More stories

  • in

    Q&A: Climate Grand Challenges finalists on building equity and fairness into climate solutions

    Note: This is the first in a four-part interview series that will highlight the work of the Climate Grand Challenges finalists, ahead of the April announcement of several multiyear, flagship projects.

    The finalists in MIT’s first-ever Climate Grand Challenges competition each received $100,000 to develop bold, interdisciplinary research and innovation plans designed to attack some of the world’s most difficult and unresolved climate problems. The 27 teams are addressing four Grand Challenge problem areas: building equity and fairness into climate solutions; decarbonizing complex industries and processes; removing, managing, and storing greenhouse gases; and using data and science for improved climate risk forecasting.  

    In a conversation prepared for MIT News, faculty from three of the teams in the competition’s “Building equity and fairness into climate solutions” category share their thoughts on the need for inclusive solutions that prioritize disadvantaged and vulnerable populations, and discuss how they are working to accelerate their research to achieve the greatest impact. The following responses have been edited for length and clarity.

    The Equitable Resilience Framework

    Any effort to solve the most complex global climate problems must recognize the unequal burdens borne by different groups, communities, and societies — and should be equitable as well as effective. Janelle Knox-Hayes, associate professor in the Department of Urban Studies and Planning, leads a team that is developing processes and practices for equitable resilience, starting with a local pilot project in Boston over the next five years and extending to other cities and regions of the country. The Equitable Resilience Framework (ERF) is designed to create long-term economic, social, and environmental transformations by increasing the capacity of interconnected systems and communities to respond to a broad range of climate-related events. 

    Q: What is the problem you are trying to solve?

    A: Inequity is one of the severe impacts of climate change and resonates in both mitigation and adaptation efforts. It is important for climate strategies to address challenges of inequity and, if possible, to design strategies that enhance justice, equity, and inclusion, while also enhancing the efficacy of mitigation and adaptation efforts. Our framework offers a blueprint for how communities, cities, and regions can begin to undertake this work.

    Q: What are the most significant barriers that have impacted progress to date?

    A: There is considerable inertia in policymaking. Climate change requires a rethinking, not only of directives but pathways and techniques of policymaking. This is an obstacle and part of the reason our project was designed to scale up from local pilot projects. Another consideration is that the private sector can be more adaptive and nimble in its adoption of creative techniques. Working with the MIT Climate and Sustainability Consortium there may be ways in which we could modify the ERF to help companies address similar internal adaptation and resilience challenges.

    Protecting and enhancing natural carbon sinks

    Deforestation and forest degradation of strategic ecosystems in the Amazon, Central Africa, and Southeast Asia continue to reduce capacity to capture and store carbon through natural systems and threaten even the most aggressive decarbonization plans. John Fernandez, professor in the Department of Architecture and director of the Environmental Solutions Initiative, reflects on his work with Daniela Rus, professor of electrical engineering and computer science and director of the Computer Science and Artificial Intelligence Laboratory, and Joann de Zegher, assistant professor of Operations Management at MIT Sloan, to protect tropical forests by deploying a three-part solution that integrates targeted technology breakthroughs, deep community engagement, and innovative bioeconomic opportunities. 

    Q: Why is the problem you seek to address a “grand challenge”?

    A: We are trying to bring the latest technology to monitoring, assessing, and protecting tropical forests, as well as other carbon-rich and highly biodiverse ecosystems. This is a grand challenge because natural sinks around the world are threatening to release enormous quantities of stored carbon that could lead to runaway global warming. When combined with deep community engagement, particularly with indigenous and afro-descendant communities, this integrated approach promises to deliver substantially enhanced efficacy in conservation coupled to robust and sustainable local development.

    Q: What is known about this problem and what questions remain unanswered?

    A: Satellites, drones, and other technologies are acquiring more data about natural carbon sinks than ever before. The problem is well-described in certain locations such as the eastern Amazon, which has shifted from a net carbon sink to now a net positive carbon emitter. It is also well-known that indigenous peoples are the most effective stewards of the ecosystems that store the greatest amounts of carbon. One of the key questions that remains to be answered is determining the bioeconomy opportunities inherent within the natural wealth of tropical forests and other important ecosystems that are important to sustained protection and conservation.

    Reducing group-based disparities in climate adaptation

    Race, ethnicity, caste, religion, and nationality are often linked to vulnerability to the adverse effects of climate change, and if left unchecked, threaten to exacerbate long standing inequities. A team led by Evan Lieberman, professor of political science and director of the MIT Global Diversity Lab and MIT International Science and Technology Initiatives, Danielle Wood, assistant professor in the Program in Media Arts and Sciences and the Department of Aeronautics and Astronautics, and Siqi Zheng, professor of urban and real estate sustainability in the Center for Real Estate and the Department of Urban Studies and Planning, is seeking to  reduce ethnic and racial group-based disparities in the capacity of urban communities to adapt to the changing climate. Working with partners in nine coastal cities, they will measure the distribution of climate-related burdens and resiliency through satellites, a custom mobile app, and natural language processing of social media, to help design and test communication campaigns that provide accurate information about risks and remediation to impacted groups. 

    Q: How has this problem evolved?

    A: Group-based disparities continue to intensify within and across countries, owing in part to some randomness in the location of adverse climate events, as well as deep legacies of unequal human development. In turn, economically and politically privileged groups routinely hoard resources for adaptation. In a few cases — notably the United States, Brazil, and with respect to climate-related migrancy, in South Asia — there has been a great deal of research documenting the extent of such disparities. However, we lack common metrics, and for the most part, such disparities are only understood where key actors have politicized the underlying problems. In much of the world, relatively vulnerable and excluded groups may not even be fully aware of the nature of the challenges they face or the resources they require.

    Q: Who will benefit most from your research? 

    A: The greatest beneficiaries will be members of those vulnerable groups who lack the resources and infrastructure to withstand adverse climate shocks. We believe that it will be important to develop solutions such that relatively privileged groups do not perceive them as punitive or zero-sum, but rather as long-term solutions for collective benefit that are both sound and just. More

  • in

    New power sources

    In the mid-1990s, a few energy activists in Massachusetts had a vision: What if citizens had choice about the energy they consumed? Instead of being force-fed electricity sources selected by a utility company, what if cities, towns, and groups of individuals could purchase power that was cleaner and cheaper?

    The small group of activists — including a journalist, the head of a small nonprofit, a local county official, and a legislative aide — drafted model legislation along these lines that reached the state Senate in 1995. The measure stalled out. In 1997, they tried again. Massachusetts legislators were busy passing a bill to reform the state power industry in other ways, and this time the activists got their low-profile policy idea included in it — as a provision so marginal it only got a brief mention in The Boston Globe’s coverage of the bill.

    Today, this idea, often known as Community Choice Aggregation (CCA), is used by roughly 36 million people in the U.S., or 11 percent of the population. Local residents, as a bloc, purchase energy with certain specifications attached, and over 1,800 communities have adopted CCA in six states, with others testing CCA pilot programs. From such modest beginnings, CCA has become a big deal.

    “It started small, then had a profound impact,” says David Hsu, an associate professor at MIT who studies energy policy issues. Indeed, the trajectory of CCA is so striking that Hsu has researched its origins, combing through a variety of archival sources and interviewing the principals. He has now written a journal article examining the lessons and implications of this episode.

    Hsu’s paper, “Straight out of Cape Cod: The origin of community choice aggregation and its spread to other states,” appears in advance online form in the journal Energy Research and Social Science, and in the April print edition of the publication.

    “I wanted to show people that a small idea could take off into something big,” Hsu says. “For me that’s a really hopeful democratic story, where people could do something without feeling they had to take on a whole giant system that wouldn’t immediately respond to only one person.”

    Local control

    Aggregating consumers to purchase energy was not a novelty in the 1990s. Companies within many industries have long joined forces to gain purchasing power for energy. And Rhode Island tried a form of CCA slightly earlier than Massachusetts did.

    However, it is the Massachusetts model that has been adopted widely: Cities or towns can require power purchases from, say, renewable sources, while individual citizens can opt out of those agreements. More state funding (for things like efficiency improvements) is redirected to cities and towns as well.

    In both ways, CCA policies provide more local control over energy delivery. They have been adopted in California, Illinois, New Jersey, New York, and Ohio. Meanwhile, Maryland, New Hampshire, and Virginia have recently passed similar legislation (also known as municipal or government aggregation, or community choice energy).

    For cities and towns, Hsu says, “Maybe you don’t own outright the whole energy system, but let’s take away one particular function of the utility, which is procurement.”

    That vision motivated a handful of Massachusetts activists and policy experts in the 1990s, including journalist Scott Ridley, who co-wrote a 1986 book, “Power Struggle,” with the University of Massachusetts historian Richard Rudolph and had spent years thinking about ways to reconfigure the energy system; Matt Patrick, chair of a local nonprofit focused on energy efficiency; Rob O’Leary, a local official in Barnstable County, on Cape Cod; and Paul Fenn, a staff aide to the state senator who chaired the legislature’s energy committee.

    “It started with these political activists,” Hsu says.

    Hsu’s research emphasizes several lessons to be learned from the fact the legislation first failed in 1995, before unexpectedly passing in 1997. Ridley remained an author and public figure; Patrick and O’Leary would each eventually be elected to the state legislature, but only after 2000; and Fenn had left his staff position by 1995 and worked with the group long-distance from California (where he became a long-term advocate about the issue). Thus, at the time CCA passed in 1997, none of its main advocates held an insider position in state politics. How did it succeed?

    Lessons of the legislation

    In the first place, Hsu believes, a legislative process resembles what the political theorist John Kingdon has called a “multiple streams framework,” in which “many elements of the policymaking process are separate, meandering, and uncertain.” Legislation isn’t entirely controlled by big donors or other interest groups, and “policy entrepreneurs” can find success in unpredictable windows of opportunity.

    “It’s the most true-to-life theory,” says Hsu.  

    Second, Hsu emphasizes, finding allies is crucial. In the case of CCA, that came about in a few ways. Many towns in Massachusetts have a town-level legislature known as Town Meeting; the activists got those bodies in about 20 towns to pass nonbinding resolutions in favor of community choice. O’Leary helped create a regional county commission in Barnstable County, while Patrick crafted an energy plan for it. High electricity rates were affecting all of Cape Cod at the time, so community choice also served as an economic benefit for Cape Cod’s working-class service-industry employees. The activists also found that adding an opt-out clause to the 1997 version appealed to legislators, who would support CCA if their constituents were not all bound to it.

    “You really have to stick with it, and you have to look for coalition partners,” Hsu says. “It’s fun to hear them [the activists] talk about going to Town Meetings, and how they tried to build grassroots support. If you look for allies, you can get things done. [I hope] the people can see [themselves] in other people’s activism even if they’re not exactly the same as you are.”

    By 1997, the CCA legislation had more geographic support, was understood as both an economic and environmental benefit for voters, and would not force membership upon anyone. The activists, while giving media interviews, and holding conferences, had found additional traction in the principle of citizen choice.

    “It’s interesting to me how the rhetoric of [citizen] choice and the rhetoric of democracy proves to be effective,” Hsu says. “Legislators feel like they have to give everyone some choice. And it expresses a collective desire for a choice that the utilities take away by being monopolies.”

    He adds: “We need to set out principles that shape systems, rather than just taking the system as a given and trying to justify principles that are 150 years old.”

    One last element in CCA passage was good timing. The governor and legislature in Massachusetts were already seeking a “grand bargain” to restructure electricity delivery and loosen the grip of utilities; the CCA fit in as part of this larger reform movement. Still, CCA adoption has been gradual; about one-third of Massachusetts towns with CCA have only adopted it within the last five years.

    CCA’s growth does not mean it’s invulnerable to repeal or utility-funded opposition efforts — “In California there’s been pretty intense pushback,” Hsu notes. Still, Hsu concludes, the fact that a handful of activists could start a national energy-policy movement is a useful reminder that everyone’s actions can make a difference.

    “It wasn’t like they went charging through a barricade, they just found a way around it,” Hsu says. “I want my students to know you can organize and rethink the future. It takes some commitment and work over a long time.” More

  • in

    Courtney Lesoon and Elizabeth Yarina win Fulbright-Hays Scholarships

    Two MIT doctoral students in the MIT School of Architecture and Planning have received the prestigious Fulbright-Hays Scholarship for Doctoral Dissertation Research Award. Courtney Lesoon and Elizabeth “Lizzie” Yarina are the first awardees from MIT in more than a decade.

    The fellowship provides opportunities for doctoral students to engage in full-time dissertation research abroad. The program, funded by the U.S. Department of Education, is designed to contribute to the development and improvement of the study of modern foreign languages and area studies. Applicants anticipate pursuing a teaching career in the United States following completion of their dissertation. There were 138 individuals from 47 institutions named scholars for the 2021 cycle.

    Courtney Lesoon

    Lesoon is a doctoral candidate in the Aga Khan Program for Islamic Architecture, in the History, Theory and Criticism Section of the Department of Architecture. Lesoon earned her BA from College of the Holy Cross and was a 2012-13 Fulbright U.S. Student grantee to the United Arab Emirates, where her research concerned contemporary art and emerging cultural institutions. Her dissertation is titled “Spatializing Ahl al-ʿIlm: Learning and the Rise of the Early Islamic City.” Losoon’s fieldwork will be done in Morocco, Egypt, and Turkey.

    “Courtney’s project presents an innovative idea that has not, to my knowledge, been investigated before,” says Nasser Rabbat, professor and director of the MIT Aga Khan Program. “How did the emergence and evolution of a particularly Islamic learning system affect the development of the city in the early Islamic period? Her work enriches the thinking about premodern urbanism and education everywhere by theorizing the intricate relationship between traveling, learning, and the city.”

    “I’ll be working in different manuscripts collections in Morocco, Egypt, and Turkey to investigate where and how scholars were learning inside of the early Islamic city before the formal institutionalization of higher education,” says Lesoon. “I’m interested in how learning — as a set of social practices — informed urban life. My project speaks to two different fields; Islamic urbanism and Islamic intellectual history. I’m really excited about my time on Fulbright-Hays; it will be a really fruitful time for my research and writing.”

    Before arriving at MIT, Lesoon worked as a research assistant in the Art of the Middle East Department at the Los Angeles County Museum of Art. Recently, she was awarded the 2021 Margaret B. Ševčenko Prize for “the best unpublished essay written by a junior scholar” for her paper “The Sphero-conical as Apothecary Vessel: An Argument for Dedicated Use.” Lesoon earned her MA from the University of Michigan at Ann Arbor, where her thesis investigated an 18th-century “Damascus Room” and its acquisition as a collected interior in the United States.

    Lizzie Yarina

    Yarina is a doctoral candidate in the MIT Department of Urban Studies and Planning (DUSP) and a research fellow at the MIT Norman B. Leventhal Center for Advanced Urbanism. She is presently co-editing a volume on the relationship between climate models and the built environment with a multidisciplinary team of editors and contributors. Yarina was a research scientist at the MIT Urban Risk Lab, where she was part of a team examining alternatives to the Federal Emergency Management Agency’s post-disaster housing systems; she also conducted research on disaster preparedness in Japan. Her award supports her doctoral research under the title “Modeling the Mekong: Climate Adaptation Imaginaries in Delta Regions,” which will include fieldwork in Vietnam, the Netherlands, Thailand, and Cambodia.

    “Lizzie’s research brings together three dimensions critical to global well-being and sustainability: adapting to the inevitability of changing ecosystems wrought by the climate crisis; questioning the equity, appropriateness, and relationality of adaptation planning models spanning the global North and the global South; and understanding how to develop durable and just climate futures,” says Christopher Zegras, professor of mobility and urban planning and department head for DUSP. “Her work will be an important contribution toward the long-term health of our planet and of communities working to justly adapt to climate change.”

    Previously, Yarina was awarded a U.S. Scholarship Fulbright to New Zealand to research spatial mapping and policy implications of Pacific Islander migration to New Zealand.

    “My dissertation project looks at climate adaptation planning in delta regions,” she says. “My focus is on Vietnam’s Mekong River Delta, but I’m also looking at how models that are used in delta adaptation planning move between different deltas, including the Netherlands Rhine Delta and the Mississippi Delta.”

    Working on her masters at MIT, Yarina had a teaching fellowship in Singapore, where she conducted research on climate adaptation plans in four major cities in Southeast Asia.

    “Through that process I learned about the role of Dutch experts and Dutch models in shaping how climate adaptation planning was taking place in Southeast Asia,” she says. “This project expands on that work from looking at a single city to examining a regional plan at the scale of a delta.”

    Yarina holds a joint masters in architecture and masters of city planning from MIT, and a BS in architecture from the University of Michigan. More

  • in

    New visions for better transportation

    We typically experience transportation problems from the ground up. Waiting for a delayed bus, packing ourselves into a subway car, or crawling along in traffic, it is common to see such systems struggling at close range.

    Yet sometimes transportation solutions come from a high-level, top-down approach. That was the theme of the final talk in MIT’s Mobility Forum series, delivered on Friday by MIT Professor Thomas Magnanti, which centered on applying to transportation the same overarching analytical framework used in other domains, such as bioengineering.

    Magnanti’s remarks focused on a structured approach to problem-solving known as the 4M method — which stands for measuring, mining, modeling, and manipulating. In urban transportation planning, for instance, measuring and mining might involve understanding traffic flows. Modeling might simulate those traffic flows, and manipulating would mean engineering interventions: tolls, one-way streets, or other changes.

    “These are four things that interact quite a bit with each other,” said Magnanti, who is an Institute Professor — MIT’s highest faculty distinction — and a professor of operations research at the MIT Sloan School of Management. “And they provide us with a sense of how you can gather data and understand a system, but also how you can improve it.”

    Magnanti, a leading expert in operations research, pointed out that the 4M method can be applied to systems from physics to biomedical research. He outlined how it might be used to analyze transportations-related systems such as supply chains and warehouse movements.

    In all cases, he noted, applying the 4M concept to a system is an iterative process: Making changes to a system will likely produce new flows — of traffic and goods — and thus be subject to a new set of measurements.

    “One thing to notice here, once you manipulate the system, it changes the data,” Magnanti observed. “You’re doing this so you can hopefully improve operations, but it creates new data. So, you want to measure that new data again, you want to mine it, you want to model it again, and then manipulate it. … This is a continuing loop that we use in these systems.”

    Magnanti’s talk, “Understanding and Improving Transportation Systems,” was delivered online to a public audience of about 175 people. It was the 12th and final event of the MIT Mobility Forum in the fall 2021 semester. The event series is organized by the MIT Mobility Initiative, an Institute-wide effort to research and accelerate the evolution of transportation, at a time when decarbonization in the sector is critical.

    Other MIT Mobility Forum talks have focused on topics such as zero-environmental-impact aviation, measuring pedestrian flows in cities, autonomous vehicles, the impact of high-speed rail and subways on cities, values and equity in mobility design, and more.

    Overall, the forum “offers an opportunity to showcase the groundbreaking transportation research occurring across the Institute,” says Jinhua Zhao, an associate professor of transportation and city planning in MIT’s Department of Urban Studies and Planning, and director of the MIT Mobility Initiative.

    The initiative has held 39 such talks since it launched in 2020, and the series will continue again in the spring semester of 2022.

    One of the principal features of the forum, like the MIT Mobility Initiative in general, is that it “facilitates cross-disciplinary exchanges both within MIT and without,” Zhao says. Faculty and students from every school at MIT have participated in the forum, lending intellectual and methodological diversity to a broad field.

    For his part, Magnanti, who is both an engineer and operations researcher by training, embraced that interdisciplinary approach in his remarks, fielding a variety of audience questions after his talk, about research methods and other issues. Magnanti, who served from 2009 to 2017 as the founding president of the Singapore University of Technology and Design (with which MIT has had research collaborations), noted that the setting can heavily influence transportation research and progress.

    In Singapore, he noted, “They measure everything. They measure how people access the subway … and they use their data.” Of course, Singapore’s status as a city-state of modest size, among other factors, makes comprehensive transportation planning more feasible there. Still, Magnanti also noted that the infrastructure bill recently passed by the U.S. federal government is “going to provide lots of opportunities” for transportation improvements.

    And in general, Magnanti added, one of the best things academic leaders and research communities can do is to “continue to create a sense of excitement. Even when things are tough, the problems are going to be interesting.” More

  • in

    “Vigilant inclusion” central to combating climate change

    “To turbocharge work on saving the planet, we need effective, innovative, localized solutions, and diverse perspectives and experience at the table,” said U.S. Secretary of Energy Jennifer M. Granholm, the keynote speaker at the 10th annual U.S. Clean Energy Education and Empowerment (C3E) Women in Clean Energy Symposium and Awards.

    This event, convened virtually over Nov. 3-4 and engaging more than 1,000 participants, was devoted to the themes of justice and equity in clean energy. In panels and presentations, speakers hammered home the idea that the benefits of a zero-carbon future must be shared equitably, especially among groups historically neglected or marginalized. To ensure this outcome, the speakers concluded, these same groups must help drive the clean-energy transition, and women, who stand to bear enormous burdens as the world warms, should be central to the effort. This means “practicing vigilant inclusion,” said Granholm.

    The C3E symposium, which is dedicated to celebrating the leadership of women in the field of clean energy and inspiring the next generation of women leaders, featured professionals from government, industry, research, and other sectors. Some of them spoke from experience, and from the heart, on issues of environmental justice.

    “I grew up in a trailer park in northern Utah, where it was so cold at night a sheet of ice formed on the inside of the door,” said Melanie Santiago-Mosier, the deputy director of the Clean Energy Group and Clean Energy States Alliance. Santiago-Mosier, who won a 2018 C3E award for advocacy, has devoted her career “to bringing the benefits of clean energy to families like mine, and to preventing mistakes of the past that result in a deeply unjust energy system.”

    Tracey A. LeBeau, a member of the Cheyenne River Sioux Tribe who grew up in South Dakota, described the flooding of her community’s land to create a hydroelectric dam, forcing the dislocation of many people. Today, as administrator and CEO of the Western Area Power Administration, LeBeau manages distribution of hydropower across 15 states, and has built an organization in which the needs of disadvantaged communities are top of mind. “I stay true to my indigenous point of view,” she said.

    The C3E Symposium was launched in 2012 to increase gender diversity in the energy sector and provide awards to outstanding women in the field. It is part of the C3E Initiative, a collaboration between the U.S. Department of Energy (DOE), the MIT Energy Initiative (MITEI), Texas A&M Energy Institute, and Stanford Precourt Institute for Energy, which hosted the event this year.

    Connecting global rich and poor

    As the COP26 climate summit unfolded in Glasgow, highlighting the sharp divide between rich and poor nations, C3E panelists pursued a related agenda. One panel focused on paths for collaboration between industrialized nations and nations with developing economies to build a sustainable, carbon-neutral global economy.

    Radhika Thakkar, the vice president of corporate affairs at solar home energy provider Greenlight Planet and a 2019 C3E international award winner, believes that small partnerships with women at the community level can lead to large impacts. When her company introduced solar lamp home systems to Rwanda, “Women abandoned selling bananas to sell our lamps, making enough money to purchase land, cows, even putting their families through school,” she said.

    Sudeshna Banerjee, the practice manager for Europe and Central Asia and the energy and extractives global practice at the World Bank, talked about impacts of a bank-supported electrification program in Nairobi slums where gang warfare kept girls confined at home. “Once the lights came on, girls felt more empowered to go around in dark hours,” she said. “This is what development is: creating opportunities for young women to do something with their lives, giving them educational opportunities and creating instances for them to generate income.”

    In another session, panelists focused on ways to enable disadvantaged communities in the United States to take full advantage of clean energy opportunities.

    Amy Glasmeier, a professor of economic geography and regional planning at MIT, believes remote, rural communities require broadband and other information channels in order to chart their own clean-energy journeys. “We must provide access to more than energy, so people can educate themselves and imagine how the energy transition can work for them.”

    Santiago-Mosier described the absence of rooftop solar in underprivileged neighborhoods of the nation’s cities and towns as the result of a kind of clean-energy redlining. “Clean energy and the solar industry are falling into 400-year-old traps of systemic racism,” she said. “This is no accident: senior executives in solar are white and male.” The answer is “making sure that providers and companies are elevating people of color and women in industries,” otherwise “solar is leaving potential growth on the table.”

    Data for equitable outcomes

    Jessica Granderson, the director of building technology at the White House Council on Environmental Quality and the 2015 C3E research award winner, is measuring and remediating greenhouse gas emissions from the nation’s hundred-million-plus homes and commercial structures. In a panel exploring data-driven solutions for advancing equitable energy outcomes, Granderson described using new building performance standards that improve the energy efficiency and material performance of construction in a way that does not burden building owners with modest resources. “We are emphasizing engagements at the community level, bringing in a local workforce, and addressing the needs of local programs, in a way that hasn’t necessarily been present in the past,” she said.

    To facilitate her studies on how people in these communities use and experience public transportation systems, Tierra Bills, an assistant professor in civil and environmental engineering at Wayne State University, is developing a community-based approach for collecting data. “Not everyone who is eager to contribute to a study can participate in an online survey and upload data, so we need to find ways of overcoming these barriers,” she said.

    Corporate efforts to advance social and environmental justice turn on community engagement as well. Paula Gold-Williams, a C3E ambassador and the president and CEO of CPS Energy, with 1 million customers in San Antonio, Texas, described a weatherization campaign to better insulate homes that involved “looking for as many places to go as possible in parts of town where people wouldn’t normally raise their hands.”

    Carla Peterman, the executive vice president for corporate affairs and chief of sustainability at Pacific Gas & Electric, and the 2015 C3E government award winner, was deliberating about raising rates some years ago. “My ‘aha’ moment was in a community workshop where I realized that a $5 increase is too much,” she said. “It may be the cost of a latte, but these folks aren’t buying lattes, and it’s a choice between electricity and food or shelter.”

    A call to arms

    Humanity cannot win the all-out race to achieve a zero-carbon future without a vast new cohort of participants, symposium speakers agreed. A number of the 2021 C3E award winners who have committed their careers to clean energy invoked the moral imperative of the moment and issued a call to arms.

    “Seven-hundred-and-fifty million people around the world live without reliable energy, and 70 percent of schools lack power,” said Rhonda Jordan-Antoine PhD ’12, a senior energy specialist at the World Bank who received this year’s international award. By laboring to bring smart grids, battery technologies, and regional integration to even the most remote communities, she said, we open up opportunities for education and jobs. “Energy access is not just about energy, but development,” said Antoine, “and I hope you are encouraged to advance clean energy efforts around the globe.”

    Faith Corneille, who won the government award, works in the U.S. Department of State’s Bureau of Energy Resources. “We need innovators and scientists to design solutions; energy efficiency experts and engineers to build; lawyers to review, and bankers to invest, and insurance agents to protect against risk; and we need problem-solvers to thread these together,” she said. “Whatever your path, there’s a role for you: energy and climate intersect with whatever you do.”

    “We know the cause of climate change and how to reverse it, but to make that happen we need passionate and brilliant minds, all pulling in the same direction,” said Megan Nutting, the executive vice president of government and regulatory affairs at Sunnova Energy Corporation, and winner of the business award. “The clean-energy transition needs women,” she said. “If you are not working in clean energy, then why not?” More

  • in

    For campus “porosity hunters,” climate resilience is the goal

    At MIT, it’s not uncommon to see groups navigating campus with smartphones and measuring devices in hand, using the Institute as a test bed for research. During one week this summer more than a dozen students, researchers, and faculty, plus an altimeter, could be seen doing just that as they traveled across MIT to measure the points of entry into campus buildings — including windows, doors, and vents — known as a building’s porosity.

    Why measure campus building porosity?

    The group was part of the MIT Porosity Hunt, a citizen-science effort that is using the MIT campus as a place to test emerging methodologies, instruments, and data collection processes to better understand the potential impact of a changing climate — and specifically storm scenarios resulting from it — on infrastructure. The hunt is a collaborative effort between the Urban Risk Lab, led by director and associate professor of architecture and urbanism Miho Mazereeuw, and the Office of Sustainability (MITOS), aimed at supporting an MIT that is resilient to the impacts of climate change, including flooding and extreme heat events. Working over three days, members of the hunt catalogued openings in dozens of buildings across campus to better support flood mapping and resiliency planning at MIT.

    For Mazereeuw, the data collection project lies at the nexus of her work with the Urban Risk Lab and as a member of MIT’s Climate Resiliency Committee. While the lab’s mission is to “develop methods, prototypes, and technologies to embed risk reduction and preparedness into the design of cities and regions to increase resilience,” the Climate Resiliency Committee — made up of faculty, staff, and researchers — is focused on assessing, planning, and operationalizing a climate-resilient MIT. The work of both the lab and the committee is embedded in the recently released MIT Climate Resiliency Dashboard, a visualization tool that allows users to understand potential flooding impacts of a number of storm scenarios and drive decision-making.

    While the debut of the tool signaled a big advancement in resiliency planning at MIT, some, including Mazereeuw, saw an opportunity for enhancement. In working with Ken Strzepek, a MITOS Faculty Fellow and research scientist at the MIT Center for Global Change Science who was also an integral part of this work, Mazereeuw says she was surprised to learn that even the most sophisticated flood modeling treats buildings as solid blocks. With all buildings being treated the same, despite varying porosity, the dashboard is limited in some flood scenario analysis. To address this, Mazereeuw and others got to work to fill in that additional layer of data, with the citizen science efforts a key factor of that work. “Understanding the porosity of the building is important to understanding how much water actually goes in the building in these scenarios,” she explains.

    Though surveyors are often used to collect and map this type of information, Mazereeuw wanted to leverage the MIT community in order to collect data quickly while engaging students, faculty, and researchers as resiliency stewards for the campus. “It’s important for projects like this to encourage awareness,” she explains. “Generally, when something fails, we notice it, but otherwise we don’t. With climate change bringing on more uncertainty in the scale and intensity of events, we need everyone to be more aware and help us understand things like vulnerabilities.”

    To do this, MITOS and the Urban Risk Lab reached out to more than a dozen students, who were joined by faculty, staff, and researchers, to map porosity of 31 campus buildings connected by basements. The buildings were chosen based on this connectivity, understanding that water that reaches one basement could potentially flow to another.

    Urban Risk Lab research scientists Aditya Barve and Mayank Ojha aided the group’s efforts by creating a mapping app and chatbot to support consistency in reporting and ease of use. Each team member used the app to find buildings where porosity points needed to be mapped. As teams arrived at the building exteriors, they entered their location in the app, which then triggered the Facebook and LINE-powered chatbot on their phone. There, students were guided through measuring the opening, adjusting for elevation to correlate to the City of Cambridge base datum, and, based on observable features, noting the materials and quality of the opening on a one-through-three scale. Over just three days, the team, which included Mazereeuw herself, mapped 1,030 porosity points that will aid in resiliency planning and preparation on campus in a number of ways.

    “The goal is to understand various heights for flood waters around porous spots on campus,” says Mazereeuw. “But the impact can be different depending on the space. We hope this data can inform safety as well as understanding potential damage to research or disruption to campus operations from future storms.”

    The porosity data collection is complete for this round — future hunts will likely be conducted to confirm and converge data — but one team member’s work continues at the basement level of MIT. Katarina Boukin, a PhD student in civil and environmental engineering and PhD student fellow with MITOS, has been focused on methods of collecting data beneath buildings at MIT to understand how they would be impacted if flood water were to enter. “We have a number of connected basements on campus, and if one of them floods, potentially all of them do,” explains Boukin. “By looking at absolute elevation and porosity, we’re connecting the outside to the inside and tracking how much and where water may flow.” With the added data from the Porosity Hunt, a complete picture of vulnerabilities and resiliency opportunities can be shared.

    Synthesizing much of this data is where Eva Then ’21 comes in. Then was among the students who worked to capture data points over the three days and is now working in ArcGIS — an online mapping software that also powers the Climate Resiliency Dashboard — to process and visualize the data collected. Once completed, the data will be incorporated into the campus flood model to increase the accuracy of projections on the Climate Resiliency Dashboard. “Over the next decades, the model will serve as an adaptive planning tool to make campus safe and resilient amid growing climate risks,” Then says.

    For Mazereeuw, the Porosity Hunt and data collected additionally serve as a study in scalability, providing valuable insight on how similar research efforts inspired by the MIT test bed approach could be undertaken and inform policy beyond MIT. She also hopes it will inspire students to launch their own hunts in the future, becoming resiliency stewards for their campus and dorms. “Going through measuring and documenting turns on and shows a new set of goggles — you see campus and buildings in a slightly different way,” she says, “Having people look carefully and document change is a powerful tool in climate and resiliency planning.” 

    Mazereeuw also notes that recent devastating flooding events across the country, including those resulting from Hurricane Ida, have put a special focus on this work. “The loss of life that occurred in that storm, including those who died as waters flooded their basement homes  underscores the urgency of this type of research, planning, and readiness.” More

  • in

    Climate and sustainability classes expand at MIT

    In fall 2019, a new class, 6.S898/12.S992 (Climate Change Seminar), arrived at MIT. It was, at the time, the only course in the Department of Electrical Engineering and Computer Science (EECS) to tackle the science of climate change. The class covered climate models and simulations alongside atmospheric science, policy, and economics.

    Ron Rivest, MIT Institute Professor of Computer Science, was one of the class’s three instructors, with Alan Edelman of the Computer Science and Artificial Intelligence Laboratory (CSAIL) and John Fernández of the Department of Urban Studies and Planning. “Computer scientists have much to contribute to climate science,” Rivest says. “In particular, the modeling and simulation of climate can benefit from advances in computer science.”

    Rivest is one of many MIT faculty members who have been working in recent years to bring topics in climate, sustainability, and the environment to students in a growing variety of fields. And students have said they want this trend to continue.

    “Sustainability is something that touches all disciplines,” says Megan Xu, a rising senior in biological engineering and advisory chair of the Undergraduate Association Sustainability Committee. “As students who have grown up knowing that climate change is real and witnessed climate disaster after disaster, we know this is a huge problem that needs to be addressed by our generation.”

    Expanding the course catalog

    As education program manager at the MIT Environmental Solutions Initiative, Sarah Meyers has repeatedly had a hand in launching new sustainability classes. She has steered grant money to faculty, brought together instructors, and helped design syllabi — all in the service of giving MIT students the same world-class education in climate and sustainability that they get in science and engineering.

    Her work has given Meyers a bird’s-eye view of MIT’s course offerings in this area. By her count, there are now over 120 undergraduate classes, across 23 academic departments, that teach climate, environment, and sustainability principles.

    “Educating the next generation is the most important way that MIT can have an impact on the world’s environmental challenges,” she says. “MIT students are going to be leaders in their fields, whatever they may be. If they really understand sustainable design practices, if they can balance the needs of all stakeholders to make ethical decisions, then that actually changes the way our world operates and can move humanity towards a more sustainable future.”

    Some sustainability classes are established institutions at MIT. Success stories include 2.00A (Fundamentals of Engineering Design: Explore Space, Sea and Earth), a hands-on engineering class popular with first-year students; and 21W.775 (Writing About Nature and Environmental Issues), which has helped undergraduates fulfill their HASS-H (humanities distribution subject) and CI-H (Communication Intensive subject in the Humanities, Arts, and Social Sciences) graduation requirements for 15 years.

    Expanding this list of classes is an institutional priority. In the recently released Climate Action Plan for the Decade, MIT pledged to recruit at least 20 additional faculty members who will teach climate-related classes.

    “I think it’s easy to find classes if you’re looking for sustainability classes to take,” says Naomi Lutz, a senior in mechanical engineering who helped advise the MIT administration on education measures in the Climate Action Plan. “I usually scroll through the titles of the classes in courses 1, 2, 11, and 12 to see if any are of interest. I also have used the Environment & Sustainability Minor class list to look for sustainability-related classes to take.

    “The coming years are critical for the future of our planet, so it’s important that we all learn about sustainability and think about how to address it,” she adds.

    Working with students’ schedules

    Still, despite all this activity, climate and sustainability are not yet mainstream parts of an MIT education. Last year, a survey of over 800 MIT undergraduates, taken by the Undergraduate Association Sustainability Committee, found that only one in four had ever taken a class related to sustainability. But it doesn’t seem to be from lack of interest in the topic. More than half of those surveyed said that sustainability is a factor in their career planning, and almost 80 percent try to practice sustainability in their daily lives.

    “I’ve often had conversations with students who were surprised to learn there are so many classes available,” says Meyers. “We do need to do a better job communicating about them, and making it as easy as possible to enroll.”

    A recurring challenge is helping students fit sustainability into their plans for graduation, which are often tightly mapped-out.

    “We each only have four years — around 32 to 40 classes — to absorb all that we can from this amazing place,” says Xu. “Many of these classes are mandated to be GIRs [General Institute Requirements] and major requirements. Many students recognize that sustainability is important, but might not have the time to devote an entire class to the topic if it would not count toward their requirements.”

    This was a central focus for the students who were involved in forming education recommendations for the Climate Action Plan. “We propose that more sustainability-related courses or tracks are offered in the most common majors, especially in Course 6 [EECS],” says Lutz. “If students can fulfill major requirements while taking courses that address environmental problems, we believe more students will pursue research and careers related to sustainability.”

    She also recommends that students look into the dozens of climate and sustainability classes that fulfill GIRs. “It’s really easy to take sustainability-related courses that fulfill HASS [Humanities, Arts, and Social Sciences] requirements,” she says. For example, students can meet their HASS-S (social sciences sistribution subject) requirement by taking 21H.185 (Environment and History), or fulfill their HASS-A requirement with CMS.374 (Transmedia Art, Extraction and Environmental Justice).

    Classes with impact

    For those students who do seek out sustainability classes early in their MIT careers, the experience can shape their whole education.

    “My first semester at MIT, I took Environment and History, co-taught by professors Susan Solomon and Harriet Ritvo,” says Xu. “It taught me that there is so much more involved than just science and hard facts to solving problems in sustainability and climate. I learned to look at problems with more of a focus on people, which has informed much of the extracurricular work that I’ve gone on to do at MIT.”

    And the faculty, too, sometimes find that teaching in this area opens new doors for them. Rivest, who taught the climate change seminar in Course 6, is now working to build a simplified climate model with his co-instructor Alan Edelman, their teaching assistant Henri Drake, and Professor John Deutch of the Department of Chemistry, who joined the class as a guest lecturer. “I very much enjoyed meeting new colleagues from all around MIT,” Rivest says. “Teaching a class like this fosters connections between computer scientists and climate scientists.”

    Which is why Meyers will continue helping to get these classes off the ground. “We know students think climate is a huge issue for their futures. We know faculty agree with them,” she says. “Everybody wants this to be part of an MIT education. The next step is to really reach out to students and departments to fill the classrooms. That’s the start of a virtuous cycle where enrollment drives more sustainability instruction in every part of MIT.” More

  • in

    Finding common ground in Malden

    When disparate groups convene around a common goal, exciting things can happen.

    That is the inspiring story unfolding in Malden, Massachusetts, a city of about 60,000 — nearly half people of color — where a new type of community coalition continues to gain momentum on its plan to build a climate-resilient waterfront park along its river. The Malden River Works (MRW) project, recipient of the inaugural Leventhal City Prize, is seeking to connect to a contiguous greenway network where neighboring cities already have visitors coming to their parks and enjoying recreational boating. More important, the MRW is changing the model for how cities address civic growth, community engagement, equitable climate resilience, and environmental justice.                                                                                        

    The MRW’s steering committee consists of eight resident leaders of color, a resident environmental advocate, and three city representatives. One of the committee’s primary responsibilities is providing direction to the MRW’s project team, which includes urban designers, watershed and climate resilience planners, and a community outreach specialist. MIT’s Kathleen Vandiver, director of the Community Outreach Education and Engagement Core at MIT’s Center for Environmental Health Sciences (CEHS), and Marie Law Adams MArch ’06, a lecturer in the School of Architecture and Planning’s Department of Urban Studies and Planning (DUSP), serve on the project team.

    “This governance structure is somewhat unusual,” says Adams. “More typical is having city government as the primary decision-maker. It is important that one of the first things our team did was build a steering committee that is the decision maker on this project.”

    Evan Spetrini ’18 is the senior planner and policy manager for the Malden Redevelopment Authority and sits on both the steering committee and project team. He says placing the decision-making power with the steering committee and building it to be representative of marginalized communities was intentional. 

    “Changing that paradigm of power and decision-making in planning processes was the way we approached social resilience,” says Spetrini. “We have always intended this project to be a model for future planning projects in Malden.”

    This model ushers in a new history chapter for a city founded in 1640.

    Located about six miles north of Boston, Malden was home to mills and factories that used the Malden River for power, and a site for industrial waste over the last two centuries. Decades after the city’s industrial decline, there is little to no public access to the river. Many residents were not even aware there was a river in their city. Before the project was under way, Vandiver initiated a collaborative effort to evaluate the quality of the river’s water. Working with the Mystic River Watershed Association, Gradient Corporation, and CEHS, water samples were tested and a risk analysis conducted.

    “Having the study done made it clear the public could safely enjoy boating on the water,” says Vandiver. “It was a breakthrough that allowed people to see the river as an amenity.”

    A team effort

    Marcia Manong had never seen the river, but the Malden resident was persuaded to join the steering committee with the promise the project would be inclusive and of value to the community. Manong has been involved with civic engagement most of her life in the United States and for 20 years in South Africa.

    “It wasn’t going to be a marginalized, token-ized engagement,” says Manong. “It was clear to me that they were looking for people that would actually be sitting at the table.”

    Manong agreed to recruit additional people of color to join the team. From the beginning, she says, language was a huge barrier, given that nearly half of Malden’s residents do not speak English at home. Finding the translation efforts at their public events to be inadequate, the steering committee directed more funds to be made available for translation in several languages when public meetings began being held over Zoom this past year.

    “It’s unusual for most cities to spend this money, but our population is so diverse that we require it,” says Manong. “We have to do it. If the steering committee wasn’t raising this issue with the rest of the team, perhaps this would be overlooked.”

    Another alteration the steering committee has made is how the project engages with the community. While public attendance at meetings had been successful before the pandemic, Manong says they are “constantly working” to reach new people. One method has been to request invitations to attend the virtual meetings of other organizations to keep them apprised of the project.

    “We’ve said that people feel most comfortable when they’re in their own surroundings, so why not go where the people are instead of trying to get them to where we are,” says Manong.

    Buoyed by the $100,000 grant from MIT’s Norman B. Leventhal Center for Advanced Urbanism (LCAU) in 2019, the project team worked with Malden’s Department of Public Works, which is located along the river, to redesign its site and buildings and to study how to create a flood-resistant public open space as well as an elevated greenway path, connecting with other neighboring cities’ paths. The park’s plans also call for 75 new trees to reduce urban heat island effect, open lawn for gathering, and a dock for boating on the river.

    “The storm water infrastructure in these cities is old and isn’t going to be able to keep up with increased precipitation,” says Adams. “We’re looking for ways to store as much water as possible on the DPW site so we can hold it and release it more gradually into the river to avoid flooding.”

    The project along the 2.3-mile-long river continues to receive attention. Recently, the city of Malden was awarded a 2021 Accelerating Climate Resilience Grant of more than $50,000 from the state’s Metropolitan Area Planning Council and the Barr Foundation to support the project. Last fall, the project was awarded a $150,015 Municipal Vulnerability Preparedness Action Grant. Both awards are being directed to fund engineering work to refine the project’s design.

    “We — and in general, the planning profession — are striving to create more community empowerment in decision-making as to what happens to their community,” says Spetrini. “Putting the power in the community ensures that it’s actually responding to the needs of the community.”

    Contagious enthusiasm

    Manong says she’s happy she got involved with the project and believes the new governance structure is making a difference.

    “This project is definitely engaging with communities of color in a manner that is transformative and that is looking to build a long-lasting power dynamic built on trust,” she says. “It’s a new energized civic engagement and we’re making that happen. It’s very exciting.”

    Spetrini finds the challenge of creating an open space that’s publicly accessible and alongside an active work site professionally compelling.

    “There is a way to preserve the industrial employment base while also giving the public greater access to this natural resource,” he says. “It has real implications for other communities to follow this type of model.”

    Despite the pandemic this past year, enthusiasm for the project is palpable. For Spetrini, a Malden resident, it’s building “the first significant piece of what has been envisioned as the Malden River Greenway.” Adams sees the total project as a way to build social resilience as well as garnering community interest in climate resilience. For Vandiver, it’s the implications for improved community access.

    “From a health standpoint, everybody has learned from Covid-19 that the health aspects of walking in nature are really restorative,” says Vandiver. “Creating greater green space gives more attention to health issues. These are seemingly small side benefits, but they’re huge for mental health benefits.”

    Leventhal City Prize’s next cycle

    The Leventhal City Prize was established by the LCAU to catalyze innovative, interdisciplinary urban design, and planning approaches worldwide to improve both the environment and the quality of life for residents. Support for the LCAU was provided by the Muriel and Norman B. Leventhal Family Foundation and the Sherry and Alan Leventhal Family Foundation.

    “We’re thrilled with inaugural recipients of the award and the extensive work they’ve undertaken that is being held up as an exemplary model for others to learn from,” says Sarah Williams, LCAU director and a professor in DUSP. “Their work reflects the prize’s intent. We look forward to catalyzing these types of collaborative partnership in the next prize cycle.”

    Submissions for the next cycle of the Leventhal City Prize will open in early 2022.    More