More stories

  • in

    Window-sized device taps the air for safe drinking water

    Today, 2.2 billion people in the world lack access to safe drinking water. In the United States, more than 46 million people experience water insecurity, living with either no running water or water that is unsafe to drink. The increasing need for drinking water is stretching traditional resources such as rivers, lakes, and reservoirs.To improve access to safe and affordable drinking water, MIT engineers are tapping into an unconventional source: the air. The Earth’s atmosphere contains millions of billions of gallons of water in the form of vapor. If this vapor can be efficiently captured and condensed, it could supply clean drinking water in places where traditional water resources are inaccessible.With that goal in mind, the MIT team has developed and tested a new atmospheric water harvester and shown that it efficiently captures water vapor and produces safe drinking water across a range of relative humidities, including dry desert air.The new device is a black, window-sized vertical panel, made from a water-absorbent hydrogel material, enclosed in a glass chamber coated with a cooling layer. The hydrogel resembles black bubble wrap, with small dome-shaped structures that swell when the hydrogel soaks up water vapor. When the captured vapor evaporates, the domes shrink back down in an origami-like transformation. The evaporated vapor then condenses on the the glass, where it can flow down and out through a tube, as clean and drinkable water.

    MIT engineers test a passive water harvester in Death Valley, CA. The window-sized setup is made from an origami-inspired hydrogel material (black) that absorbs water from the air, and releases it into tubes where researchers can collect the moisture as pure drinking water.

    Credit: Courtesy of the researchers; MIT News

    Previous item
    Next item

    The system runs entirely on its own, without a power source, unlike other designs that require batteries, solar panels, or electricity from the grid. The team ran the device for over a week in Death Valley, California — the driest region in North America. Even in very low-humidity conditions, the device squeezed drinking water from the air at rates of up to 160 milliliters (about two-thirds of a cup) per day.The team estimates that multiple vertical panels, set up in a small array, could passively supply a household with drinking water, even in arid desert environments. What’s more, the system’s water production should increase with humidity, supplying drinking water in temperate and tropical climates.“We have built a meter-scale device that we hope to deploy in resource-limited regions, where even a solar cell is not very accessible,” says Xuanhe Zhao, the Uncas and Helen Whitaker Professor of Mechanical Engineering and Civil and Environmental Engineering at MIT. “It’s a test of feasibility in scaling up this water harvesting technology. Now people can build it even larger, or make it into parallel panels, to supply drinking water to people and achieve real impact.”Zhao and his colleagues present the details of the new water harvesting design in a paper appearing today in the journal Nature Water. The study’s lead author is former MIT postdoc “Will” Chang Liu, who is currently an assistant professor at the National University of Singapore (NUS). MIT co-authors include Xiao-Yun Yan, Shucong Li, and Bolei Deng, along with collaborators from multiple other institutions.Carrying capacityHydrogels are soft, porous materials that are made mainly from water and a microscopic network of interconnecting polymer fibers. Zhao’s group at MIT has primarily explored the use of hydrogels in biomedical applications, including adhesive coatings for medical implants, soft and flexible electrodes, and noninvasive imaging stickers.“Through our work with soft materials, one property we know very well is the way hydrogel is very good at absorbing water from air,” Zhao says.Researchers are exploring a number of ways to harvest water vapor for drinking water. Among the most efficient so far are devices made from metal-organic frameworks, or MOFs — ultra-porous materials that have also been shown to capture water from dry desert air. But the MOFs do not swell or stretch when absorbing water, and are limited in vapor-carrying capacity.Water from airThe group’s new hydrogel-based water harvester addresses another key problem in similar designs. Other groups have designed water harvesters out of micro- or nano-porous hydrogels. But the water produced from these designs can be salty, requiring additional filtering. Salt is a naturally absorbent material, and researchers embed salts — typically, lithium chloride — in hydrogel to increase the material’s water absorption. The drawback, however, is that this salt can leak out with the water when it is eventually collected.The team’s new design significantly limits salt leakage. Within the hydrogel itself, they included an extra ingredient: glycerol, a liquid compound that naturally stabilizes salt, keeping it within the gel rather than letting it crystallize and leak out with the water. The hydrogel itself has a microstructure that lacks nanoscale pores, which further prevents salt from escaping the material. The salt levels in the water they collected were below the standard threshold for safe drinking water, and significantly below the levels produced by many other hydrogel-based designs.In addition to tuning the hydrogel’s composition, the researchers made improvements to its form. Rather than keeping the gel as a flat sheet, they molded it into a pattern of small domes resembling bubble wrap, that act to increase the gel’s surface area, along with the amount of water vapor it can absorb.The researchers fabricated a half-square-meter of hydrogel and encased the material in a window-like glass chamber. They coated the exterior of the chamber with a special polymer film, which helps to cool the glass and stimulates any water vapor in the hydrogel to evaporate and condense onto the glass. They installed a simple tubing system to collect the water as it flows down the glass.In November 2023, the team traveled to Death Valley, California, and set up the device as a vertical panel. Over seven days, they took measurements as the hydrogel absorbed water vapor during the night (the time of day when water vapor in the desert is highest). In the daytime, with help from the sun, the harvested water evaporated out from the hydrogel and condensed onto the glass.Over this period, the device worked across a range of humidities, from 21 to 88 percent, and produced between 57 and 161.5 milliliters of drinking water per day. Even in the driest conditions, the device harvested more water than other passive and some actively powered designs.“This is just a proof-of-concept design, and there are a lot of things we can optimize,” Liu says. “For instance, we could have a multipanel design. And we’re working on a next generation of the material to further improve its intrinsic properties.”“We imagine that you could one day deploy an array of these panels, and the footprint is very small because they are all vertical,” says Zhao, who has plans to further test the panels in many resource-limited regions. “Then you could have many panels together, collecting water all the time, at household scale.”This work was supported, in part, by the MIT J-WAFS Water and Food Seed Grant, the MIT-Chinese University of Hong Kong collaborative research program, and the UM6P-MIT collaborative research program. More

  • in

    Study shows making hydrogen with soda cans and seawater is scalable and sustainable

    Hydrogen has the potential to be a climate-friendly fuel since it doesn’t release carbon dioxide when used as an energy source. Currently, however, most methods for producing hydrogen involve fossil fuels, making hydrogen less of a “green” fuel over its entire life cycle.A new process developed by MIT engineers could significantly shrink the carbon footprint associated with making hydrogen.Last year, the team reported that they could produce hydrogen gas by combining seawater, recycled soda cans, and caffeine. The question then was whether the benchtop process could be applied at an industrial scale, and at what environmental cost.Now, the researchers have carried out a “cradle-to-grave” life cycle assessment, taking into account every step in the process at an industrial scale. For instance, the team calculated the carbon emissions associated with acquiring and processing aluminum, reacting it with seawater to produce hydrogen, and transporting the fuel to gas stations, where drivers could tap into hydrogen tanks to power engines or fuel cell cars. They found that, from end to end, the new process could generate a fraction of the carbon emissions that is associated with conventional hydrogen production.In a study appearing today in Cell Reports Sustainability, the team reports that for every kilogram of hydrogen produced, the process would generate 1.45 kilograms of carbon dioxide over its entire life cycle. In comparison, fossil-fuel-based processes emit 11 kilograms of carbon dioxide per kilogram of hydrogen generated.The low-carbon footprint is on par with other proposed “green hydrogen” technologies, such as those powered by solar and wind energy.“We’re in the ballpark of green hydrogen,” says lead author Aly Kombargi PhD ’25, who graduated this spring from MIT with a doctorate in mechanical engineering. “This work highlights aluminum’s potential as a clean energy source and offers a scalable pathway for low-emission hydrogen deployment in transportation and remote energy systems.”The study’s MIT co-authors are Brooke Bao, Enoch Ellis, and professor of mechanical engineering Douglas Hart.Gas bubbleDropping an aluminum can in water won’t normally cause much of a chemical reaction. That’s because when aluminum is exposed to oxygen, it instantly forms a shield-like layer. Without this layer, aluminum exists in its pure form and can readily react when mixed with water. The reaction that occurs involves aluminum atoms that efficiently break up molecules of water, producing aluminum oxide and pure hydrogen. And it doesn’t take much of the metal to bubble up a significant amount of the gas.“One of the main benefits of using aluminum is the energy density per unit volume,” Kombargi says. “With a very small amount of aluminum fuel, you can conceivably supply much of the power for a hydrogen-fueled vehicle.”Last year, he and Hart developed a recipe for aluminum-based hydrogen production. They found they could puncture aluminum’s natural shield by treating it with a small amount of gallium-indium, which is a rare-metal alloy that effectively scrubs aluminum into its pure form. The researchers then mixed pellets of pure aluminum with seawater and observed that the reaction produced pure hydrogen. What’s more, the salt in the water helped to precipitate gallium-indium, which the team could subsequently recover and reuse to generate more hydrogen, in a cost-saving, sustainable cycle.“We were explaining the science of this process in conferences, and the questions we would get were, ‘How much does this cost?’ and, ‘What’s its carbon footprint?’” Kombargi says. “So we wanted to look at the process in a comprehensive way.”A sustainable cycleFor their new study, Kombargi and his colleagues carried out a life cycle assessment to estimate the environmental impact of aluminum-based hydrogen production, at every step of the process, from sourcing the aluminum to transporting the hydrogen after production. They set out to calculate the amount of carbon associated with generating 1 kilogram of hydrogen — an amount that they chose as a practical, consumer-level illustration.“With a hydrogen fuel cell car using 1 kilogram of hydrogen, you can go between 60 to 100 kilometers, depending on the efficiency of the fuel cell,” Kombargi notes.They performed the analysis using Earthster — an online life cycle assessment tool that draws data from a large repository of products and processes and their associated carbon emissions. The team considered a number of scenarios to produce hydrogen using aluminum, from starting with “primary” aluminum mined from the Earth, versus “secondary” aluminum that is recycled from soda cans and other products, and using various methods to transport the aluminum and hydrogen.After running life cycle assessments for about a dozen scenarios, the team identified one scenario with the lowest carbon footprint. This scenario centers on recycled aluminum — a source that saves a significant amount of emissions compared with mining aluminum — and seawater — a natural resource that also saves money by recovering gallium-indium. They found that this scenario, from start to finish, would generate about 1.45 kilograms of carbon dioxide for every kilogram of hydrogen produced. The cost of the fuel produced, they calculated, would be about $9 per kilogram, which is comparable to the price of hydrogen that would be generated with other green technologies such as wind and solar energy.The researchers envision that if the low-carbon process were ramped up to a commercial scale, it would look something like this: The production chain would start with scrap aluminum sourced from a recycling center. The aluminum would be shredded into pellets and treated with gallium-indium. Then, drivers could transport the pretreated pellets as aluminum “fuel,” rather than directly transporting hydrogen, which is potentially volatile. The pellets would be transported to a fuel station that ideally would be situated near a source of seawater, which could then be mixed with the aluminum, on demand, to produce hydrogen. A consumer could then directly pump the gas into a car with either an internal combustion engine or a fuel cell.The entire process does produce an aluminum-based byproduct, boehmite, which is a mineral that is commonly used in fabricating semiconductors, electronic elements, and a number of industrial products. Kombargi says that if this byproduct were recovered after hydrogen production, it could be sold to manufacturers, further bringing down the cost of the process as a whole.“There are a lot of things to consider,” Kombargi says. “But the process works, which is the most exciting part. And we show that it can be environmentally sustainable.”The group is continuing to develop the process. They recently designed a small reactor, about the size of a water bottle, that takes in aluminum pellets and seawater to generate hydrogen, enough to power an electric bike for several hours. They previously demonstrated that the process can produce enough hydrogen to fuel a small car. The team is also exploring underwater applications, and are designing a hydrogen reactor that would take in surrounding seawater to power a small boat or underwater vehicle.This research was supported, in part, by the MIT Portugal Program. More

  • in

    Imaging technique removes the effect of water in underwater scenes

    The ocean is teeming with life. But unless you get up close, much of the marine world can easily remain unseen. That’s because water itself can act as an effective cloak: Light that shines through the ocean can bend, scatter, and quickly fade as it travels through the dense medium of water and reflects off the persistent haze of ocean particles. This makes it extremely challenging to capture the true color of objects in the ocean without imaging them at close range.Now a team from MIT and the Woods Hole Oceanographic Institution (WHOI) has developed an image-analysis tool that cuts through the ocean’s optical effects and generates images of underwater environments that look as if the water had been drained away, revealing an ocean scene’s true colors. The team paired the color-correcting tool with a computational model that converts images of a scene into a three-dimensional underwater “world,” that can then be explored virtually.The researchers have dubbed the new tool “SeaSplat,” in reference to both its underwater application and a method known as 3D gaussian splatting (3DGS), which takes images of a scene and stitches them together to generate a complete, three-dimensional representation that can be viewed in detail, from any perspective.“With SeaSplat, it can model explicitly what the water is doing, and as a result it can in some ways remove the water, and produces better 3D models of an underwater scene,” says MIT graduate student Daniel Yang.The researchers applied SeaSplat to images of the sea floor taken by divers and underwater vehicles, in various locations including the U.S. Virgin Islands. The method generated 3D “worlds” from the images that were truer and more vivid and varied in color, compared to previous methods.The team says SeaSplat could help marine biologists monitor the health of certain ocean communities. For instance, as an underwater robot explores and takes pictures of a coral reef, SeaSplat would simultaneously process the images and render a true-color, 3D representation, that scientists could then virtually “fly” through, at their own pace and path, to inspect the underwater scene, for instance for signs of coral bleaching.“Bleaching looks white from close up, but could appear blue and hazy from far away, and you might not be able to detect it,” says Yogesh Girdhar, an associate scientist at WHOI. “Coral bleaching, and different coral species, could be easier to detect with SeaSplat imagery, to get the true colors in the ocean.”Girdhar and Yang will present a paper detailing SeaSplat at the IEEE International Conference on Robotics and Automation (ICRA). Their study co-author is John Leonard, professor of mechanical engineering at MIT.Aquatic opticsIn the ocean, the color and clarity of objects is distorted by the effects of light traveling through water. In recent years, researchers have developed color-correcting tools that aim to reproduce the true colors in the ocean. These efforts involved adapting tools that were developed originally for environments out of water, for instance to reveal the true color of features in foggy conditions. One recent work accurately reproduces true colors in the ocean, with an algorithm named “Sea-Thru,” though this method requires a huge amount of computational power, which makes its use in producing 3D scene models challenging.In parallel, others have made advances in 3D gaussian splatting, with tools that seamlessly stitch images of a scene together, and intelligently fill in any gaps to create a whole, 3D version of the scene. These 3D worlds enable “novel view synthesis,” meaning that someone can view the generated 3D scene, not just from the perspective of the original images, but from any angle and distance.But 3DGS has only successfully been applied to environments out of water. Efforts to adapt 3D reconstruction to underwater imagery have been hampered, mainly by two optical underwater effects: backscatter and attenuation. Backscatter occurs when light reflects off of tiny particles in the ocean, creating a veil-like haze. Attenuation is the phenomenon by which light of certain wavelengths attenuates, or fades with distance. In the ocean, for instance, red objects appear to fade more than blue objects when viewed from farther away.Out of water, the color of objects appears more or less the same regardless of the angle or distance from which they are viewed. In water, however, color can quickly change and fade depending on one’s perspective. When 3DGS methods attempt to stitch underwater images into a cohesive 3D whole, they are unable to resolve objects due to aquatic backscatter and attenuation effects that distort the color of objects at different angles.“One dream of underwater robotic vision that we have is: Imagine if you could remove all the water in the ocean. What would you see?” Leonard says.A model swimIn their new work, Yang and his colleagues developed a color-correcting algorithm that accounts for the optical effects of backscatter and attenuation. The algorithm determines the degree to which every pixel in an image must have been distorted by backscatter and attenuation effects, and then essentially takes away those aquatic effects, and computes what the pixel’s true color must be.Yang then worked the color-correcting algorithm into a 3D gaussian splatting model to create SeaSplat, which can quickly analyze underwater images of a scene and generate a true-color, 3D virtual version of the same scene that can be explored in detail from any angle and distance.The team applied SeaSplat to multiple underwater scenes, including images taken in the Red Sea, in the Carribean off the coast of Curaçao, and the Pacific Ocean, near Panama. These images, which the team took from a pre-existing dataset, represent a range of ocean locations and water conditions. They also tested SeaSplat on images taken by a remote-controlled underwater robot in the U.S. Virgin Islands.From the images of each ocean scene, SeaSplat generated a true-color 3D world that the researchers were able to virtually explore, for instance zooming in and out of a scene and viewing certain features from different perspectives. Even when viewing from different angles and distances, they found objects in every scene retained their true color, rather than fading as they would if viewed through the actual ocean.“Once it generates a 3D model, a scientist can just ‘swim’ through the model as though they are scuba-diving, and look at things in high detail, with real color,” Yang says.For now, the method requires hefty computing resources in the form of a desktop computer that would be too bulky to carry aboard an underwater robot. Still, SeaSplat could work for tethered operations, where a vehicle, tied to a ship, can explore and take images that can be sent up to a ship’s computer.“This is the first approach that can very quickly build high-quality 3D models with accurate colors, underwater, and it can create them and render them fast,” Girdhar says. “That will help to quantify biodiversity, and assess the health of coral reef and other marine communities.”This work was supported, in part, by the Investment in Science Fund at WHOI, and by the U.S. National Science Foundation. More

  • in

    MIT students turn vision to reality

    Life is a little brighter in Kapiyo these days.For many in this rural Kenyan town, nightfall used to signal the end to schoolwork and other family activities. Now, however, the darkness is pierced by electric lights from newly solar-powered homes. Inside, children in this off-the-grid area can study while parents extend daily activities past dusk, thanks to a project conceived by an MIT mechanical engineering student and financed by the MIT African Students Association (ASA) Impact Fund.There are changes coming, too, in the farmlands of Kashusha in the Democratic Republic of Congo (DRC), where another ASA Impact Fund project is working with local growers to establish an energy-efficient mill for processing corn — adding value, creating jobs, and sparking new economic opportunities. Similarly, plans are underway to automate processing of locally-grown cashews in the Mtwara area of Tanzania — an Impact Fund project meant to increase the income of farmers who now send over 90 percent of their nuts abroad for processing.Inspired by a desire by MIT students to turn promising ideas into practical solutions for people in their home countries, the ASA Impact Fund is a student-run initiative that launched during the 2023-24 academic year. Backed by an alumni board, the fund empowers students to conceive, design, and lead projects with social and economic impact in communities across Africa.After financing three projects its first year, the ASA Impact Fund received eight project proposals earlier this year and plans to announce its second round of two to four grants sometime this spring, says Pamela Abede, last year’s fund president. Last year’s awards totaled approximately $15,000.The fund is an outgrowth of MIT’s African Learning Circle, a seminar open to the entire MIT community where biweekly discussions focus on ways to apply MIT’s educational resources, entrepreneurial spirit, and innovation to improve lives on the African continent.“The Impact Fund was created,” says MIT African Students Association president Victory Yinka-Banjo, “to take this to the next level … to go from talking to execution.”Aimed at bridging a gap between projects Learning Circle participants envision and resources available to fund them, the ASA Impact Fund “exists as an avenue to assist our members in undertaking social impact projects on the African continent,” the initiative’s website states, “thereby combining theoretical learning with practical application in alignment with MIT’s motto.”The fund’s value extends to the Cambridge campus as well, says ASA Impact Fund board member and 2021 MIT graduate Bolu Akinola.“You can do cool projects anywhere,” says Akinola, who is originally from Nigeria and currently pursuing a master’s degree in business administration at Harvard University. “Where this is particularly catalyzing is in incentivizing folks to go back home and impact life back on the continent of Africa.”MIT-Africa managing director Ari Jacobovits, who helped students get the fund off the ground last year, agrees.“I think it galvanized the community, bringing people together to bridge a programmatic gap that had long felt like a missed opportunity,” Jacobovits says. “I’m always impressed by the level of service-mindedness ASA members have towards their home communities. It’s something we should all be celebrating and thinking about incorporating into our home communities, wherever they may be.”Alumni Board president Selam Gano notes that a big part of the Impact Fund’s appeal is the close connections project applicants have with the communities they’re working with. MIT engineering major Shekina Pita, for example, is from Kapiyo, and recalls “what it was like growing up in a place with unreliable electricity,” which “would impact every aspect of my life and the lives of those that I lived around.” Pita’s personal experience and familiarity with the community informed her proposal to install solar panels on Kapiyo homes.So far, the ASA Impact Fund has financed installation of solar panels for five households where families had been relying on candles so their children could do homework after dark.“A candle is 15 Kenya shillings, and I don’t always have that amount to buy candles for my children to study. I am grateful for your help,” comments one beneficiary of the Kapiyo solar project.Pita anticipates expanding the project, 10 homes at a time, and involving some college-age residents of those homes in solar panel installation apprenticeships.“In general, we try to balance projects where we fund some things that are very concrete solutions to a particular community’s problems — like a water project or solar energy — and projects with a longer-term view that could become an organization or a business — like a novel cashew nut processing method,” says Gano, who conducted projects in his father’s homeland of Ethiopia while an MIT student. “I think striking that balance is something I am particularly proud of. We believe that people in the community know best what they need, and it’s great to empower students from those same communities.”  Vivian Chinoda, who received a grant from the ASA Impact Fund and was part of the African Students Association board that founded it, agrees.“We want to address problems that can seem trivial without the lived experience of them,” says Chinoda. “For my friend and I, getting funding to go to Tanzania and drive more than 10 hours to speak to remotely located small-scale cashew farmers … made a difference. We were able to conduct market research and cross-check our hypotheses on a project idea we brainstormed in our dorm room in ways we would not have otherwise been able to access remotely.”Similarly, Florida Mahano’s Impact Fund-financed project is benefiting from her experience growing up near farms in the DRC. Partnering with her brother, a mechanical engineer in her home community of Bukavu in eastern DRC, Mahano is on her way to developing a processing plant that will serve the needs of local farmers. Informed by market research involving about 500 farmers, consumers, and retailers that took place in January, the plant will likely be operational by summer 2026, says Mahano, who has also received funding from MIT’s Priscilla King Gray (PKG) Public Service Center.“The ASA Impact Fund was the starting point for us,” paving the way for additional support, she says. “I feel like the ASA Impact Fund was really amazing because it allowed me to bring my idea to life.”Importantly, Chinoda notes that the Impact Fund has already had early success in fostering ties between undergraduate students and MIT alumni.“When we sent out the application to set up the alumni board, we had a volume of respondents coming in quite quickly, and it was really encouraging to see how the alums were so willing to be present and use their skill sets and connections to build this from the ground up,” she says.Abede, who is originally from Ghana, would like to see that enthusiasm continue — increasing alumni awareness about the fund “to get more alums involved … more alums on the board and mentoring the students.”Mentoring is already an important aspect of the ASA Impact Fund, says Akinola. Grantees, she says, get paired with alumni to help them through the process of getting projects underway. “This fund could be a really good opportunity to strengthen the ties between the alumni community and current students,” Akinola says. “I think there are a lot of opportunities for funds like this to tap into the MIT alumni community. I think where there is real value is in the advisory nature — mentoring and coaching current students, helping the transfer of skills and resources.”As more projects are proposed and funded each year, awareness of the ASA Impact Fund among MIT alumni will increase, Gano predicts.“We’ve had just one year of grantees so far, and all of the projects they’ve conducted have been great,” he says. “I think even if we just continue functioning at this scale, if we’re able to sustain the fund, we can have a real lasting impact as students and alumni and build more and more partnerships on the continent.” More

  • in

    How J-WAFS Solutions grants bring research to market

    For the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), 2025 marks a decade of translating groundbreaking research into tangible solutions for global challenges. Few examples illustrate that mission better than NONA Technologies. With support from a J-WAFS Solutions grant, MIT electrical engineering and biological engineering Professor Jongyoon Han and his team developed a portable desalination device that transforms seawater into clean drinking water without filters or high-pressure pumps. The device stands apart from traditional systems because conventional desalination technologies, like reverse osmosis, are energy-intensive, prone to fouling, and typically deployed at large, centralized plants. In contrast, the device developed in Han’s lab employs ion concentration polarization technology to remove salts and particles from seawater, producing potable water that exceeds World Health Organization standards. It is compact, solar-powered, and operable at the push of a button — making it an ideal solution for off-grid and disaster-stricken areas.This research laid the foundation for spinning out NONA Technologies along with co-founders Junghyo Yoon PhD ’21 from Han’s lab and Bruce Crawford MBA ’22, to commercialize the technology and address pressing water-scarcity issues worldwide. “This is really the culmination of a 10-year journey that I and my group have been on,” said Han in an earlier MIT News article. “We worked for years on the physics behind individual desalination processes, but pushing all those advances into a box, building a system, and demonstrating it in the ocean … that was a really meaningful and rewarding experience for me.” You can watch this video showcasing the device in action.Moving breakthrough research out of the lab and into the world is a well-known challenge. While traditional “seed” grants typically support early-stage research at Technology Readiness Level (TRL) 1-2, few funding sources exist to help academic teams navigate to the next phase of technology development. The J-WAFS Solutions Program is strategically designed to address this critical gap by supporting technologies in the high-risk, early-commercialization phase that is often neglected by traditional research, corporate, and venture funding. By supporting technologies at TRLs 3-5, the program increases the likelihood that promising innovations will survive beyond the university setting, advancing sufficiently to attract follow-on funding.Equally important, the program gives academic researchers the time, resources, and flexibility to de-risk their technology, explore customer need and potential real-world applications, and determine whether and how they want to pursue commercialization. For faculty-led teams like Han’s, the J-WAFS Solutions Program provided the critical financial runway and entrepreneurial guidance needed to refine the technology, test assumptions about market fit, and lay the foundation for a startup team. While still in the MIT innovation ecosystem, Nona secured over $200,000 in non-dilutive funding through competitions and accelerators, including the prestigious MIT delta v Educational Accelerator. These early wins laid the groundwork for further investment and technical advancement.Since spinning out of MIT, NONA has made major strides in both technology development and business viability. What started as a device capable of producing just over half-a-liter of clean drinking water per hour has evolved into a system that now delivers 10 times that capacity, at 5 liters per hour. The company successfully raised a $3.5 million seed round to advance its portable desalination device, and entered into a collaboration with the U.S. Army Natick Soldier Systems Center, where it co-developed early prototypes and began generating revenue while validating the technology. Most recently, NONA was awarded two SBIR Phase I grants totaling $575,000, one from the National Science Foundation and another from the National Institute of Environmental Health Sciences.Now operating out of Greentown Labs in Somerville, Massachusetts, NONA has grown to a dedicated team of five and is preparing to launch its nona5 product later this year, with a wait list of over 1,000 customers. It is also kicking off its first industrial pilot, marking a key step toward commercial scale-up. “Starting a business as a postdoc was challenging, especially with limited funding and industry knowledge,” says Yoon, who currently serves as CTO of NONA. “J-WAFS gave me the financial freedom to pursue my venture, and the mentorship pushed me to hit key milestones. Thanks to J-WAFS, I successfully transitioned from an academic researcher to an entrepreneur in the water industry.”NONA is one of several J-WAFS-funded technologies that have moved from the lab to market, part of a growing portfolio of water and food solutions advancing through MIT’s innovation pipeline. As J-WAFS marks a decade of catalyzing innovation in water and food, NONA exemplifies what is possible when mission-driven research is paired with targeted early-stage support and mentorship.To learn more or get involved in supporting startups through the J-WAFS Solutions Program, please contact jwafs@mit.edu. More

  • in

    Hundred-year storm tides will occur every few decades in Bangladesh, scientists report

    Tropical cyclones are hurricanes that brew over the tropical ocean and can travel over land, inundating coastal regions. The most extreme cyclones can generate devastating storm tides — seawater that is heightened by the tides and swells onto land, causing catastrophic flood events in coastal regions. A new study by MIT scientists finds that, as the planet warms, the recurrence of destructive storm tides will increase tenfold for one of the hardest-hit regions of the world.In a study appearing today in One Earth, the scientists report that, for the highly populated coastal country of Bangladesh, what was once a 100-year event could now strike every 10 years — or more often — by the end of the century. In a future where fossil fuels continue to burn as they do today, what was once considered a catastrophic, once-in-a-century storm tide will hit Bangladesh, on average, once per decade. And the kind of storm tides that have occurred every decade or so will likely batter the country’s coast more frequently, every few years.Bangladesh is one of the most densely populated countries in the world, with more than 171 million people living in a region roughly the size of New York state. The country has been historically vulnerable to tropical cyclones, as it is a low-lying delta that is easily flooded by storms and experiences a seasonal monsoon. Some of the most destructive floods in the world have occurred in Bangladesh, where it’s been increasingly difficult for agricultural economies to recover.The study also finds that Bangladesh will likely experience tropical cyclones that overlap with the months-long monsoon season. Until now, cyclones and the monsoon have occurred at separate times during the year. But as the planet warms, the scientists’ modeling shows that cyclones will push into the monsoon season, causing back-to-back flooding events across the country.“Bangladesh is very active in preparing for climate hazards and risks, but the problem is, everything they’re doing is more or less based on what they’re seeing in the present climate,” says study co-author Sai Ravela, principal research scientist in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “We are now seeing an almost tenfold rise in the recurrence of destructive storm tides almost anywhere you look in Bangladesh. This cannot be ignored. So, we think this is timely, to say they have to pause and revisit how they protect against these storms.”Ravela’s co-authors are Jiangchao Qiu, a postdoc in EAPS, and Kerry Emanuel, professor emeritus of atmospheric science at MIT.Height of tidesIn recent years, Bangladesh has invested significantly in storm preparedness, for instance in improving its early-warning system, fortifying village embankments, and increasing access to community shelters. But such preparations have generally been based on the current frequency of storms.In this new study, the MIT team aimed to provide detailed projections of extreme storm tide hazards, which are flooding events where tidal effects amplify cyclone-induced storm surge, in Bangladesh under various climate-warming scenarios and sea-level rise projections.“A lot of these events happen at night, so tides play a really strong role in how much additional water you might get, depending on what the tide is,” Ravela explains.To evaluate the risk of storm tide, the team first applied a method of physics-based downscaling, which Emanuel’s group first developed over 20 years ago and has been using since to study hurricane activity in different parts of the world. The technique involves a low-resolution model of the global ocean and atmosphere that is embedded with a finer-resolution model that simulates weather patterns as detailed as a single hurricane. The researchers then scatter hurricane “seeds” in a region of interest and run the model forward to observe which seeds grow and make landfall over time.To the downscaled model, the researchers incorporated a hydrodynamical model, which simulates the height of a storm surge, given the pattern and strength of winds at the time of a given storm. For any given simulated storm, the team also tracked the tides, as well as effects of sea level rise, and incorporated this information into a numerical model that calculated the storm tide, or the height of the water, with tidal effects as a storm makes landfall.Extreme overlapWith this framework, the scientists simulated tens of thousands of potential tropical cyclones near Bangladesh, under several future climate scenarios, ranging from one that resembles the current day to one in which the world experiences further warming as a result of continued fossil fuel burning. For each simulation, they recorded the maximum storm tides along the coast of Bangladesh and noted the frequency of storm tides of various heights in a given climate scenario.“We can look at the entire bucket of simulations and see, for this storm tide of say, 3 meters, we saw this many storms, and from that you can figure out the relative frequency of that kind of storm,” Qiu says. “You can then invert that number to a return period.”A return period is the time it takes for a storm of a particular type to make landfall again. A storm that is considered a “100-year event” is typically more powerful and destructive, and in this case, creates more extreme storm tides, and therefore more catastrophic flooding, compared to a 10-year event.From their modeling, Ravela and his colleagues found that under a scenario of increased global warming, the storms that previously were considered 100-year events, producing the highest storm tide values, can recur every decade or less by late-century. They also observed that, toward the end of this century, tropical cyclones in Bangladesh will occur across a broader seasonal window, potentially overlapping in certain years with the seasonal monsoon season.“If the monsoon rain has come in and saturated the soil, a cyclone then comes in and it makes the problem much worse,” Ravela says. “People won’t have any reprieve between the extreme storm and the monsoon. There are so many compound and cascading effects between the two. And this only emerges because warming happens.”Ravela and his colleagues are using their modeling to help experts in Bangladesh better evaluate and prepare for a future of increasing storm risk. And he says that the climate future for Bangladesh is in some ways not unique to this part of the world.“This climate change story that is playing out in Bangladesh in a certain way will be playing out in a different way elsewhere,” Ravela notes. “Maybe where you are, the story is about heat stress, or amplifying droughts, or wildfires. The peril is different. But the underlying catastrophe story is not that different.”This research is supported in part by the MIT Climate Resilience Early Warning Systems Climate Grand Challenges project, the Jameel Observatory JO-CREWSNet project; MIT Weather and Climate Extremes Climate Grand Challenges project; and Schmidt Sciences, LLC.  More

  • in

    MIT students advance solutions for water and food with the help of J-WAFS

    For the past decade, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has been instrumental in promoting student engagement across the Institute to help solve the world’s most pressing water and food system challenges. As part of J-WAFS’ central mission of securing the world’s water and food supply, J-WAFS aims to cultivate the next generation of leaders in the water and food sectors by encouraging MIT student involvement through a variety of programs and mechanisms that provide research funding, mentorship, and other types of support.J-WAFS offers a range of opportunities for both undergraduate and graduate students to engage in the advancement of water and food systems research. These include graduate student fellowships, travel grants for participation in conferences, funding for research projects in India, video competitions highlighting students’ water and food research, and support for student-led organizations and initiatives focused on critical areas in water and food.As J-WAFS enters its second decade, it continues to expose students across the Institute to experiential hands-on water and food research, career and other networking opportunities, and a platform to develop their innovative and collaborative solutions.Graduate student fellowshipsIn 2017, J-WAFS inaugurated two graduate student fellowships: the Rasikbhai L. Meswani Fellowship for Water Solutions and the J-WAFS Graduate Student Fellowship Program. The Rasikbhai L. Meswani Fellowship for Water Solutions is a doctoral fellowship for students pursuing research related to water for human need at MIT. The fellowship is made possible by Elina and Nikhil Meswani and family. Each year, up to two outstanding students are selected to receive fellowship support for one academic semester. Through it, J-WAFS seeks to support distinguished MIT students who are pursuing solutions to the pressing global water supply challenges of our time. The J-WAFS Fellowship for Water and Food Solutions is funded by the J-WAFS Research Affiliate Program, which offers companies the opportunity to collaborate with MIT on water and food research. A portion of each research affiliate’s fees supports this fellowship.Aditya Avinash Ghodgaonkar, a PhD student in the Department of Mechanical Engineering (MechE), reflects on how receiving a J-WAFS graduate student fellowship positively impacted his research on the design of low-cost emitters for affordable, resilient drip irrigation for farmers: “My J-WAFS fellowship gave me the flexibility and financial support needed to explore new directions in the area of clog-resistant drip irrigation that had a higher risk element that might not have been feasible to manage on an industrially sponsored project,” Ghodgaonkar explains. Emitters, which control the volume and flow rate of water used during irrigation, often clog due to small particles like sand. Ghodgaonkar worked with Professor Amos Winter, and with farmers in resource-constrained communities in countries like Jordan and Morocco, to develop an emitter that is mechanically more resistant to clogging. Ghodgaonkar reports that their energy-efficient, compact, clog-resistant drip emitters are being commercialized by Toro and may be available for retail in the next few years. The opportunities and funding support Ghodgaonkar has received from J-WAFS contributed greatly to his entrepreneurial success and the advancement of the water and agricultural sectors.Linzixuan (Rhoda) Zhang, a PhD student advised by Professor Robert Langer and Principal Research Scientist Ana Jaklenec of the Department of Chemical Engineering, was a 2022 J-WAFS Graduate Student Fellow. With the fellowship, Zhang was able to focus on her innovative research on a novel micronutrient delivery platform that fortifies food with essential vitamins and nutrients. “We intake micronutrients from basically all the healthy food that we eat; however, around the world there are about 2 billion people currently suffering from micronutrient deficiency because they do not have access to very healthy, very fresh food,” Zhang says. Her research involves the development of biodegradable polymers that can deliver these micronutrients in harsh environments in underserved regions of the world. “Vitamin A is not very stable, for example; we have vitamin A in different vegetables but when we cook them, the vitamin can easily degrade,” Zhang explains. However, when vitamin A is encapsulated in the microparticle platform, simulation of boiling and of the stomach environment shows that vitamin A was stabilized. “The meaningful factors behind this experiment are real,” says Zhang. The J-WAFS Fellowship helped position Zhang to win the 2024 Collegiate Inventors Competition for this work.J-WAFS grant for water and food projects in IndiaJ-WAFS India Grants are intended to further the work being pursued by MIT individuals as a part of their research, innovation, entrepreneurship, coursework, or related activities. Faculty, research staff, and undergraduate and graduate students are eligible to apply. The program aims to support projects that will benefit low-income communities in India, and facilitates travel and other expenses related to directly engaging with those communities.Gokul Sampath, a PhD student in the Department of Urban Studies and Planning, and Jonathan Bessette, a PhD student in MechE, initially met through J-WAFS-sponsored conference travel, and discovered their mutual interest in the problem of arsenic in water in India. Together, they developed a cross-disciplinary proposal that received a J-WAFS India Grant. Their project is studying how women in rural India make decisions about where they fetch water for their families, and how these decisions impact exposure to groundwater contaminants like naturally-occurring arsenic. Specifically, they are developing low-cost remote sensors to better understand water-fetching practices. The grant is enabling Sampath and Bessette to equip Indian households with sensor-enabled water collection devices (“smart buckets”) that will provide them data about fetching practices in arsenic-affected villages. By demonstrating the efficacy of a sensor-based approach, the team hopes to address a major data gap in international development. “It is due to programs like the Jameel Water and Food Systems Lab that I was able to obtain the support for interdisciplinary work on connecting water security, public health, and regional planning in India,” says Sampath.J-WAFS travel grants for water conferencesIn addition to funding graduate student research, J-WAFS also provides grants for graduate students to attend water conferences worldwide. Typically, students will only receive travel funding to attend conferences where they are presenting their research. However, the J-WAFS travel grants support learning, networking, and career exploration opportunities for exceptional MIT graduate students who are interested in a career in the water sector, whether in academia, nonprofits, government, or industry.Catherine Lu ’23, MNG ’24 was awarded a 2023 Travel Grant to attend the UNC Water and Health Conference in North Carolina. The conference serves as a curated space for policymakers, practitioners, and researchers to convene and assess data, scrutinize scientific findings, and enhance new and existing strategies for expanding access to and provision of services for water, sanitation, and hygiene (WASH). Lu, who studied civil and environmental engineering, worked with Professor Dara Entekhabi on modeling and predicting droughts in Africa using satellite Soil Moisture Active Passive (SMAP) data. As she evaluated her research trajectory and career options in the water sector, Lu found the conference to be informative and enlightening. “I was able to expand my knowledge on all the sectors and issues that are related to water and the implications they have on my research topic.” Furthermore, she notes: “I was really impressed by the diverse range of people that were able to attend the conference. The global perspective offered at the conference provided a valuable context for understanding the challenges and successes of different regions around the world — from WASH education in schools in Zimbabwe and India to rural water access disparities in the United States … Being able to engage with such passionate and dedicated people has motivated me to continue progress in this sector.” Following graduation, Lu secured a position as a water resources engineer at CDM Smith, an engineering and construction firm.Daniela Morales, a master’s student in city planning in the Department of Urban Studies and Planning, was a 2024 J-WAFS Travel Grant recipient who attended World Water Week in Stockholm, Sweden. The annual global conference is organized by the Stockholm International Water Institute and convenes leading experts, decision-makers, and professionals in the water sector to actively engage in discussions and developments addressing critical water-related challenges. Morales’ research interests involve drinking water quality and access in rural and peri-urban areas affected by climate change impacts, the effects of municipal water shutoffs on marginalized communities, and the relationship between regional water management and public health outcomes. When reflecting on her experience at the conference, Morales writes: “Being part of this event has given me so much motivation to continue my professional and academic journey in water management as it relates to public health and city planning … There was so much energy that was collectively generated in the conference, and so many new ideas that I was able to process around my own career interests and my role as a future planner in water management, that the last day of the conference felt less like an ending and more of the beginning of a new chapter. I am excited to take all the information I learned to work towards my own research, and continue to build relationships with all the new contacts I made.” Morales also notes that without the support of the J-WAFS grant, “I would not have had the opportunity to make it to Stockholm and participate in such a unique week of water wisdom.”Seed grants and Solutions grantsJ-WAFS offers seed grants for early-stage research and Solutions Grants for later-stage research that is ready to move from the lab to the commercial world. Proposals for both types of grants must be submitted and led by an MIT principal investigator, but graduate students, and sometimes undergraduates, are often supported by these grants.Arjav Shah, a PhD-MBA student in MIT’s Department of Chemical Engineering and the MIT Sloan School of Management, is currently pursuing the commercialization of a water treatment technology that was first supported through a 2019 J-WAFS seed grant and then a 2022 J-WAFS Solutions Grant with Professor Patrick Doyle. The technology uses hydrogels to remove a broad range of micropollutants from water. The Solutions funding enables entrepreneurial students and postdocs to lay the groundwork to commercialize a technology by assessing use scenarios and exploring business needs with actual potential customers. “With J-WAFS’ support, we were not only able to scale up the technology, but also gain a deeper understanding of market needs and develop a strong business case,” says Shah. Shah and the Solutions team have discovered that the hydrogels could be used in several real-world contexts, ranging from large-scale industrial use to small-scale, portable, off-grid applications. “We are incredibly grateful to J-WAFS for their support, particularly in fostering industry connections and facilitating introductions to investors, potential customers, and experts,” Shah adds.Shah was also a 2023 J-WAFS Travel Grant awardee who attended Stockholm World Water Week that year. He says, “J-WAFS has played a pivotal role in both my academic journey at MIT and my entrepreneurial pursuits. J-WAFS support has helped me grow both as a scientist and an aspiring entrepreneur. The exposure and opportunities provided have allowed me to develop critical skills such as customer discovery, financial modeling, business development, fundraising, and storytelling — all essential for translating technology into real-world impact. These experiences provided invaluable insights into what it takes to bring a technology from the lab to market.”Shah is currently leading efforts to spin out a company to commercialize the hydrogel research. Since receiving J-WAFS support, the team has made major strides toward launching a startup company, including winning the Pillar VC Moonshot Prize, Cleantech Open National Grand Prize, MassCEC Catalyst Award, and participation in the NSF I-Corps National Program.J-WAFS student video competitionsJ-WAFS has hosted two video competitions: MIT Research for a Water Secure Future and MIT Research for a Food Secure Future, in honor of World Water Day and Word Food Day, respectively. In these competitions, students are tasked with creating original videos showcasing their innovative water and food research conducted at MIT. The opportunity is open to MIT students, postdocs, and recent alumni.Following a review by a distinguished panel of judges, Vishnu Jayaprakash SM ’19, PhD ’22 won first place in the 2022 J-WAFS World Food Day Student Video Competition for his video focused on eliminating pesticide pollution and waste. Jayaprakash delved into the science behind AgZen-Cloak, a new generation of agricultural sprays that prevents pesticides from bouncing off of plants and seeping into the ground, thus causing harmful runoff. The J-WAFS competition provided Jayaprakash with a platform to highlight the universal, low-cost, and environmentally sustainable benefits of AgZen-Cloak. Jayaprakash worked on similar technology as a funded student on a J-WAFS Solutions grant with Professor Kripa Varanasi. The Solutions grant, in fact, helped Jayaprakash and Varanasi to launch AgZen, a company that deploys AgZen-Cloak and other products and technologies to control the interactions of droplets and sprays with crop surfaces. AgZen is currently helping farmers sustainably tend to their agricultural plots while also protecting the environment.  In 2021, Hilary Johnson SM ’18, PhD ’22, won first place in the J-WAFS World Water Day video competition. Her video highlighted her work on a novel pump that uses adaptive hydraulics for improved pump efficiency. The pump was part of a sponsored research project with Xylem Inc., a J-WAFS Research Affiliate company, and Professor Alex Slocum of MechE. At the time, Johnson was a PhD student in Slocum’s lab. She was instrumental in the development of the pump by engineering the volute to expand and contract to meet changing system flow rates. Johnson went on to later become a 2021-22 J-WAFS Fellow, and is now a full-time mechanical engineer at the Lawrence Livermore National Laboratory.J-WAFS-supported student clubsJ-WAFS-supported student clubs provide members of the MIT student community the opportunity for networking and professional advancement through events focused on water and food systems topics.J-WAFS is a sponsor of the MIT Water Club, a student-led group that supports and promotes the engagement of the MIT community in water-sector-related activism, dissemination of information, and research innovation. The club allows students to spearhead the organization of conferences, lectures, outreach events, research showcases, and entrepreneurship competitions including the former MIT Water Innovation Prize and MIT Water Summit. J-WAFS not only sponsors the MIT Water Club financially, but offers mentorship and guidance to the leadership team.The MIT Food and Agriculture Club is also supported by J-WAFS. The club’s mission is to promote the engagement of the MIT community in food and agriculture-related topics. In doing so, the students lead initiatives to share the innovative technology and business solutions researchers are developing in food and agriculture systems. J-WAFS assists in the connection of passionate MIT students with those who are actively working in the food and agriculture industry beyond the Institute. From 2015 to 2022, J-WAFS also helped the club co-produce the Rabobank-MIT Food and Agribusiness Innovation Prize — a student business plan competition for food and agricultural startups.From 2023 onward, the MIT Water Club and the MIT Food and Ag Club have been joining forces to organize a combined prize competition: The MIT Water, Food and Agriculture (WFA) Innovation Prize. The WFA Innovation Prize is a business plan competition for student-led startups focused on any region or market. The teams present business plans involving a technology, product, service, or process that is aimed at solving a problem related to water, food, or agriculture. The competition encourages all approaches to innovation, from engineering and product design to policy and data analytics. The goal of the competition is to help emerging entrepreneurs translate research and ideas into businesses, access mentors and resources, and build networks in the water, food, and agriculture industries. J-WAFS offers financial and in-kind support, working with student leaders to plan, organize, and implement the stages of the competition through to the final pitch event. This year, J-WAFS is continuing to support the WFA team, which is led by Ali Decker, an MBA student at MIT Sloan, and Sam Jakshtis, a master’s student in MIT’s science in real estate development program. The final pitch event will take place on April 30 in the MIT Media Lab.“I’ve had the opportunity to work with Renee Robins, executive director of J-WAFS, on MIT’s Water, Food and Agriculture Innovation Prize for the past two years, and it has been both immensely valuable and a delight to have her support,” says Decker. “Renee has helped us in all areas of prize planning: brainstorming new ideas, thinking through startup finalist selection, connecting to potential sponsors and partners, and more. Above all, she supports us with passion and joy; each time we meet, I look forward to our discussion,” Decker adds.J-WAFS eventsThroughout the year, J-WAFS aims to offer events that will engage any in the MIT student community who are working in water or food systems. For example, on April 19, 2023, J-WAFS teamed up with the MIT Energy Initiative (MITEI) and the Environmental Solutions Initiative (ESI) to co-host an MIT student poster session for Earth Month. The theme of the poster session was “MIT research for a changing planet,” and it featured work from 11 MIT students with projects in water, food, energy, and the environment. The students, who represented a range of MIT departments, labs, and centers, were on hand to discuss their projects and engage with those attending the event. Attendees could vote for their favorite poster after being asked to consider which poster most clearly communicated the research problem and the potential solution. At the end of the night, votes were tallied and the winner of the “People’s Choice Award” for best poster was Elaine Liu ’24, an undergraduate in mathematics at the time of the event. Liu’s poster featured her work on managing failure cascades in systems with wind power.J-WAFS also hosts less-structured student networking events. For instance, during MIT’s Independent Activities Period (IAP) in January 2024, J-WAFS hosted an ice cream social for student networking. The informal event was an opportunity for graduate and undergraduate students from across the Institute to meet and mingle with like-minded peers working in, or interested in, water and food systems. Students were able to explain their current and future research, interests, and projects and ask questions while exchanging ideas, engaging with one another, and potentially forming collaborations, or at the very least sharing insights.Looking ahead to 10 more years of student impactOver the past decade, J-WAFS has demonstrated a strong commitment to empowering students in the water and food sectors, fostering an environment where they can confidently drive meaningful change and innovation. PhD student Jonathan Bessette sums up the J-WAFS community as a “one-of-a-kind community that enables essential research in water and food that otherwise would not be pursued. It’s this type of research that is not often the focus of major funding, yet has such a strong impact in sustainable development.”J-WAFS aims to provide students with the support and tools they need to conduct authentic and meaningful water and food-related research that will benefit communities around the world. This support, coupled with an MIT education, enables students to become leaders in sustainable water and food systems. As the second decade of J-WAFS programming begins, the J-WAFS team remains committed to fostering student collaboration across the Institute, driving innovative solutions to revitalize the world’s water and food systems while empowering the next generation of pioneers in these critical fields.  More

  • in

    Technology developed by MIT engineers makes pesticides stick to plant leaves

    Reducing the amount of agricultural sprays used by farmers — including fertilizers, pesticides and herbicides — could cut down the amount of polluting runoff that ends up in the environment while at the same time reducing farmers’ costs and perhaps even enhancing their productivity. A classic win-win-win.A team of researchers at MIT and a spinoff company they launched has developed a system to do just that. Their technology adds a thin coating around droplets as they are being sprayed onto a field, greatly reducing their tendency to bounce off leaves and end up wasted on the ground. Instead, the coated droplets stick to the leaves as intended.The research is described today in the journal Soft Matter, in a paper by recent MIT alumni Vishnu Jayaprakash PhD ’22 and Sreedath Panat PhD ’23, graduate student Simon Rufer, and MIT professor of mechanical engineering Kripa Varanasi.A recent study found that if farmers didn’t use pesticides, they would lose 78 percent of fruit, 54 percent of vegetable, and 32 percent of cereal production. Despite their importance, a lack of technology that monitors and optimizes sprays has forced farmers to rely on personal experience and rules of thumb to decide how to apply these chemicals. As a result, these chemicals tend to be over-sprayed, leading to runoff and chemicals ending up in waterways or building up in the soil.Pesticides take a significant toll on global health and the environment, the researchers point out. A recent study found that 31 percent of agricultural soils around the world were at high risk from pesticide pollution. And agricultural chemicals are a major expense for farmers: In the U.S., they spend $16 billion a year just on pesticides.Making spraying more efficient is one of the best ways to make food production more sustainable and economical. Agricultural spraying essentially boils down to mixing chemicals into water and spraying water droplets onto plant leaves, which are often inherently water-repellent. “Over more than a decade of research in my lab at MIT, we have developed fundamental understandings of spraying and the interaction between droplets and plants — studying when they bounce and all the ways we have to make them stick better and enhance coverage,” Varanasi says.The team had previously found a way to reduce the amount of sprayed liquid that bounces away from the leaves it strikes, which involved using two spray nozzles instead of one and spraying mixtures with opposite electrical charges. But they found that farmers were reluctant to take on the expense and effort of converting their spraying equipment to a two-nozzle system. So, the team looked for a simpler alternative.They discovered they could achieve the same improvement in droplet retention using a single-nozzle system that can be easily adapted to existing sprayers. Instead of giving the droplets of pesticide an electric charge, they coat each droplet with a vanishingly thin layer of an oily material.In their new study, they conducted lab experiments with high-speed cameras. When they sprayed droplets with no special treatment onto a water-repelling (hydrophobic) surface similar to that of many plant leaves, the droplets initially spread out into a pancake-like disk, then rebounded back into a ball and bounced away. But when the researchers coated the surface of the droplets with a tiny amount of oil — making up less than 1 percent of the droplet’s liquid — the droplets spread out and then stayed put. The treatment improved the droplets’ “stickiness” by as much as a hundredfold.“When these droplets are hitting the surface and as they expand, they form this oil ring that essentially pins the droplet to the surface,” Rufer says. The researchers tried a wide variety of conditions, he says, explaining that they conducted hundreds of experiments, “with different impact velocities, different droplet sizes, different angles of inclination, all the things that fully characterize this phenomenon.” Though different oils varied in their effectiveness, all of them were effective. “Regardless of the impact velocity and the oils, we saw that the rebound height was significantly lower,” he says.The effect works with remarkably small amounts of oil. In their initial tests they used 1 percent oil compared to the water, then they tried a 0.1 percent, and even .01. The improvement in droplets sticking to the surface continued at a 0.1 percent, but began to break down beyond that. “Basically, this oil film acts as a way to trap that droplet on the surface, because oil is very attracted to the surface and sort of holds the water in place,” Rufer says.In the researchers’ initial tests they used soybean oil for the coating, figuring this would be a familiar material for the farmers they were working with, many of whom were growing soybeans. But it turned out that though they were producing the beans, the oil was not part of their usual supply chain for use on the farm. In further tests, the researchers found that several chemicals that farmers were already routinely using in their spraying, called surfactants and adjuvants, could be used instead, and that some of these provided the same benefits in keeping the droplets stuck on the leaves.“That way,” Varanasi says, “we’re not introducing a new chemical or changed chemistries into their field, but they’re using things they’ve known for a long time.”Varanasi and Jayaprakash formed a company called AgZen to commercialize the system. In order to prove how much their coating system improves the amount of spray that stays on the plant, they first had to develop a system to monitor spraying in real time. That system, which they call RealCoverage, has been deployed on farms ranging in size from a few dozen acres to hundreds of thousands of acres, and many different crop types, and has saved farmers 30 to 50 percent on their pesticide expenditures, just by improving the controls on the existing sprays. That system is being deployed to 920,000 acres of crops in 2025, the company says, including some in California, Texas, the Midwest, France and Italy. Adding the cloaking system using new nozzles, the researchers say, should yield at least another doubling of efficiency.“You could give back a billion dollars to U.S. growers if you just saved 6 percent of their pesticide budget,” says Jayaprakash, lead author of the research paper and CEO of AgZen. “In the lab we got 300 percent of extra product on the plant. So that means we could get orders of magnitude reductions in the amount of pesticides that farmers are spraying.”Farmers had already been using these surfactant and adjuvant chemicals as a way to enhance spraying effectiveness, but they were mixing it with a water solution. For it to have any effect, they had to use much more of these materials, risking causing burns to the plants. The new coating system reduces the amount of these materials needed, while improving their effectiveness.In field tests conducted by AgZen, “we doubled the amount of product on kale and soybeans just by changing where the adjuvant was,” from mixed in to being a coating, Jayaprakash says. It’s convenient for farmers because “all they’re doing is changing their nozzle. They’re getting all their existing chemicals to work better, and they’re getting more product on the plant.”And it’s not just for pesticides. “The really cool thing is this is useful for every chemistry that’s going on the leaf, be it an insecticide, a herbicide, a fungicide, or foliar nutrition,” Varanasi says. This year, they plan to introduce the new spray system on about 30,000 acres of cropland.Varanasi says that with projected world population growth, “the amount of food production has got to double, and we are limited in so many resources, for example we cannot double the arable land. … This means that every acre we currently farm must become more efficient and able to do more with less.” These improved spraying technologies, for both monitoring the spraying and coating the droplets, Varanasi says, “I think is fundamentally changing agriculture.”AgZen has recently raised $10 million in venture financing to support rapid commercial deployment of these technologies that can improve the control of chemical inputs into agriculture. “The knowledge we are gathering from every leaf, combined with our expertise in interfacial science and fluid mechanics, is giving us unparalleled insights into how chemicals are used and developed — and it’s clear that we can deliver value across the entire agrochemical supply chain,” Varanasi says  “Our mission is to use these technologies to deliver improved outcomes and reduced costs for the ag industry.”  More