More stories

  • in

    Aviva Intveld named 2023 Gates Cambridge Scholar

    MIT senior Aviva Intveld has won the prestigious Gates Cambridge Scholarship, which offers students an opportunity to pursue graduate study in the field of their choice at Cambridge University in the U.K. Intveld will join the other 23 U.S. citizens selected for the 2023 class of scholars.

    Intveld, from Los Angeles, is majoring in earth, atmospheric, and planetary sciences, and minoring in materials science and engineering with concentrations in geology, geochemistry, and archaeology. Her research interests span the intersections among those fields to better understand how the natural environments of the past have shaped human movement and decision-making.

    At Cambridge, Intveld will undertake a research MPhil in earth sciences at the Godwin Lab for Paleoclimate Research, where she will investigate the impact of past climate on the ancient Maya in northwest Yucatán via cave sediment records. She hopes to pursue an impact-oriented research career in paleoclimate and paleoenvironment reconstruction and ultimately apply the lessons learned from her research to inform modern climate policy. She is particularly passionate about sustainable mining of energy-critical elements and addressing climate change inequality in her home state of California.

    Intveld’s work at Cambridge will build upon her extensive research experience at MIT. She currently works in the McGee Lab reconstructing the Late Pleistocene-Early Holocene paleoclimate of northeastern Mexico to provide a climatic background to the first peopling of the Americas. Previously, she explored the influence of mountain plate tectonics on biodiversity in the Perron Lab. During a summer research position at the University of Haifa in Israel she analyzed the microfossil assemblage of an offshore sediment core for paleo-coastal reconstruction.

    Last summer, Intveld interned at the National Oceanic and Atmospheric Administration in Homer, Alaska, to identify geologic controls on regional groundwater chemistry. She has also interned with the World Wildlife Fund and with the Natural History Museum of Los Angeles. During her the spring semester of her junior year, Intveld studied abroad through MISTI at Imperial College London’s Royal School of Mines and completed geology field work in Sardinia, Italy.

    Intveld has been a strong presence on MIT’s campus, serving as the undergraduate representative on the EAPS Diversity, Equity, and Inclusion Committee. She leads tours for the MIT List Visual Arts Center, is a member of and associate advisor for the Terrascope Learning Community, and is a participant in the Addir Interfaith Dialogue Fellowship.

    Inveld was advised in her application by Kim Benard, associate dean of the Distinguished Fellowships team in Career Advising and Professional Development, who says, “Aviva’s work is at a fascinating crossroads of archeology, geology, and sustainability. She has already done extraordinary work, and this opportunity will prepare her even more to be influential in the fight for climate mitigation.”

    Established by the Bill and Melinda Gates Foundation in 2000, the Gates Cambridge Scholarship provides full funding for talented students from outside the United Kingdom to pursue postgraduate study in any subject at Cambridge University. Since the program’s inception in 2001, there have been 33 Gates Cambridge Scholars from MIT. More

  • in

    Responsive design meets responsibility for the planet’s future

    MIT senior Sylas Horowitz kneeled at the edge of a marsh, tinkering with a blue-and-black robot about the size and shape of a shoe box and studded with lights and mini propellers.

    The robot was a remotely operated vehicle (ROV) — an underwater drone slated to collect water samples from beneath a sheet of Arctic ice. But its pump wasn’t working, and its intake line was clogged with sand and seaweed.

    “Of course, something must always go wrong,” Horowitz, a mechanical engineering major with minors in energy studies and environment and sustainability, later blogged about the Falmouth, Massachusetts, field test. By making some adjustments, Horowitz was able to get the drone functioning on site.

    Through a 2020 collaboration between MIT’s Department of Mechanical Engineering and the Woods Hole Oceanographic Institute (WHOI), Horowitz had been assembling and retrofitting the high-performance ROV to measure the greenhouse gases emitted by thawing permafrost.

    The Arctic’s permafrost holds an estimated 1,700 billion metric tons of methane and carbon dioxide — roughly 50 times the amount of carbon tied to fossil fuel emissions in 2019, according to climate research from NASA’s Jet Propulsion Laboratory. WHOI scientists wanted to understand the role the Arctic plays as a greenhouse gas source or sink.

    Horowitz’s ROV would be deployed from a small boat in sub-freezing temperatures to measure carbon dioxide and methane in the water. Meanwhile, a flying drone would sample the air.

    An MIT Student Sustainability Coalition leader and one of the first members of the MIT Environmental Solutions Initiative’s Rapid Response Group, Horowitz has focused on challenges related to clean energy, climate justice, and sustainable development.

    In addition to the ROV, Horowitz has tackled engineering projects through D-Lab, where community partners from around the world work with MIT students on practical approaches to alleviating global poverty. Horowitz worked on fashioning waste bins out of heat-fused recycled plastic for underserved communities in Liberia. Their thesis project, also initiated through D-Lab, is designing and building user-friendly, space- and fuel-efficient firewood cook stoves to improve the lives of women in Santa Catarina Palopó in northern Guatemala.

    Through the Tata-MIT GridEdge Solar Research program, they helped develop flexible, lightweight solar panels to mount on the roofs of street vendors’ e-rickshaws in Bihar, India.

    The thread that runs through Horowitz’s projects is user-centered design that creates a more equitable society. “In the transition to sustainable energy, we want our technology to adapt to the society that we live in,” they say. “Something I’ve learned from the D-Lab projects and also from the ROV project is that when you’re an engineer, you need to understand the societal and political implications of your work, because all of that should get factored into the design.”

    Horowitz describes their personal mission as creating systems and technology that “serve the well-being and longevity of communities and the ecosystems we exist within.

    “I want to relate mechanical engineering to sustainability and environmental justice,” they say. “Engineers need to think about how technology fits into the greater societal context of people in the environment. We want our technology to adapt to the society we live in and for people to be able, based on their needs, to interface with the technology.”

    Imagination and inspiration

    In Dix Hills, New York, a Long Island suburb, Horowitz’s dad is in banking and their mom is a speech therapist. The family hiked together, but Horowitz doesn’t tie their love for the natural world to any one experience. “I like to play in the dirt,” they say. “I’ve always had a connection to nature. It was a kind of childlike wonder.”

    Seeing footage of the massive 2010 oil spill in the Gulf of Mexico caused by an explosion on the Deepwater Horizon oil rig — which occurred when Horowitz was around 10 — was a jarring introduction to how human activity can impact the health of the planet.

    Their first interest was art — painting and drawing portraits, album covers, and more recently, digital images such as a figure watering a houseplant at a window while lightning flashes outside; a neon pink jellyfish in a deep blue sea; and, for an MIT-wide Covid quarantine project, two figures watching the sun set over a Green Line subway platform.

    Art dovetailed into a fascination with architecture, then shifted to engineering. In high school, Horowitz and a friend were co-captains of an all-girls robotics team. “It was just really wonderful, having this community and being able to build stuff,” they say. Horowitz and another friend on the team learned they were accepted to MIT on Pi Day 2018.

    Art, architecture, engineering — “it’s all kind of the same,” Horowitz says. “I like the creative aspect of design, being able to create things out of imagination.”

    Sustaining political awareness

    At MIT, Horowitz connected with a like-minded community of makers. They also launched themself into taking action against environmental injustice.

    In 2022, through the Student Sustainability Coalition (SSC), they encouraged MIT students to get involved in advocating for the Cambridge Green New Deal, legislation aimed at reducing emissions from new large commercial buildings such as those owned by MIT and creating a green jobs training program.

    In February 2022, Horowitz took part in a sit-in in Building 3 as part of MIT Divest, a student-led initiative urging the MIT administration to divest its endowment of fossil fuel companies.

    “I want to see MIT students more locally involved in politics around sustainability, not just the technology side,” Horowitz says. “I think there’s a lot of power from students coming together. They could be really influential.”

    User-oriented design

    The Arctic underwater ROV Horowitz worked on had to be waterproof and withstand water temperatures as low as 5 degrees Fahrenheit. It was tethered to a computer by a 150-meter-long cable that had to spool and unspool without tangling. The pump and tubing that collected water samples had to work without kinking.

    “It was cool, throughout the project, to think, ‘OK, what kind of needs will these scientists have when they’re out in these really harsh conditions in the Arctic? How can I make a machine that will make their field work easier?’

    “I really like being able to design things directly with the users, working within their design constraints,” they say.

    Inevitably, snafus occurred, but in photos and videos taken the day of the Falmouth field tests, Horowitz is smiling. “Here’s a fun unexpected (or maybe quite expected) occurrence!” they reported later. “The plastic mount for the shaft collar [used in the motor’s power transmission] ripped itself apart!” Undaunted, Horowitz jury-rigged a replacement out of sheet metal.

    Horowitz replaced broken wires in the winch-like device that spooled the cable. They added a filter at the intake to prevent sand and plants from clogging the pump.

    With a few more tweaks, the ROV was ready to descend into frigid waters. Last summer, it was successfully deployed on a field run in the Canadian high Arctic. A few months later, Horowitz was slated to attend OCEANS 2022 Hampton Roads, their first professional conference, to present a poster on their contribution to the WHOI permafrost research.

    Ultimately, Horowitz hopes to pursue a career in renewable energy, sustainable design, or sustainable agriculture, or perhaps graduate studies in data science or econometrics to quantify environmental justice issues such as the disproportionate exposure to pollution among certain populations and the effect of systemic changes designed to tackle these issues.

    After completing their degree this month, Horowitz will spend six months with MIT International Science and Technology Initiatives (MISTI), which fosters partnerships with industry leaders and host organizations around the world.

    Horowitz is thinking of working with a renewable energy company in Denmark, one of the countries they toured during a summer 2019 field trip led by the MIT Energy Initiative’s Director of Education Antje Danielson. They were particularly struck by Samsø, the world’s first carbon-neutral island, run entirely on renewable energy. “It inspired me to see what’s out there when I was a sophomore,” Horowitz says. They’re ready to see where inspiration takes them next.

    This article appears in the Winter 2023 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Looking to the past to prepare for an uncertain future

    Aviva Intveld, an MIT senior majoring in Earth, atmospheric, and planetary sciences, is accustomed to city life. But despite hailing from metropolitan Los Angeles, she has always maintained a love for the outdoors.

    “Growing up in L.A., you just have a wealth of resources when it comes to beautiful environments,” she says, “but you’re also constantly living connected to the environment.” She developed a profound respect for the natural world and its effects on people, from the earthquakes that shook the ground to the wildfires that displaced inhabitants.

    “I liked the lifestyle that environmental science afforded,” Intveld recalls. “I liked the idea that you can make a career out of spending a huge amount of time in the field and exploring different parts of the world.”

    From the moment she arrived at MIT, Intveld threw herself into research on and off campus. During her first semester, she joined Terrascope, a program that encourages first-year students to tackle complex, real-world problems. Intveld and her cohort developed proposals to make recovery from major storms in Puerto Rico faster, more sustainable, and more equitable.

    Intveld also spent a semester studying drought stress in the lab of Assistant Professor David Des Marais, worked as a research assistant at a mineral sciences research lab back in L.A., and interned at the World Wildlife Fund. Most of her work focused on contemporary issues like food insecurity and climate change. “I was really interested in questions about today,” Intveld says.

    Her focus began to shift to the past when she interned as a research assistant at the Marine Geoarchaeology and Micropaleontology Lab at the University of Haifa. For weeks, she would spend eight hours a day hunched over a microscope, using a paintbrush to sort through grains of sand from the coastal town of Caesarea. She was looking for tiny spiral-shaped fossils of foraminifera, an organism that resides in seafloor sediments.

    These microfossils can reveal a lot about the environment in which they originated, including extreme weather events. By cataloging diverse species of foraminifera, Intveld was helping to settle a rather niche debate in the field of geoarchaeology: Did tsunamis destroy the harbor of Caesarea during the time of the ancient Romans?

    But in addition to figuring out if and when these natural disasters occurred, Intveld was interested in understanding how ancient communities prepared for and recovered from them. What methods did they use? Could those same methods be used today?

    Intveld’s research at the University of Haifa was part of the Onward Israel program, which offers young Jewish people the chance to participate in internships, academic study, and fellowships in Israel. Intveld describes the experience as a great opportunity to learn about the culture, history, and diversity of the Israeli community. The trip was also an excellent lesson in dealing with challenging situations.

    Intveld suffers from claustrophobia, but she overcame her fears to climb through the Bar Kokhba caves, and despite a cat allergy, she grew to adore the many stray cats that roam the streets of Haifa. “Sometimes you can’t let your physical limitations stop you from doing what you love,” she quips.

    Over the course of her research, Intveld has often found herself in difficult and even downright dangerous situations, all of which she looks back on with good humor. As part of an internship with the National Oceanic and Atmospheric Administration, she spent three months investigating groundwater in Homer, Alaska. While she was there, she learned to avoid poisonous plants out in the field, got lost bushwhacking, and was twice charged by a moose.

    These days, Intveld spends less time in the field and more time thinking about the ancient past. She works in the lab of Associate Professor David McGee, where her undergraduate thesis research focuses on reconstructing the paleoclimate and paleoecology of northeastern Mexico during the Early Holocene. To get an idea of what the Mexican climate looked like thousands of years ago, Intveld analyzes stable isotopes and trace elements in stalagmites taken from Mexican caves. By analyzing the isotopes of carbon and oxygen present in these stalagmites, which were formed over thousands of years from countless droplets of mineral-rich rainwater, Intveld can estimate the amount of rainfall and average temperature in a given time period.

    Intveld is primarily interested in how the area’s climate may have influenced human migration. “It’s very interesting to learn about the history of human motivation, what drives us to do what we do,” she explains. “What causes humans to move, and what causes us to stay?” So far, it seems the Mexican climate during the Early Holocene was quite inconsistent, with oscillating periods of wet and dry, but Intveld needs to conduct more research before drawing any definitive conclusions.

    Recent research has linked periods of drought in the geological record to periods of violence in the archaeological one, suggesting ancient humans often fought over access to water. “I think you can easily see the connections to stuff that we deal with today,” Intveld says, pointing out the parallels between paleolithic migration and today’s climate refugees. “We have to answer a lot of difficult questions, and one way that we can do so is by looking to see what earlier human communities did and what we can learn from them.”

    Intveld recognizes the impact of the past on our present and future in many other areas. She works as a tour guide for the List Visual Arts Center, where she educates people about public art on the MIT campus. “[Art] interested me as a way to experience history and learn about the story of different communities and people over time,” she says.

    Intveld is also unafraid to acknowledge the history of discrimination and exclusion in science. “Earth science has a big problem when it comes to inclusion and diversity,” she says. As a member of the EAPS Diversity, Equity and Inclusion Committee, she aims to make earth science more accessible.

    “Aviva has a clear drive to be at the front lines of geoscience research, connecting her work to the urgent environmental issues we’re all facing,” says McGee. “She also understands the critical need for our field to include more voices, more perspectives — ultimately making for better science.”

    After MIT, Intveld hopes to pursue an advanced degree in the field of sustainable mining. This past spring, she studied abroad at Imperial College London, where she took courses within the Royal School of Mines. As Intveld explains, mining is becoming crucial to sustainable energy. The rise of electric vehicles in places like California has increased the need for energy-critical elements like lithium and cobalt, but mining for these elements often does more harm than good. “The current mining complex is very environmentally destructive,” Intveld says.

    But Intveld hopes to take the same approach to mining she does with her other endeavors — acknowledging the destructive past to make way for a better future. More

  • in

    New MIT internships expand research opportunities in Africa

    With new support from the Office of the Associate Provost for International Activities, MIT International Science and Technology Initiatives (MISTI) and the MIT-Africa program are expanding internship opportunities for MIT students at universities and leading academic research centers in Africa. This past summer, MISTI supported 10 MIT student interns at African universities, significantly more than in any previous year.

    “These internships are an opportunity to better merge the research ecosystem of MIT with academia-based research systems in Africa,” says Evan Lieberman, the Total Professor of Political Science and Contemporary Africa and faculty director for MISTI.

    For decades, MISTI has helped MIT students to learn and explore through international experiential learning opportunities and internships in industries like health care, education, agriculture, and energy. MISTI’s MIT-Africa Seed Fund supports collaborative research between MIT faculty and Africa-based researchers, and the new student research internship opportunities are part of a broader vision for deeper engagement between MIT and research institutions across the African continent.

    While Africa is home to 12.5 percent of the world’s population, it generates less than 1 percent of scientific research output in the form of academic journal publications, according to the African Academy of Sciences. Research internships are one way that MIT can build mutually beneficial partnerships across Africa’s research ecosystem, to advance knowledge and spawn innovation in fields important to MIT and its African counterparts, including health care, biotechnology, urban planning, sustainable energy, and education.

    Ari Jacobovits, managing director of MIT-Africa, notes that the new internships provide additional funding to the lab hosting the MIT intern, enabling them to hire a counterpart student research intern from the local university. This support can make the internships more financially feasible for host institutions and helps to grow the research pipeline.

    With the support of MIT, State University of Zanzibar (SUZA) lecturers Raya Ahmada and Abubakar Bakar were able to hire local students to work alongside MIT graduate students Mel Isidor and Rajan Hoyle. Together the students collaborated over a summer on a mapping project designed to plan and protect Zanzibar’s coastal economy.

    “It’s been really exciting to work with research peers in a setting where we can all learn alongside one another and develop this project together,” says Hoyle.

    Using low-cost drone technology, the students and their local counterparts worked to create detailed maps of Zanzibar to support community planning around resilience projects designed to combat coastal flooding and deforestation and assess climate-related impacts to seaweed farming activities. 

    “I really appreciated learning about how engagement happens in this particular context and how community members understand local environmental challenges and conditions based on research and lived experience,” says Isidor. “This is beneficial for us whether we’re working in an international context or in the United States.”

    For biology major Shaida Nishat, her internship at the University of Cape Town allowed her to work in a vital sphere of public health and provided her with the chance to work with a diverse, international team headed by Associate Professor Salome Maswine, head of the global surgery division and a widely-renowned expert in global surgery, a multidisciplinary field in the sphere of global health focused on improved and equitable surgical outcomes.

    “It broadened my perspective as to how an effort like global surgery ties so many nations together through a common goal that would benefit them all,” says Nishat, who plans to pursue a career in public health.

    For computer science sophomore Antonio L. Ortiz Bigio, the MISTI research internship in Africa was an incomparable experience, culturally and professionally. Bigio interned at the Robotics Autonomous Intelligence and Learning Laboratory at the University of Witwatersrand in Johannesburg, led by Professor Benjamin Rosman, where he developed software to enable a robot to play chess. The experience has inspired Bigio to continue to pursue robotics and machine learning.

    Participating faculty at the host institutions welcomed their MIT interns, and were impressed by their capabilities. Both Rosman and Maswime described their MIT interns as hard-working and valued team members, who had helped to advance their own work.  

    Building strong global partnerships, whether through faculty research, student internships, or other initiatives, takes time and cultivation, explains Jacobovits. Each successful collaboration helps to seed future exchanges and builds interest at MIT and peer institutions in creative partnerships. As MIT continues to deepen its connections to institutions and researchers across Africa, says Jacobovits, “students like Shaida, Rajan, Mel, and Antonio are really effective ambassadors in building those networks.” More

  • in

    Two first-year students named Rise Global Winners for 2022

    In 2019, former Google CEO Eric Schmidt and his wife, Wendy, launched a $1 billion philanthropic commitment to identify global talent. Part of that effort is the Rise initiative, which selects 100 young scholars, ages 15-17, from around the world who show unusual promise and a drive to serve others. This year’s cohort of 100 Rise Global Winners includes two MIT first-year students, Jacqueline Prawira and Safiya Sankari.

    Rise intentionally targets younger-aged students and focuses on identifying what the program terms “hidden brilliance” in any form, anywhere in the world, whether it be in a high school or a refugee camp. Another defining aspect of the program is that Rise winners receive sustained support — not just in secondary school, but throughout their lives.

    “We believe that the answers to the world’s toughest problems lie in the imagination of the world’s brightest minds,” says Eric Braverman, CEO of Schmidt Futures, which manages Rise along with the Rhodes Trust. “Rise is an integral part of our mission to create the best, largest, and most enduring pipeline of exceptional talent globally and match it to opportunities to serve others for life.”

    The Rise program creates this enduring pipeline by providing a lifetime of benefits, including funding, programming, and mentoring opportunities. These resources can be tailored to each person as they evolve throughout their career. In addition to a four-year college scholarship, winners receive mentoring and career services; networking opportunities with other Rise recipients and partner organizations; technical equipment such as laptops or tablets; courses on topics like leadership and human-centered design; and opportunities to apply for graduate scholarships and for funding throughout their careers to support their innovative ideas, such as grants or seed money to start a social enterprise.

    Prawira and Sankari’s winning service projects focus on global sustainability and global medical access, respectively. Prawira invented a way to use upcycled fish-scale waste to absorb heavy metals in wastewater. She first started experimenting with fish-scale waste in middle school to try to find a bio-based alternative to plastic. More recently, she discovered that the calcium salts and collagen in fish scales can absorb up to 82 percent of heavy metals from water, and 91 percent if an electric current is passed through the water. Her work has global implications for treating contaminated water at wastewater plants and in developing countries.

    Prawiri published her research in 2021 and has won awards from the U.S. Environmental Protection Agency and several other organizations. She’s planning to major in Course 3 (materials science and engineering), perhaps with an environmentally related minor. “I believe that sustainability and solving environmental problems requires a multifaced approach,” she says. “Creating greener materials for use in our daily lives will have a major impact in solving current environmental issues.”

    For Sankari’s service project, she developed an algorithm to analyze data from electronic nano-sensor devices, or e-noses, which can detect certain diseases from a patient’s breath. The devices are calibrated to detect volatile organic compound biosignatures that are indicative of diseases like diabetes and cancer. “E-nose disease detection is much faster and cheaper than traditional methods of diagnosis, making medical care more accessible to many,” she explains. The Python-based algorithm she created can translate raw data from e-noses into a result that the user can read.

    Sankari is a lifetime member of the American Junior Academy of Science and has been a finalist in several prestigious science competitions. She is considering a major in Course 6-7 (computer science and molecular biology) at MIT and hopes to continue to explore the intersection between nanotechnology and medicine.

    While the 2022 Rise recipients share a desire to tackle some of the world’s most intractable problems, their ideas and interests, as reflected by their service projects, are broad, innovative, and diverse. A winner from Belarus used bioinformatics to predict the molecular effect of a potential Alzheimer’s drug. A Romanian student created a magazine that aims to promote acceptance of transgender bodies. A Vietnamese teen created a prototype of a toothbrush that uses a nano chip to detect cancerous cells in saliva. And a recipient from the United States designed modular, tiny homes for the unhoused that are affordable and sustainable, as an alternative to homeless shelters.

    This year’s winners were selected from over 13,000 applicants from 47 countries, from Azerbaijan and Burkina Faso to Lebanon and Paraguay. The selection process includes group interviews, peer and expert review of each applicant’s service project, and formal talent assessments. More

  • in

    MIT student club Engineers Without Borders works with local village in Tanzania

    Four students from the MIT club Engineers Without Borders (EWB) spent part of their summer in Tanzania to begin assessment work for a health and sanitation project that will benefit the entire village, and an irrigated garden for the Mkutani Primary School.

    The club has been working with the Boston Professional Chapter of Engineers Without Borders (EWB-BPC) since 2019. The Boston chapter finds projects in underserved communities in the developing world and helped connect the MIT students with local government and school officials.

    Juniors Fiona Duong, female health and sanitation team lead, and Lai Wa Chu, irrigation team lead, spent two weeks over the summer in Mkutani conducting research for their projects. Chu was faced with finding more water supplies and a way to get water from the nearby river to the school to use in the gardens they were planting. Duong was charged with assessing the needs of the people who visit The Mkutani Dispensary, which serves as a local medical clinic. Juniors Hung Huynh, club president, and Vivian Cheng, student advisor, also made the trip to work on the projects.

    Health and sanitation project

    Duong looked into ways to help pregnant women with privacy issues as the facility they give birth in — The Mkutani Dispensary — is very small, with just two beds, and is in need of repairs and upgrades. Before leaving Cambridge, Duong led FaceTime meetings with government officials and facilities managers in the village. Once on the ground, she began collecting information and conducted focus groups with the local women and other constituents. She learned that one in three women were not giving birth in the dispensary due to privacy concerns and the lack of modern equipment needed for high-risk pregnancies.

    “The women said that the most pressing need there was water. The women were expected to bring their own water to their deliveries. The rain-catching system there was not enough to fulfill their needs and the river water wasn’t clean. When in labor, they relied on others to gather it and bring it to the dispensary by bike,” Duong says. “With broken windows, the dispensary did not allow for privacy or sanitary conditions.”

    Duong will also analyze the data she collected and share it with others before more MIT students head to Mkutani next summer.

    Farming, sustainability, and irrigation projectBefore heading to Mkutani, Chu conducted research regarding irrigation methods and water collection methods. She confirmed that the river water still contained E.coli and advised the teachers that it would need to be boiled or placed in the sun for a few hours before it could be used. Her technical background in fluid dynamics was helpful for the project.

    “We also found that there was a need for supplemental food for the school, as many children lived too far away to walk home for lunch. The headmaster reached out to us about building the garden, as the garden provides supplemental fruit and vegetables for many of the 600 students to eat. They needed water from the river that was quite far away from the school. We looked at ways to get the water to the garden,” Chu says.

    The group is considering conducting an ecological survey of the area to see if there is another source of water so they could drill another borehole. They will complete their analysis and then decide the best solution to implement.

    “Watching the whole team’s hard work pay off when the travel team got to Mkutani was so amazing,” says second-year student Maria Hernandez, club internal relations chair. “Now, we’re ready to get to work again so we can go back next year. I love being a part of Engineers Without Borders because it’s such a unique way to apply technical skills outside of the classroom and see the impact you make on the community. It’s a beautiful project that truly impacts so many people, and I can’t wait to go back to Mkutani next year.”

    Both Duong and Chu hope they’ll return to the school and the dispensary in summer 2023 to work on the implementation phase of their projects. “This project is one of the reasons I came to MIT. I wanted to work on a social impact project to help improve the world,” Chu says.

    “I hope to go back next summer and implement the project,” adds Duong. “If I do, we’ll go during the two most crucial weeks of the project — after the contractors have started the repair work on the dispensary, so we can see how things are going and then help with anything else related to the project.”

    Duong and Chu said students don’t have to be engineers to help with the EWB’s work — any MIT student interested in joining the club may do so. Both agree that fundraising is a priority, but there are numerous other roles students can help with.

    “MIT students shouldn’t be afraid to just dive right in. There’s a lot that needs to be done there, and even if you don’t have experience in a certain area, don’t let that be a barrier. It’s very rewarding work and it’s also great to get international work experience,” Duong says.

    Chu added, “The project may not seem flashy now, but the rewards are great. Students will get new technical skills and get to experience a new culture as well.” More

  • in

    Pursuing progress at the nanoscale

    Last fall, a team of five senior undergraduate nuclear engineering students met once a week for dinners where they took turns cooking and debated how to tackle a particularly daunting challenge set forth in their program’s capstone course, 22.033 (Nuclear Systems Design Project).

    In past semesters, students had free reign to identify any real-world problem that interested them to solve through team-driven prototyping and design. This past fall worked a little differently. The team continued the trend of tackling daunting problems, but instead got an assignment to explore a particular design challenge on MIT’s campus. Rising to the challenge, the team spent the semester seeking a feasible way to introduce a highly coveted technology at MIT.

    Housed inside a big blue dome is the MIT Nuclear Reactor Laboratory (NRL). The reactor is used to conduct a wide range of science experiments, but in recent years, there have been multiple attempts to implement an instrument at the reactor that could probe the structure of materials, molecules, and devices. With this technology, researchers could model the structure of a wide range of materials and complex liquids made of polymers or containing nanoscale inhomogeneities that differ from the larger mass. On campus, researchers for the first time could conduct experiments to better understand the properties and functions of anything placed in front of a neutron beam emanating from the reactor core.

    The impact of this would be immense. If the reactor could be adapted to conduct this advanced technique, known as small-angle neutron scattering (SANS), it would open up a whole new world of research at MIT.

    “It’s essentially using the nuclear reactor as an incredibly high-performance camera that researchers from all over MIT would be very interested in using, including nuclear science and engineering, chemical engineering, biological engineering, and materials science, who currently use this tool at other institutions,” says Zachary Hartwig, Nuclear Systems Design Project professor and the MIT Robert N. Noyce Career Development Professor.

    SANS instruments have been installed at fewer than 20 facilities worldwide, and MIT researchers have previously considered implementing the capability at the reactor to help MIT expand community-wide access to SANS. Last fall, this mission went from long-time campus dream to potential reality as it became the design challenge that Hartwig’s students confronted. Despite having no experience with SANS, the team embraced the challenge, taking the first steps to figure out how to bring this technology to campus.

    “I really loved the idea that what we were doing could have a very real impact,” says Zoe Fisher, Nuclear Systems Design Project team member and now graduate nuclear engineering student.

    Each fall, Hartwig uses the course to introduce students to real-world challenges with strict constraints on solutions, and last fall’s project came with plenty of thorny design questions for students to tackle. First was the size limitation posed by the space available at MIT’s reactor. In SANS facilities around the world, the average length of the instrument is 30 meters, but at NRL, the space available is approximately 7.5 meters. Second, these instruments can cost up to $30 million, which is far outside NRL’s proposed budget of $3 million. That meant not only did students need to design an instrument that would work in a smaller space, but also one that could be built for a tenth of the typical cost.

    “The challenge was not just implementing one of these instruments,” Hartwig says. “It was whether the students could significantly innovate beyond the ‘traditional’ approach to doing SANS to meet the daunting constraints that we have at the MIT Reactor.”

    Because NRL actually wants to pursue this project, the students had to get creative, and their creative potential was precisely why the idea arose to get them involved, says Jacopo Buongiorno, the director of science and technology at NRL and Tokyo Electric Power Company Professor in Nuclear Engineering. “Involvement in real-world projects that answer questions about feasibility and cost of new technology and capabilities is a key element of a successful undergraduate education at MIT,” Buongiorno says.

    Students say it would have been impossible to tackle the problem without the help of co-instructor Boris Khaykovich, a research scientist at NRL who specializes in neutron instrumentation.

    Over the past two decades, Khaykovich has watched as SANS became the most popular technique for analyzing material structure. As the amount of available SANS beam time at the few facilities that exist became more competitive, access declined. Today only the experiments passing the most stringent review get access. What Khaykovich hopes to bring to MIT is improved access to SANS by designing an instrument that will be suitable for a majority of run-of-the-mill experiments, even if it’s not as powerful as state-of-the-art national SANS facilities. Such an instrument can still serve a wider range of researchers who currently have few opportunities to pursue SANS experiments.

    “In the U.S., we don’t have a simple, small, day-to-day SANS instrument,” Khaykovich says.

    With Khaykovich’s help, nuclear engineering undergraduate student Liam Hines says his team was able to go much further with their assessment than they would’ve starting from scratch, with no background in SANS. This project was unlike anything they’d ever been asked of as MIT students, and for students like Hines, who contributed to NRL research his entire time on campus, it was a project that hit close to home. “We were imagining this thing that might be designed at MIT,” Hines says.

    Fisher and Hines were joined by undergraduate nuclear engineering student team members Francisco Arellano, Jovier Jimenez, and Brendan Vaughan. Together, they devised a design that surprised both Khaykovich and Hartwig, identifying creative solutions that overcame all limitations and significantly reduced cost.

    Their team’s final project featured an adaptation of a conical design that was recently experimentally tested in Japan, but not generally used. The conical design allowed them to maximize precision while working within the other constraints, resulting in an instrument design that exceeded Hartwig’s expectations. The students also showed the feasibility of using an alternative type of glass-based low-cost neutron detector to calibrate the scattering data. By avoiding the need for a traditional detector based on helium-3, which is increasingly scarce and exorbitantly expensive, such a detector would dramatically reduce cost and increase availability. Their final presentation indicated the day-to-day SANS instrument could be built at only 4.5 meters long and with an estimated cost less than $1 million.

    Khaykovich credited the students for their enthusiasm, bouncing ideas off each other and exploring as much terrain as possible by interviewing experts who implemented SANS at other facilities. “They showed quite a perseverance and an ability to go deep into a very unfamiliar territory for them,” Khaykovich says.

    Hines says that Hartwig emphasized the importance of fielding expert opinions to more quickly discover optimal solutions. Fisher says that based on their research, if their design is funded, it would make SANS “more accessible to research for the sake of knowledge,” rather than dominated by industry research.

    Hartwig and Khaykovich agreed the students’ final project results showed a baseline of how MIT could pursue SANS technology cheaply, and when NRL proceeds with its own design process, Hartwig says, “The student’s work might actually change the cost of the feasibility of this at MIT in a way that if we hadn’t run the class, we would never have thought about doing.”

    Buongiorno says as they move forward with the project, NRL staff will consult students’ findings.

    “Indeed, the students developed original technical approaches, which are now being further explored by the NRL staff and may ultimately lead to the deployment of this new important capability on the MIT campus,” Buongiorno says.

    Hartwig says it’s a goal of the Nuclear Systems Design Project course to empower students to learn how to lead teams and embrace challenges, so they can be effective leaders advancing novel solutions in research and industry. “I think it helps teach people to be agile, to be flexible, to have confidence that they can actually go off and learn what they don’t know and solve problems they may think are bigger than themselves,” he says.

    It’s common for past classes of Nuclear Systems Design Project students to continue working on ideas beyond the course, and some students have even launched companies from their project research. What’s less common is for Hartwig’s students to actively serve as engineers pointed to a particular campus problem that’s expected to be resolved in the next few years.

    “In this case, they’re actually working on something real,” Hartwig says. “Their ideas are going to very much influence what we hope will be a facility that gets built at the reactor.”

    For students, it was exciting to inform a major instrument proposal that will soon be submitted to federal funding agencies, and for Hines, it became a chance to make his mark at NRL.

    “This is a lab I’ve been contributing to my entire time at MIT, and then through this project, I finished my time at MIT contributing in a much larger sense,” Hines says. More

  • in

    Strengthening students’ knowledge and experience in climate and sustainability

    Tackling the climate crisis is central to MIT. Critical to this mission is harnessing the innovation, passion, and expertise of MIT’s talented students, from a variety of disciplines and backgrounds. To help raise this student involvement to the next level, the MIT Climate and Sustainability Consortium (MCSC) recently launched a program that will engage MIT undergraduates in a unique, year-long, interdisciplinary experience both developing and implementing climate and sustainability research projects.

    The MCSC Climate and Sustainability Scholars Program is a way for students to dive deeply and directly into climate and sustainability research, strengthen their skill sets in a variety of climate and sustainability-related areas, build their networks, and continue to embrace and grow their passion.The MCSC Climate and Sustainability Scholars Program is representative of MIT’s ambitious and bold initiatives on climate and sustainability — bringing together faculty and students across MIT to collaborate with industry on developing climate and sustainability solutions in the context of undergraduate education and research.

    The program, open to rising juniors and seniors from all majors and departments, is inspired by MIT’s SuperUROP program. Students will enroll in a year-long class while simultaneously engaging in research. Research projects will be climate- and sustainability-focused and can be on or off campus. The course will be initially facilitated by Desiree Plata, the Gilbert W. Winslow Career Development Professor in Civil and Environmental Engineering, and Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director.“Climate and sustainability challenges face real barriers in science, technology, policy, and beyond,” says Plata, who also serves on the MCSC’s Faculty Steering Committee. “We need to motivate an all-hands effort to bring MIT talent to bear on these challenges, and we need to give our students the tools to make tangible benefits within and between their disciplines. This was our goal in designing the MCSC Scholars Program, and it’s what I’m most excited about.”

    The Climate and Sustainability Scholars Program has relevance across all five schools, and the number of places the course is cross-listed continues to grow. As is the broader goal of the MCSC, the Climate and Sustainability Scholars Program aims to amplify and extend MIT’s expertise — through engaging students of all backgrounds and majors, bringing in faculty mentors and instructors from around the Institute, and identifying research opportunities and principal investigators that span disciplines. The student cohort model will also build off of the successful community-building endeavors by the MIT Energy Initiative and Environmental Solutions Initiative, among others, to bring students with similar interests together into an interdisciplinary, problem-solving space.The program’s fall semester will focus on key climate and sustainability topics, such as decarbonization strategies, policy, environmental justice, and quantitative methods for evaluating social and environmental impacts, and humanities-based communication of climate topics, all while students engage in research. Students will simultaneously develop project proposals, participate in a project through MIT’s Undergraduate Research Opportunities Program, and communicate their work using written and oral media. The spring semester’s course will focus on research and experiential activities, and help students communicate their outputs in entrepreneurial or policy activities that would enable the research outcomes to be rapidly scaled for impact.Throughout the program, students will engage with their research mentors, additional mentors drawn from MCSC-affiliated faculty, postdoctoral Impact Fellows, and graduate students — and there will also be opportunities for interaction with representatives of MCSC member companies.“Providing opportunities for students to sharpen the skills and knowledge needed to pioneer solutions for climate change mitigation and adaptation is critical,” says Olivetti. “We are excited that the Climate and Sustainability Scholars Program can contribute to that important mission.” More