogen and ammonia from subsurface, iron-rich rocks. Among his funders: ARPA-E and MIT’s own The Engine Ventures.The panel also highlighted the MIT Proto Ventures Program, an initiative to seize early-stage MIT ideas and unleash them as world-changing startups. “A mere 4.2 percent of all the patents that are actually prosecuted in the world are ever commercialized, which seems like a shocking number,” said Andrew Inglis, an entrepreneur working with Proto Ventures to translate geothermal discoveries into businesses. “Can’t we do this better? Let’s do this better!”Geopolitical hazardsThroughout the conference, participants often voiced concern about the impacts of competition between the United States and China. Kelly Sims Gallagher, dean of the Fletcher School at Tufts University and an expert on China’s energy landscape, delivered the sobering news in her keynote address: “U.S. competitiveness in low-carbon technologies has eroded in nearly every category,” she said. “The Chinese are winning the clean tech race.”China enjoys a 51 percent share in global wind turbine manufacture and 75 percent in solar modules. It also controls low-carbon supply chains that much of the world depends on. “China is getting so dominant that nobody can carve out a comparative advantage in anything,” said Gallagher. “China is just so big, and the scale is so huge that the Chinese can truly conquer markets and make it very hard for potential competitors to find a way in.”And for the United States, the problem is “the seesaw of energy policy,” she says. “It’s incredibly difficult for the private sector to plan and to operate, given the lack of predictability and policy here.”Nevertheless, Gallagher believes the United States still has a chance of at least regaining competitiveness, by setting up a stable, bipartisan energy policy, rebuilding domestic manufacturing and supply chains; providing consistent fiscal incentives; attracting and retaining global talent; and fostering international collaboration.The conference shone a light on one such collaboration: a China-U.S. joint venture to manufacture lithium iron phosphate batteries for commercial vehicles in the United States. The venture brings together Eve Energy, a Chinese battery technology and manufacturing company; Daimler, a global commercial vehicle manufacturer; PACCAR Inc., a U.S.-based truck manufacturer; and Accelera, the zero-emissions business of Cummins Inc. “Manufacturing batteries in the U.S. makes the supply chain more robust and reduces geopolitical risks,” said Mike Gerty, of PACCAR.While she acknowledged the obstacles confronting her colleagues in the room, Plata nevertheless concluded her remarks as a panel moderator with some optimism: “I hope you all leave this conference and look back on it in the future, saying I was in the room when they actually solved some of the challenges standing between now and the future that we all wish to manifest.” More

  • in

    MIT Maritime Consortium releases “Nuclear Ship Safety Handbook”

    Commercial shipping accounts for 3 percent of all greenhouse gas emissions globally. As the sector sets climate goals and chases a carbon-free future, nuclear power — long used as a source for military vessels — presents an enticing solution. To date, however, there has been no clear, unified public document available to guide design safety for certain components of civilian nuclear ships. A new “Nuclear Ship Safety Handbook” by the MIT Maritime Consortium aims to change that and set the standard for safe maritime nuclear propulsion.“This handbook is a critical tool in efforts to support the adoption of nuclear in the maritime industry,” explains Themis Sapsis, the William I. Koch Professor of Mechanical Engineering at MIT, director of the MIT Center for Ocean Engineering, and co-director of the MIT Maritime Consortium. “The goal is to provide a strong basis for initial safety on key areas that require nuclear and maritime regulatory research and development in the coming years to prepare for nuclear propulsion in the maritime industry.”Using research data and standards, combined with operational experiences during civilian maritime nuclear operations, the handbook provides unique insights into potential issues and resolutions in the design efficacy of maritime nuclear operations, a topic of growing importance on the national and international stage. “Right now, the nuclear-maritime policies that exist are outdated and often tied only to specific technologies, like pressurized water reactors,” says Jose Izurieta, a graduate student in the Department of Mechanical Engineering (MechE) Naval Construction and Engineering (2N) Program, and one of the handbook authors. “With the recent U.K.-U.S. Technology Prosperity Deal now including civil maritime nuclear applications, I hope the handbook can serve as a foundation for creating a clear, modern regulatory framework for nuclear-powered commercial ships.”The recent memorandum of understanding signed by the U.S. and U.K calls for the exploration of “novel applications of advanced nuclear energy, including civil maritime applications,” and for the parties to play “a leading role informing the establishment of international standards, potential establishment of a maritime shipping corridor between the Participants’ territories, and strengthening energy resilience for the Participants’ defense facilities.”“The U.S.-U.K. nuclear shipping corridor offers a great opportunity to collaborate with legislators on establishing the critical framework that will enable the United States to invest on nuclear-powered merchant vessels — an achievement that will reestablish America in the shipbuilding space,” says Fotini Christia, the Ford International Professor of the Social Sciences, director of the Institute for Data, Systems, and Society (IDSS), director of the MIT Sociotechnical Systems Research Center, and co-director of the MIT Maritime Consortium.“With over 30 nations now building or planning their first reactors, nuclear energy’s global acceptance is unprecedented — and that momentum is key to aligning safety rules across borders for nuclear-powered ships and the respective ports,” says Koroush Shirvan, the Atlantic Richfield Career Development Professor in Energy Studies at MIT and director of the Reactor Technology Course for Utility Executives.The handbook, which is divided into chapters in areas involving the overlapping nuclear and maritime safety design decisions that will be encountered by engineers, is careful to balance technical and practical guidance with policy considerations.Commander Christopher MacLean, MIT associate professor of the practice in mechanical engineering, naval construction, and engineering, says the handbook will significantly benefit the entire maritime community, specifically naval architects and marine engineers, by providing standardized guidelines for design and operation specific to nuclear powered commercial vessels.“This will assist in enhancing safety protocols, improve risk assessments, and ensure consistent compliance with international regulations,” MacLean says. “This will also help foster collaboration amongst engineers and regulators. Overall, this will further strengthen the reliability, sustainability, and public trust in nuclear-powered maritime systems.”Anthony Valiaveedu, the handbook’s lead author, and co-author Nat Edmonds, are both students in the MIT Master’s Program in Technology and Policy (TPP) within the IDSS. The pair are also co-authors of a paper published in Science Policy Review earlier this year that offered structured advice on the development of nuclear regulatory policies.“It is important for safety and technology to go hand-in-hand,” Valiaveedu explains. “What we have done is provide a risk-informed process to begin these discussions for engineers and policymakers.”“Ultimately, I hope this framework can be used to build strong bilateral agreements between nations that will allow nuclear propulsion to thrive,” says fellow co-author Izurieta.Impact on industry“Maritime designers needed a source of information to improve their ability to understand and design the reactor primary components, and development of the ‘Nuclear Ship Safety Handbook’ was a good step to bridge this knowledge gap,” says Christopher J. Wiernicki, American Bureau of Shipping (ABS) chair and CEO. “For this reason, it is an important document for the industry.”The ABS, which is the American classification society for the maritime industry, develops criteria and provides safety certification for all ocean-going vessels. ABS is among the founding members of the MIT Maritime Consortium. Capital Clean Energy Carriers Corp., HD Korea Shipbuilding and Offshore Engineering, and Delos Navigation Ltd. are also consortium founding members. Innovation members are Foresight-Group, Navios Maritime Partners L.P., Singapore Maritime Institute, and Dorian LPG.“As we consider a net-zero framework for the shipping industry, nuclear propulsion represents a potential solution. Careful investigation remains the priority, with safety and regulatory standards at the forefront,” says Jerry Kalogiratos, CEO of Capital Clean Energy Carriers Corp. “As first movers, we are exploring all options. This handbook lays the technical foundation for the development of nuclear-powered commercial vessels.”Sangmin Park, senior vice president at HD Korea Shipbuilding and Offshore Engineering, says “The ‘Nuclear Ship Safety Handbook’ marks a groundbreaking milestone that bridges shipbuilding excellence and nuclear safety. It drives global collaboration between industry and academia, and paves the way for the safe advancement of the nuclear maritime era.”Maritime at MITMIT has been a leading center of ship research and design for over a century, with work at the Institute today representing significant advancements in fluid mechanics and hydrodynamics, acoustics, offshore mechanics, marine robotics and sensors, and ocean sensing and forecasting. Maritime Consortium projects, including the handbook, reflect national priorities aimed at revitalizing the U.S. shipbuilding and commercial maritime industries.The MIT Maritime Consortium, which launched in 2024, brings together MIT and maritime industry leaders to explore data-powered strategies to reduce harmful emissions, optimize vessel operations, and support economic priorities.“One of our most important efforts is the development of technologies, policies, and regulations to make nuclear propulsion for commercial ships a reality,” says Sapsis. “Over the last year, we have put together an interdisciplinary team with faculty and students from across the Institute. One of the outcomes of this effort is this very detailed document providing detailed guidance on how such effort should be implemented safely.”Handbook contributors come from multiple disciplines and MIT departments, labs, and research centers, including the Center for Ocean Engineering, IDSS, MechE’s Course 2N Program, the MIT Technology and Policy Program, and the Department of Nuclear Science and Engineering.MIT faculty members and research advisors on the project include Sapsis; Christia; Shirvan; MacLean; Jacopo Buongiorno, the Battelle Energy Alliance Professor in Nuclear Science and Engineering, director, Center for Advanced Nuclear Energy Systems, and director of science and technology for the Nuclear Reactor Laboratory; and Captain Andrew Gillespy, professor of the practice and director of the Naval Construction and Engineering (2N) Program.“Proving the viability of nuclear propulsion for civilian ships will entail getting the technologies, the economics and the regulations right,” says Buongiorno. “This handbook is a meaningful initial contribution to the development of a sound regulatory framework.”“We were lucky to have a team of students and knowledgeable professors from so many fields,” says Edmonds. “Before even beginning the outline of the handbook, we did significant archival and history research to understand the existing regulations and overarching story of nuclear ships. Some of the most relevant documents we found were written before 1975, and many of them were stored in the bellows of the NS Savannah.”The NS Savannah, which was built in the late 1950s as a demonstration project for the potential peacetime uses of nuclear energy, was the first nuclear-powered merchant ship. The Savannah was first launched on July 21, 1959, two years after the first nuclear-powered civilian vessel, the Soviet ice-breaker Lenin, and was retired in 1971.Historical context for this project is important, because the reactor technologies envisioned for maritime propulsion today are quite different from the traditional pressurized water reactors used by the U.S. Navy. These new reactors are being developed not just in the maritime context, but also to power ports and data centers on land; they all use low-enriched uranium and are passively cooled. For the maritime industry, Sapsis says, “the technology is there, it’s safe, and it’s ready.”“The Nuclear Ship Safety Handbook” is publicly available on the MIT Maritime Consortium website and from the MIT Libraries.  More

  • in

    Eco-driving measures could significantly reduce vehicle emissions

    Any motorist who has ever waited through multiple cycles for a traffic light to turn green knows how annoying signalized intersections can be. But sitting at intersections isn’t just a drag on drivers’ patience — unproductive vehicle idling could contribute as much as 15 percent of the carbon dioxide emissions from U.S. land transportation.A large-scale modeling study led by MIT researchers reveals that eco-driving measures, which can involve dynamically adjusting vehicle speeds to reduce stopping and excessive acceleration, could significantly reduce those CO2 emissions.Using a powerful artificial intelligence method called deep reinforcement learning, the researchers conducted an in-depth impact assessment of the factors affecting vehicle emissions in three major U.S. cities.Their analysis indicates that fully adopting eco-driving measures could cut annual city-wide intersection carbon emissions by 11 to 22 percent, without slowing traffic throughput or affecting vehicle and traffic safety.Even if only 10 percent of vehicles on the road employ eco-driving, it would result in 25 to 50 percent of the total reduction in CO2 emissions, the researchers found.In addition, dynamically optimizing speed limits at about 20 percent of intersections provides 70 percent of the total emission benefits. This indicates that eco-driving measures could be implemented gradually while still having measurable, positive impacts on mitigating climate change and improving public health.

    An animated GIF compares what 20% eco-driving adoption looks like to 100% eco-driving adoption.Image: Courtesy of the researchers

    “Vehicle-based control strategies like eco-driving can move the needle on climate change reduction. We’ve shown here that modern machine-learning tools, like deep reinforcement learning, can accelerate the kinds of analysis that support sociotechnical decision making. This is just the tip of the iceberg,” says senior author Cathy Wu, the Class of 1954 Career Development Associate Professor in Civil and Environmental Engineering (CEE) and the Institute for Data, Systems, and Society (IDSS) at MIT, and a member of the Laboratory for Information and Decision Systems (LIDS).She is joined on the paper by lead author Vindula Jayawardana, an MIT graduate student; as well as MIT graduate students Ao Qu, Cameron Hickert, and Edgar Sanchez; MIT undergraduate Catherine Tang; Baptiste Freydt, a graduate student at ETH Zurich; and Mark Taylor and Blaine Leonard of the Utah Department of Transportation. The research appears in Transportation Research Part C: Emerging Technologies.A multi-part modeling studyTraffic control measures typically call to mind fixed infrastructure, like stop signs and traffic signals. But as vehicles become more technologically advanced, it presents an opportunity for eco-driving, which is a catch-all term for vehicle-based traffic control measures like the use of dynamic speeds to reduce energy consumption.In the near term, eco-driving could involve speed guidance in the form of vehicle dashboards or smartphone apps. In the longer term, eco-driving could involve intelligent speed commands that directly control the acceleration of semi-autonomous and fully autonomous vehicles through vehicle-to-infrastructure communication systems.“Most prior work has focused on how to implement eco-driving. We shifted the frame to consider the question of should we implement eco-driving. If we were to deploy this technology at scale, would it make a difference?” Wu says.To answer that question, the researchers embarked on a multifaceted modeling study that would take the better part of four years to complete.They began by identifying 33 factors that influence vehicle emissions, including temperature, road grade, intersection topology, age of the vehicle, traffic demand, vehicle types, driver behavior, traffic signal timing, road geometry, etc.“One of the biggest challenges was making sure we were diligent and didn’t leave out any major factors,” Wu says.Then they used data from OpenStreetMap, U.S. geological surveys, and other sources to create digital replicas of more than 6,000 signalized intersections in three cities — Atlanta, San Francisco, and Los Angeles — and simulated more than a million traffic scenarios.The researchers used deep reinforcement learning to optimize each scenario for eco-driving to achieve the maximum emissions benefits.Reinforcement learning optimizes the vehicles’ driving behavior through trial-and-error interactions with a high-fidelity traffic simulator, rewarding vehicle behaviors that are more energy-efficient while penalizing those that are not.The researchers cast the problem as a decentralized cooperative multi-agent control problem, where the vehicles cooperate to achieve overall energy efficiency, even among non-participating vehicles, and they act in a decentralized manner, avoiding the need for costly communication between vehicles.However, training vehicle behaviors that generalize across diverse intersection traffic scenarios was a major challenge. The researchers observed that some scenarios are more similar to one another than others, such as scenarios with the same number of lanes or the same number of traffic signal phases.As such, the researchers trained separate reinforcement learning models for different clusters of traffic scenarios, yielding better emission benefits overall.But even with the help of AI, analyzing citywide traffic at the network level would be so computationally intensive it could take another decade to unravel, Wu says.Instead, they broke the problem down and solved each eco-driving scenario at the individual intersection level.“We carefully constrained the impact of eco-driving control at each intersection on neighboring intersections. In this way, we dramatically simplified the problem, which enabled us to perform this analysis at scale, without introducing unknown network effects,” she says.Significant emissions benefitsWhen they analyzed the results, the researchers found that full adoption of eco-driving could result in intersection emissions reductions of between 11 and 22 percent.These benefits differ depending on the layout of a city’s streets. A denser city like San Francisco has less room to implement eco-driving between intersections, offering a possible explanation for reduced emission savings, while Atlanta could see greater benefits given its higher speed limits.Even if only 10 percent of vehicles employ eco-driving, a city could still realize 25 to 50 percent of the total emissions benefit because of car-following dynamics: Non-eco-driving vehicles would follow controlled eco-driving vehicles as they optimize speed to pass smoothly through intersections, reducing their carbon emissions as well.In some cases, eco-driving could also increase vehicle throughput by minimizing emissions. However, Wu cautions that increasing throughput could result in more drivers taking to the roads, reducing emissions benefits.And while their analysis of widely used safety metrics known as surrogate safety measures, such as time to collision, suggest that eco-driving is as safe as human driving, it could cause unexpected behavior in human drivers. More research is needed to fully understand potential safety impacts, Wu says.Their results also show that eco-driving could provide even greater benefits when combined with alternative transportation decarbonization solutions. For instance, 20 percent eco-driving adoption in San Francisco would cut emission levels by 7 percent, but when combined with the projected adoption of hybrid and electric vehicles, it would cut emissions by 17 percent.“This is a first attempt to systematically quantify network-wide environmental benefits of eco-driving. This is a great research effort that will serve as a key reference for others to build on in the assessment of eco-driving systems,” says Hesham Rakha, the Samuel L. Pritchard Professor of Engineering at Virginia Tech, who was not involved with this research.And while the researchers focus on carbon emissions, the benefits are highly correlated with improvements in fuel consumption, energy use, and air quality.“This is almost a free intervention. We already have smartphones in our cars, and we are rapidly adopting cars with more advanced automation features. For something to scale quickly in practice, it must be relatively simple to implement and shovel-ready. Eco-driving fits that bill,” Wu says.This work is funded, in part, by Amazon and the Utah Department of Transportation. More

  • in

    Recovering from the past and transitioning to a better energy future

    As the frequency and severity of extreme weather events grow, it may become increasingly necessary to employ a bolder approach to climate change, warned Emily A. Carter, the Gerhard R. Andlinger Professor in Energy and the Environment at Princeton University. Carter made her case for why the energy transition is no longer enough in the face of climate change while speaking at the MIT Energy Initiative (MITEI) Presents: Advancing the Energy Transition seminar on the MIT campus.“If all we do is take care of what we did in the past — but we don’t change what we do in the future — then we’re still going to be left with very serious problems,” she said. Our approach to climate change mitigation must comprise transformation, intervention, and adaption strategies, said Carter. Transitioning to a decarbonized electricity system is one piece of the puzzle. Growing amounts of solar and wind energy — along with nuclear, hydropower, and geothermal — are slowly transforming the energy electricity landscape, but Carter noted that there are new technologies farther down the pipeline.  “Advanced geothermal may come on in the next couple of decades. Fusion will only really start to play a role later in the century, but could provide firm electricity such that we can start to decommission nuclear,” said Carter, who is also a senior strategic advisor and associate laboratory director at the Department of Energy’s Princeton Plasma Physics Laboratory. Taking this a step further, Carter outlined how this carbon-free electricity should then be used to electrify everything we can. She highlighted the industrial sector as a critical area for transformation: “The energy transition is about transitioning off of fossil fuels. If you look at the manufacturing industries, they are driven by fossil fuels right now. They are driven by fossil fuel-driven thermal processes.” Carter noted that thermal energy is much less efficient than electricity and highlighted electricity-driven strategies that could replace heat in manufacturing, such as electrolysis, plasmas, light-emitting diodes (LEDs) for photocatalysis, and joule heating. The transportation sector is also a key area for electrification, Carter said. While electric vehicles have become increasingly common in recent years, heavy-duty transportation is not as easily electrified. The solution? “Carbon-neutral fuels for heavy-duty aviation and shipping,” she said, emphasizing that these fuels will need to become part of the circular economy. “We know that when we burn those fuels, they’re going to produce CO2 [carbon dioxide] again. They need to come from a source of CO2 that is not fossil-based.” The next step is intervention in the form of carbon dioxide removal, which then necessitates methods of storage and utilization, according to Carter. “There’s a lot of talk about building large numbers of pipelines to capture the CO2 — from fossil fuel-driven power plants, cement plants, steel plants, all sorts of industrial places that emit CO2 — and then piping it and storing it in underground aquifers,” she explained. Offshore pipelines are much more expensive than those on land, but can mitigate public concerns over their safety. Europe is exclusively focusing their efforts offshore for this very reason, and the same could be true for the United States, Carter said.  Once carbon dioxide is captured, commercial utilization may provide economic leverage to accelerate sequestration, even if only a few gigatons are used per year, Carter noted. Through mineralization, CO2 can be converted into carbonates, which could be used in building materials such as concrete and road-paving materials.  There is another form of intervention that Carter currently views as a last resort: solar geoengineering, sometimes known as solar radiation management or SRM. In 1991, Mount Pinatubo in the Philippines erupted and released sulfur dioxide into the stratosphere, which caused a temporary cooling of the Earth by approximately 0.5 degree Celsius for over a year. SRM seeks to recreate that cooling effect by injecting particles into the atmosphere that reflect sunlight. According to Carter, there are three main strategies: stratospheric aerosol injection, cirrus cloud thinning (thinning clouds to let more infrared radiation emitted by the earth escape to space), and marine cloud brightening (brightening clouds with sea salt so they reflect more light).  “My view is, I hope we don’t ever have to do it, but I sure think we should understand what would happen in case somebody else just decides to do it. It’s a global security issue,” said Carter. “In principle, it’s not so difficult technologically, so we’d like to really understand and to be able to predict what would happen if that happened.” With any technology, stakeholder and community engagement is essential for deployment, Carter said. She emphasized the importance of both respectfully listening to concerns and thoroughly addressing them, stating, “Hopefully, there’s enough information given to assuage their fears. We have to gain the trust of people before any deployment can be considered.” A crucial component of this trust starts with the responsibility of the scientific community to be transparent and critique each other’s work, Carter said. “Skepticism is good. You should have to prove your proof of principle.” MITEI Presents: Advancing the Energy Transition is an MIT Energy Initiative speaker series highlighting energy experts and leaders at the forefront of the scientific, technological, and policy solutions needed to transform our energy systems. The series will continue in fall 2025. For more information on this and additional events, visit the MITEI website. More

  • in

    New fuel cell could enable electric aviation

    Batteries are nearing their limits in terms of how much power they can store for a given weight. That’s a serious obstacle for energy innovation and the search for new ways to power airplanes, trains, and ships. Now, researchers at MIT and elsewhere have come up with a solution that could help electrify these transportation systems.Instead of a battery, the new concept is a kind of fuel cell — which is similar to a battery but can be quickly refueled rather than recharged. In this case, the fuel is liquid sodium metal, an inexpensive and widely available commodity. The other side of the cell is just ordinary air, which serves as a source of oxygen atoms. In between, a layer of solid ceramic material serves as the electrolyte, allowing sodium ions to pass freely through, and a porous air-facing electrode helps the sodium to chemically react with oxygen and produce electricity.In a series of experiments with a prototype device, the researchers demonstrated that this cell could carry more than three times as much energy per unit of weight as the lithium-ion batteries used in virtually all electric vehicles today. Their findings are being published today in the journal Joule, in a paper by MIT doctoral students Karen Sugano, Sunil Mair, and Saahir Ganti-Agrawal; professor of materials science and engineering Yet-Ming Chiang; and five others.“We expect people to think that this is a totally crazy idea,” says Chiang, who is the Kyocera Professor of Ceramics. “If they didn’t, I’d be a bit disappointed because if people don’t think something is totally crazy at first, it probably isn’t going to be that revolutionary.”And this technology does appear to have the potential to be quite revolutionary, he suggests. In particular, for aviation, where weight is especially crucial, such an improvement in energy density could be the breakthrough that finally makes electrically powered flight practical at significant scale.“The threshold that you really need for realistic electric aviation is about 1,000 watt-hours per kilogram,” Chiang says. Today’s electric vehicle lithium-ion batteries top out at about 300 watt-hours per kilogram — nowhere near what’s needed. Even at 1,000 watt-hours per kilogram, he says, that wouldn’t be enough to enable transcontinental or trans-Atlantic flights.That’s still beyond reach for any known battery chemistry, but Chiang says that getting to 1,000 watts per kilogram would be an enabling technology for regional electric aviation, which accounts for about 80 percent of domestic flights and 30 percent of the emissions from aviation.The technology could be an enabler for other sectors as well, including marine and rail transportation. “They all require very high energy density, and they all require low cost,” he says. “And that’s what attracted us to sodium metal.”A great deal of research has gone into developing lithium-air or sodium-air batteries over the last three decades, but it has been hard to make them fully rechargeable. “People have been aware of the energy density you could get with metal-air batteries for a very long time, and it’s been hugely attractive, but it’s just never been realized in practice,” Chiang says.By using the same basic electrochemical concept, only making it a fuel cell instead of a battery, the researchers were able to get the advantages of the high energy density in a practical form. Unlike a battery, whose materials are assembled once and sealed in a container, with a fuel cell the energy-carrying materials go in and out.The team produced two different versions of a lab-scale prototype of the system. In one, called an H cell, two vertical glass tubes are connected by a tube across the middle, which contains a solid ceramic electrolyte material and a porous air electrode. Liquid sodium metal fills the tube on one side, and air flows through the other, providing the oxygen for the electrochemical reaction at the center, which ends up gradually consuming the sodium fuel. The other prototype uses a horizontal design, with a tray of the electrolyte material holding the liquid sodium fuel. The porous air electrode, which facilitates the reaction, is affixed to the bottom of the tray. Tests using an air stream with a carefully controlled humidity level produced a level of more than 1,500 watt-hours per kilogram at the level of an individual “stack,” which would translate to over 1,000 watt-hours at the full system level, Chiang says.The researchers envision that to use this system in an aircraft, fuel packs containing stacks of cells, like racks of food trays in a cafeteria, would be inserted into the fuel cells; the sodium metal inside these packs gets chemically transformed as it provides the power. A stream of its chemical byproduct is given off, and in the case of aircraft this would be emitted out the back, not unlike the exhaust from a jet engine.But there’s a very big difference: There would be no carbon dioxide emissions. Instead the emissions, consisting of sodium oxide, would actually soak up carbon dioxide from the atmosphere. This compound would quickly combine with moisture in the air to make sodium hydroxide — a material commonly used as a drain cleaner — which readily combines with carbon dioxide to form a solid material, sodium carbonate, which in turn forms sodium bicarbonate, otherwise known as baking soda.“There’s this natural cascade of reactions that happens when you start with sodium metal,” Chiang says. “It’s all spontaneous. We don’t have to do anything to make it happen, we just have to fly the airplane.”As an added benefit, if the final product, the sodium bicarbonate, ends up in the ocean, it could help to de-acidify the water, countering another of the damaging effects of greenhouse gases.Using sodium hydroxide to capture carbon dioxide has been proposed as a way of mitigating carbon emissions, but on its own, it’s not an economic solution because the compound is too expensive. “But here, it’s a byproduct,” Chiang explains, so it’s essentially free, producing environmental benefits at no cost.Importantly, the new fuel cell is inherently safer than many other batteries, he says. Sodium metal is extremely reactive and must be well-protected. As with lithium batteries, sodium can spontaneously ignite if exposed to moisture. “Whenever you have a very high energy density battery, safety is always a concern, because if there’s a rupture of the membrane that separates the two reactants, you can have a runaway reaction,” Chiang says. But in this fuel cell, one side is just air, “which is dilute and limited. So you don’t have two concentrated reactants right next to each other. If you’re pushing for really, really high energy density, you’d rather have a fuel cell than a battery for safety reasons.”While the device so far exists only as a small, single-cell prototype, Chiang says the system should be quite straightforward to scale up to practical sizes for commercialization. Members of the research team have already formed a company, Propel Aero, to develop the technology. The company is currently housed in MIT’s startup incubator, The Engine.Producing enough sodium metal to enable widespread, full-scale global implementation of this technology should be practical, since the material has been produced at large scale before. When leaded gasoline was the norm, before it was phased out, sodium metal was used to make the tetraethyl lead used as an additive, and it was being produced in the U.S. at a capacity of 200,000 tons a year. “It reminds us that sodium metal was once produced at large scale and safely handled and distributed around the U.S.,” Chiang says.What’s more, sodium primarily originates from sodium chloride, or salt, so it is abundant, widely distributed around the world, and easily extracted, unlike lithium and other materials used in today’s EV batteries.The system they envisage would use a refillable cartridge, which would be filled with liquid sodium metal and sealed. When it’s depleted, it would be returned to a refilling station and loaded with fresh sodium. Sodium melts at 98 degrees Celsius, just below the boiling point of water, so it is easy to heat to the melting point to refuel the cartridges.Initially, the plan is to produce a brick-sized fuel cell that can deliver about 1,000 watt-hours of energy, enough to power a large drone, in order to prove the concept in a practical form that could be used for agriculture, for example. The team hopes to have such a demonstration ready within the next year.Sugano, who conducted much of the experimental work as part of her doctoral thesis and will now work at the startup, says that a key insight was the importance of moisture in the process. As she tested the device with pure oxygen, and then with air, she found that the amount of humidity in the air was crucial to making the electrochemical reaction efficient. The humid air resulted in the sodium producing its discharge products in liquid rather than solid form, making it much easier for these to be removed by the flow of air through the system. “The key was that we can form this liquid discharge product and remove it easily, as opposed to the solid discharge that would form in dry conditions,” she says.Ganti-Agrawal notes that the team drew from a variety of different engineering subfields. For example, there has been much research on high-temperature sodium, but none with a system with controlled humidity. “We’re pulling from fuel cell research in terms of designing our electrode, we’re pulling from older high-temperature battery research as well as some nascent sodium-air battery research, and kind of mushing it together,” which led to the “the big bump in performance” the team has achieved, he says.The research team also included Alden Friesen, an MIT summer intern who attends Desert Mountain High School in Scottsdale, Arizona; Kailash Raman and William Woodford of Form Energy in Somerville, Massachusetts; Shashank Sripad of And Battery Aero in California, and Venkatasubramanian Viswanathan of the University of Michigan. The work was supported by ARPA-E, Breakthrough Energy Ventures, and the National Science Foundation, and used facilities at MIT.nano. More

  • in

    MIT Maritime Consortium sets sail

    Around 11 billion tons of goods, or about 1.5 tons per person worldwide, are transported by sea each year, representing about 90 percent of global trade by volume. Internationally, the merchant shipping fleet numbers around 110,000 vessels. These ships, and the ports that service them, are significant contributors to the local and global economy — and they’re significant contributors to greenhouse gas emissions.A new consortium, formalized in a signing ceremony at MIT last week, aims to address climate-harming emissions in the maritime shipping industry, while supporting efforts for environmentally friendly operation in compliance with the decarbonization goals set by the International Maritime Organization.“This is a timely collaboration with key stakeholders from the maritime industry with a very bold and interdisciplinary research agenda that will establish new technologies and evidence-based standards,” says Themis Sapsis, the William Koch Professor of Marine Technology at MIT and the director of MIT’s Center for Ocean Engineering. “It aims to bring the best from MIT in key areas for commercial shipping, such as nuclear technology for commercial settings, autonomous operation and AI methods, improved hydrodynamics and ship design, cybersecurity, and manufacturing.” Co-led by Sapsis and Fotini Christia, the Ford International Professor of the Social Sciences; director of the Institute for Data, Systems, and Society (IDSS); and director of the MIT Sociotechnical Systems Research Center, the newly-launched MIT Maritime Consortium (MC) brings together MIT collaborators from across campus, including the Center for Ocean Engineering, which is housed in the Department of Mechanical Engineering; IDSS, which is housed in the MIT Schwarzman College of Computing; the departments of Nuclear Science and Engineering and Civil and Environmental Engineering; MIT Sea Grant; and others, with a national and an international community of industry experts.The Maritime Consortium’s founding members are the American Bureau of Shipping (ABS), Capital Clean Energy Carriers Corp., and HD Korea Shipbuilding and Offshore Engineering. Innovation members are Foresight-Group, Navios Maritime Partners L.P., Singapore Maritime Institute, and Dorian LPG.“The challenges the maritime industry faces are challenges that no individual company or organization can address alone,” says Christia. “The solution involves almost every discipline from the School of Engineering, as well as AI and data-driven algorithms, and policy and regulation — it’s a true MIT problem.”Researchers will explore new designs for nuclear systems consistent with the techno-economic needs and constraints of commercial shipping, economic and environmental feasibility of alternative fuels, new data-driven algorithms and rigorous evaluation criteria for autonomous platforms in the maritime space, cyber-physical situational awareness and anomaly detection, as well as 3D printing technologies for onboard manufacturing. Collaborators will also advise on research priorities toward evidence-based standards related to MIT presidential priorities around climate, sustainability, and AI.MIT has been a leading center of ship research and design for over a century, and is widely recognized for contributions to hydrodynamics, ship structural mechanics and dynamics, propeller design, and overall ship design, and its unique educational program for U.S. Navy Officers, the Naval Construction and Engineering Program. Research today is at the forefront of ocean science and engineering, with significant efforts in fluid mechanics and hydrodynamics, acoustics, offshore mechanics, marine robotics and sensors, and ocean sensing and forecasting. The consortium’s academic home at MIT also opens the door to cross-departmental collaboration across the Institute.The MC will launch multiple research projects designed to tackle challenges from a variety of angles, all united by cutting-edge data analysis and computation techniques. Collaborators will research new designs and methods that improve efficiency and reduce greenhouse gas emissions, explore feasibility of alternative fuels, and advance data-driven decision-making, manufacturing and materials, hydrodynamic performance, and cybersecurity.“This consortium brings a powerful collection of significant companies that, together, has the potential to be a global shipping shaper in itself,” says Christopher J. Wiernicki SM ’85, chair and chief executive officer of ABS. “The strength and uniqueness of this consortium is the members, which are all world-class organizations and real difference makers. The ability to harness the members’ experience and know-how, along with MIT’s technology reach, creates real jet fuel to drive progress,” Wiernicki says. “As well as researching key barriers, bottlenecks, and knowledge gaps in the emissions challenge, the consortium looks to enable development of the novel technology and policy innovation that will be key. Long term, the consortium hopes to provide the gravity we will need to bend the curve.” More

  • in

    Puzzling out climate change

    Shreyaa Raghavan’s journey into solving some of the world’s toughest challenges started with a simple love for puzzles. By high school, her knack for problem-solving naturally drew her to computer science. Through her participation in an entrepreneurship and leadership program, she built apps and twice made it to the semifinals of the program’s global competition.Her early successes made a computer science career seem like an obvious choice, but Raghavan says a significant competing interest left her torn.“Computer science sparks that puzzle-, problem-solving part of my brain,” says Raghavan ’24, an Accenture Fellow and a PhD candidate in MIT’s Institute for Data, Systems, and Society. “But while I always felt like building mobile apps was a fun little hobby, it didn’t feel like I was directly solving societal challenges.”Her perspective shifted when, as an MIT undergraduate, Raghavan participated in an Undergraduate Research Opportunity in the Photovoltaic Research Laboratory, now known as the Accelerated Materials Laboratory for Sustainability. There, she discovered how computational techniques like machine learning could optimize materials for solar panels — a direct application of her skills toward mitigating climate change.“This lab had a very diverse group of people, some from a computer science background, some from a chemistry background, some who were hardcore engineers. All of them were communicating effectively and working toward one unified goal — building better renewable energy systems,” Raghavan says. “It opened my eyes to the fact that I could use very technical tools that I enjoy building and find fulfillment in that by helping solve major climate challenges.”With her sights set on applying machine learning and optimization to energy and climate, Raghavan joined Cathy Wu’s lab when she started her PhD in 2023. The lab focuses on building more sustainable transportation systems, a field that resonated with Raghavan due to its universal impact and its outsized role in climate change — transportation accounts for roughly 30 percent of greenhouse gas emissions.“If we were to throw all of the intelligent systems we are exploring into the transportation networks, by how much could we reduce emissions?” she asks, summarizing a core question of her research.Wu, an associate professor in the Department of Civil and Environmental Engineering, stresses the value of Raghavan’s work.“Transportation is a critical element of both the economy and climate change, so potential changes to transportation must be carefully studied,” Wu says. “Shreyaa’s research into smart congestion management is important because it takes a data-driven approach to add rigor to the broader research supporting sustainability.”Raghavan’s contributions have been recognized with the Accenture Fellowship, a cornerstone of the MIT-Accenture Convergence Initiative for Industry and Technology. As an Accenture Fellow, she is exploring the potential impact of technologies for avoiding stop-and-go traffic and its emissions, using systems such as networked autonomous vehicles and digital speed limits that vary according to traffic conditions — solutions that could advance decarbonization in the transportation section at relatively low cost and in the near term.Raghavan says she appreciates the Accenture Fellowship not only for the support it provides, but also because it demonstrates industry involvement in sustainable transportation solutions.“It’s important for the field of transportation, and also energy and climate as a whole, to synergize with all of the different stakeholders,” she says. “I think it’s important for industry to be involved in this issue of incorporating smarter transportation systems to decarbonize transportation.”Raghavan has also received a fellowship supporting her research from the U.S. Department of Transportation.“I think it’s really exciting that there’s interest from the policy side with the Department of Transportation and from the industry side with Accenture,” she says.Raghavan believes that addressing climate change requires collaboration across disciplines. “I think with climate change, no one industry or field is going to solve it on its own. It’s really got to be each field stepping up and trying to make a difference,” she says. “I don’t think there’s any silver-bullet solution to this problem. It’s going to take many different solutions from different people, different angles, different disciplines.”With that in mind, Raghavan has been very active in the MIT Energy and Climate Club since joining about three years ago, which, she says, “was a really cool way to meet lots of people who were working toward the same goal, the same climate goals, the same passions, but from completely different angles.”This year, Raghavan is on the community and education team, which works to build the community at MIT that is working on climate and energy issues. As part of that work, Raghavan is launching a mentorship program for undergraduates, pairing them with graduate students who help the undergrads develop ideas about how they can work on climate using their unique expertise.“I didn’t foresee myself using my computer science skills in energy and climate,” Raghavan says, “so I really want to give other students a clear pathway, or a clear sense of how they can get involved.”Raghavan has embraced her area of study even in terms of where she likes to think.“I love working on trains, on buses, on airplanes,” she says. “It’s really fun to be in transit and working on transportation problems.”Anticipating a trip to New York to visit a cousin, she holds no dread for the long train trip.“I know I’m going to do some of my best work during those hours,” she says. “Four hours there. Four hours back.” More