More stories

  • in

    Study: Heavy snowfall and rain may contribute to some earthquakes

    When scientists look for an earthquake’s cause, their search often starts underground. As centuries of seismic studies have made clear, it’s the collision of tectonic plates and the movement of subsurface faults and fissures that primarily trigger a temblor.But MIT scientists have now found that certain weather events may also play a role in setting off some quakes.In a study appearing today in Science Advances, the researchers report that episodes of heavy snowfall and rain likely contributed to a swarm of earthquakes over the past several years in northern Japan. The study is the first to show that climate conditions could initiate some quakes.“We see that snowfall and other environmental loading at the surface impacts the stress state underground, and the timing of intense precipitation events is well-correlated with the start of this earthquake swarm,” says study author William Frank, an assistant professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “So, climate obviously has an impact on the response of the solid earth, and part of that response is earthquakes.”The new study focuses on a series of ongoing earthquakes in Japan’s Noto Peninsula. The team discovered that seismic activity in the region is surprisingly synchronized with certain changes in underground pressure, and that those changes are influenced by seasonal patterns of snowfall and precipitation. The scientists suspect that this new connection between quakes and climate may not be unique to Japan and could play a role in shaking up other parts of the world.Looking to the future, they predict that the climate’s influence on earthquakes could be more pronounced with global warming.“If we’re going into a climate that’s changing, with more extreme precipitation events, and we expect a redistribution of water in the atmosphere, oceans, and continents, that will change how the Earth’s crust is loaded,” Frank adds. “That will have an impact for sure, and it’s a link we could further explore.”The study’s lead author is former MIT research associate Qing-Yu Wang (now at Grenoble Alpes University), and also includes EAPS postdoc Xin Cui, Yang Lu of the University of Vienna, Takashi Hirose of Tohoku University, and Kazushige Obara of the University of Tokyo.Seismic speedSince late 2020, hundreds of small earthquakes have shaken up Japan’s Noto Peninsula — a finger of land that curves north from the country’s main island into the Sea of Japan. Unlike a typical earthquake sequence, which begins as a main shock that gives way to a series of aftershocks before dying out, Noto’s seismic activity is an “earthquake swarm” — a pattern of multiple, ongoing quakes with no obvious main shock, or seismic trigger.The MIT team, along with their colleagues in Japan, aimed to spot any patterns in the swarm that would explain the persistent quakes. They started by looking through the Japanese Meteorological Agency’s catalog of earthquakes that provides data on seismic activity throughout the country over time. They focused on quakes in the Noto Peninsula over the last 11 years, during which the region has experienced episodic earthquake activity, including the most recent swarm.With seismic data from the catalog, the team counted the number of seismic events that occurred in the region over time, and found that the timing of quakes prior to 2020 appeared sporadic and unrelated, compared to late 2020, when earthquakes grew more intense and clustered in time, signaling the start of the swarm, with quakes that are correlated in some way.The scientists then looked to a second dataset of seismic measurements taken by monitoring stations over the same 11-year period. Each station continuously records any displacement, or local shaking that occurs. The shaking from one station to another can give scientists an idea of how fast a seismic wave travels between stations. This “seismic velocity” is related to the structure of the Earth through which the seismic wave is traveling. Wang used the station measurements to calculate the seismic velocity between every station in and around Noto over the last 11 years.The researchers generated an evolving picture of seismic velocity beneath the Noto Peninsula and observed a surprising pattern: In 2020, around when the earthquake swarm is thought to have begun, changes in seismic velocity appeared to be synchronized with the seasons.“We then had to explain why we were observing this seasonal variation,” Frank says.Snow pressureThe team wondered whether environmental changes from season to season could influence the underlying structure of the Earth in a way that would set off an earthquake swarm. Specifically, they looked at how seasonal precipitation would affect the underground “pore fluid pressure” — the amount of pressure that fluids in the Earth’s cracks and fissures exert within the bedrock.“When it rains or snows, that adds weight, which increases pore pressure, which allows seismic waves to travel through slower,” Frank explains. “When all that weight is removed, through evaporation or runoff, all of a sudden, that pore pressure decreases and seismic waves are faster.”Wang and Cui developed a hydromechanical model of the Noto Peninsula to simulate the underlying pore pressure over the last 11 years in response to seasonal changes in precipitation. They fed into the model meteorological data from this same period, including measurements of daily snow, rainfall, and sea-level changes. From their model, they were able to track changes in excess pore pressure beneath the Noto Peninsula, before and during the earthquake swarm. They then compared this timeline of evolving pore pressure with their evolving picture of seismic velocity.“We had seismic velocity observations, and we had the model of excess pore pressure, and when we overlapped them, we saw they just fit extremely well,” Frank says.In particular, they found that when they included snowfall data, and especially, extreme snowfall events, the fit between the model and observations was stronger than if they only considered rainfall and other events. In other words, the ongoing earthquake swarm that Noto residents have been experiencing can be explained in part by seasonal precipitation, and particularly, heavy snowfall events.“We can see that the timing of these earthquakes lines up extremely well with multiple times where we see intense snowfall,” Frank says. “It’s well-correlated with earthquake activity. And we think there’s a physical link between the two.”The researchers suspect that heavy snowfall and similar extreme precipitation could play a role in earthquakes elsewhere, though they emphasize that the primary trigger will always originate underground.“When we first want to understand how earthquakes work, we look to plate tectonics, because that is and will always be the number one reason why an earthquake happens,” Frank says. “But, what are the other things that could affect when and how an earthquake happens? That’s when you start to go to second-order controlling factors, and the climate is obviously one of those.”This research was supported, in part, by the National Science Foundation. More

  • in

    Two MIT PhD students awarded J-WAFS fellowships for their research on water

    Since 2014, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has advanced interdisciplinary research aimed at solving the world’s most pressing water and food security challenges to meet human needs. In 2017, J-WAFS established the Rasikbhai L. Meswani Water Solutions Fellowship and the J-WAFS Graduate Student Fellowship. These fellowships provide support to outstanding MIT graduate students who are pursuing research that has the potential to improve water and food systems around the world. Recently, J-WAFS awarded the 2024-25 fellowships to Jonathan Bessette and Akash Ball, two MIT PhD students dedicated to addressing water scarcity by enhancing desalination and purification processes. This work is of important relevance since the world’s freshwater supply has been steadily depleting due to the effects of climate change. In fact, one-third of the global population lacks access to safe drinking water. Bessette and Ball are focused on designing innovative solutions to enhance the resilience and sustainability of global water systems. To support their endeavors, J-WAFS will provide each recipient with funding for one academic semester for continued research and related activities.“This year, we received many strong fellowship applications,” says J-WAFS executive director Renee J. Robins. “Bessette and Ball both stood out, even in a very competitive pool of candidates. The award of the J-WAFS fellowships to these two students underscores our confidence in their potential to bring transformative solutions to global water challenges.”2024-25 Rasikbhai L. Meswani Fellowship for Water SolutionsThe Rasikbhai L. Meswani Fellowship for Water Solutions is a doctoral fellowship for students pursuing research related to water and water supply at MIT. The fellowship is made possible by Elina and Nikhil Meswani and family. Jonathan Bessette is a doctoral student in the Global Engineering and Research (GEAR) Center within the Department of Mechanical Engineering at MIT, advised by Professor Amos Winter. His research is focused on water treatment systems for the developing world, mainly desalination, or the process in which salts are removed from water. Currently, Bessette is working on designing and constructing a low-cost, deployable, community-scale desalination system for humanitarian crises.In arid and semi-arid regions, groundwater often serves as the sole water source, despite its common salinity issues. Many remote and developing areas lack reliable centralized power and water systems, making brackish groundwater desalination a vital, sustainable solution for global water scarcity. “An overlooked need for desalination is inland groundwater aquifers, rather than in coastal areas,” says Bessette. “This is because much of the population lives far enough from a coast that seawater desalination could never reach them. My work involves designing low-cost, sustainable, renewable-powered desalination technologies for highly constrained situations, such as drinking water for remote communities,” he adds.To achieve this goal, Bessette developed a batteryless, renewable electrodialysis desalination system. The technology is energy-efficient, conserves water, and is particularly suited for challenging environments, as it is decentralized and sustainable. The system offers significant advantages over the conventional reverse osmosis method, especially in terms of reduced energy consumption for treating brackish water. Highlighting Bessette’s capacity for engineering insight, his advisor noted the “simple and elegant solution” that Bessette and a staff engineer, Shane Pratt, devised that negated the need for the system to have large batteries. Bessette is now focusing on simplifying the system’s architecture to make it more reliable and cost-effective for deployment in remote areas.Growing up in upstate New York, Bessette completed a bachelor’s degree at the State University of New York at Buffalo. As an undergrad, he taught middle and high school students in low-income areas of Buffalo about engineering and sustainability. However, he cited his junior-year travel to India and his experience there measuring water contaminants in rural sites as cementing his dedication to a career addressing food, water, and sanitation challenges. In addition to his doctoral research, his commitment to these goals is further evidenced by another project he is pursuing, funded by a J-WAFS India grant, that uses low-cost, remote sensors to better understand water fetching practices. Bessette is conducting this work with fellow MIT student Gokul Sampath in order to help families in rural India gain access to safe drinking water.2024-25 J-WAFS Graduate Student Fellowship for Water and Food SolutionsThe J-WAFS Graduate Student Fellowship is supported by the J-WAFS Research Affiliate Program, which offers companies the opportunity to engage with MIT on water and food research. Current fellowship support was provided by two J-WAFS Research Affiliates: Xylem, a leading U.S.-based provider of water treatment and infrastructure solutions, and GoAigua, a Spanish company at the forefront of digital transformation in the water industry through innovative solutions. Akash Ball is a doctoral candidate in the Department of Chemical Engineering, advised by Professor Heather Kulik. His research focuses on the computational discovery of novel functional materials for energy-efficient ion separation membranes with high selectivity. Advanced membranes like these are increasingly needed for applications such as water desalination, battery recycling, and removal of heavy metals from industrial wastewater. “Climate change, water pollution, and scarce freshwater reserves cause severe water distress for about 4 billion people annually, with 2 billion in India and China’s semiarid regions,” Ball notes. “One potential solution to this global water predicament is the desalination of seawater, since seawater accounts for 97 percent of all water on Earth.”Although several commercial reverse osmosis membranes are currently available, these membranes suffer several problems, like slow water permeation, permeability-selectivity trade-off, and high fabrication costs. Metal-organic frameworks (MOFs) are porous crystalline materials that are promising candidates for highly selective ion separation with fast water transport due to high surface area, the presence of different pore windows, and the tunability of chemical functionality.In the Kulik lab, Ball is developing a systematic understanding of how MOF chemistry and pore geometry affect water transport and ion rejection rates. By the end of his PhD, Ball plans to identify existing, best-performing MOFs with unparalleled water uptake using machine learning models, propose novel hypothetical MOFs tailored to specific ion separations from water, and discover experimental design rules that enable the synthesis of next-generation membranes.  Ball’s advisor praised the creativity he brings to his research, and his leadership skills that benefit her whole lab. Before coming to MIT, Ball obtained a master’s degree in chemical engineering from the Indian Institute of Technology (IIT) Bombay and a bachelor’s degree in chemical engineering from Jadavpur University in India. During a research internship at IIT Bombay in 2018, he worked on developing a technology for in situ arsenic detection in water. Like Bessette, he noted the impact of this prior research experience on his interest in global water challenges, along with his personal experience growing up in an area in India where access to safe drinking water was not guaranteed. More

  • in

    Exploring frontiers of mechanical engineering

    From cutting-edge robotics, design, and bioengineering to sustainable energy solutions, ocean engineering, nanotechnology, and innovative materials science, MechE students and their advisors are doing incredibly innovative work. The graduate students highlighted here represent a snapshot of the great work in progress this spring across the Department of Mechanical Engineering, and demonstrate the ways the future of this field is as limitless as the imaginations of its practitioners.Democratizing design through AILyle RegenwetterHometown: Champaign, IllinoisAdvisor: Assistant Professor Faez AhmedInterests: Food, climbing, skiing, soccer, tennis, cookingLyle Regenwetter finds excitement in the prospect of generative AI to “democratize” design and enable inexperienced designers to tackle complex design problems. His research explores new training methods through which generative AI models can be taught to implicitly obey design constraints and synthesize higher-performing designs. Knowing that prospective designers often have an intimate knowledge of the needs of users, but may otherwise lack the technical training to create solutions, Regenwetter also develops human-AI collaborative tools that allow AI models to interact and support designers in popular CAD software and real design problems. Solving a whale of a problem Loïcka BailleHometown: L’Escale, FranceAdvisor: Daniel ZitterbartInterests: Being outdoors — scuba diving, spelunking, or climbing. Sailing on the Charles River, martial arts classes, and playing volleyballLoïcka Baille’s research focuses on developing remote sensing technologies to study and protect marine life. Her main project revolves around improving onboard whale detection technology to prevent vessel strikes, with a special focus on protecting North Atlantic right whales. Baille is also involved in an ongoing study of Emperor penguins. Her team visits Antarctica annually to tag penguins and gather data to enhance their understanding of penguin population dynamics and draw conclusions regarding the overall health of the ecosystem.Water, water anywhereCarlos Díaz-MarínHometown: San José, Costa RicaAdvisor: Professor Gang Chen | Former Advisor: Professor Evelyn WangInterests: New England hiking, biking, and dancingCarlos Díaz-Marín designs and synthesizes inexpensive salt-polymer materials that can capture large amounts of humidity from the air. He aims to change the way we generate potable water from the air, even in arid conditions. In addition to water generation, these salt-polymer materials can also be used as thermal batteries, capable of storing and reusing heat. Beyond the scientific applications, Díaz-Marín is excited to continue doing research that can have big social impacts, and that finds and explains new physical phenomena. As a LatinX person, Díaz-Marín is also driven to help increase diversity in STEM.Scalable fabrication of nano-architected materialsSomayajulu DhulipalaHometown: Hyderabad, IndiaAdvisor: Assistant Professor Carlos PortelaInterests: Space exploration, taekwondo, meditation.Somayajulu Dhulipala works on developing lightweight materials with tunable mechanical properties. He is currently working on methods for the scalable fabrication of nano-architected materials and predicting their mechanical properties. The ability to fine-tune the mechanical properties of specific materials brings versatility and adaptability, making these materials suitable for a wide range of applications across multiple industries. While the research applications are quite diverse, Dhulipala is passionate about making space habitable for humanity, a crucial step toward becoming a spacefaring civilization.Ingestible health-care devicesJimmy McRaeHometown: Woburn, MassachusettsAdvisor: Associate Professor Giovani TraversoInterests: Anything basketball-related: playing, watching, going to games, organizing hometown tournaments Jimmy McRae aims to drastically improve diagnostic and therapeutic capabilities through noninvasive health-care technologies. His research focuses on leveraging materials, mechanics, embedded systems, and microfabrication to develop novel ingestible electronic and mechatronic devices. This ranges from ingestible electroceutical capsules that modulate hunger-regulating hormones to devices capable of continuous ultralong monitoring and remotely triggerable actuations from within the stomach. The principles that guide McRae’s work to develop devices that function in extreme environments can be applied far beyond the gastrointestinal tract, with applications for outer space, the ocean, and more.Freestyle BMX meets machine learningEva NatesHometown: Narberth, Pennsylvania Advisor: Professor Peko HosoiInterests: Rowing, running, biking, hiking, bakingEva Nates is working with the Australian Cycling Team to create a tool to classify Bicycle Motocross Freestyle (BMX FS) tricks. She uses a singular value decomposition method to conduct a principal component analysis of the time-dependent point-tracking data of an athlete and their bike during a run to classify each trick. The 2024 Olympic team hopes to incorporate this tool in their training workflow, and Nates worked alongside the team at their facilities on the Gold Coast of Australia during MIT’s Independent Activities Period in January.Augmenting Astronauts with Wearable Limbs Erik BallesterosHometown: Spring, TexasAdvisor: Professor Harry AsadaInterests: Cosplay, Star Wars, Lego bricksErik Ballesteros’s research seeks to support astronauts who are conducting planetary extravehicular activities through the use of supernumerary robotic limbs (SuperLimbs). His work is tailored toward design and control manifestation to assist astronauts with post-fall recovery, human-leader/robot-follower quadruped locomotion, and coordinated manipulation between the SuperLimbs and the astronaut to perform tasks like excavation and sample handling.This article appeared in the Spring 2024 edition of the Department of Mechanical Engineering’s magazine, MechE Connects.  More

  • in

    How light can vaporize water without the need for heat

    It’s the most fundamental of processes — the evaporation of water from the surfaces of oceans and lakes, the burning off of fog in the morning sun, and the drying of briny ponds that leaves solid salt behind. Evaporation is all around us, and humans have been observing it and making use of it for as long as we have existed.

    And yet, it turns out, we’ve been missing a major part of the picture all along.

    In a series of painstakingly precise experiments, a team of researchers at MIT has demonstrated that heat isn’t alone in causing water to evaporate. Light, striking the water’s surface where air and water meet, can break water molecules away and float them into the air, causing evaporation in the absence of any source of heat.

    The astonishing new discovery could have a wide range of significant implications. It could help explain mysterious measurements over the years of how sunlight affects clouds, and therefore affect calculations of the effects of climate change on cloud cover and precipitation. It could also lead to new ways of designing industrial processes such as solar-powered desalination or drying of materials.

    The findings, and the many different lines of evidence that demonstrate the reality of the phenomenon and the details of how it works, are described today in the journal PNAS, in a paper by Carl Richard Soderberg Professor of Power Engineering Gang Chen, postdocs Guangxin Lv and Yaodong Tu, and graduate student James Zhang.

    The authors say their study suggests that the effect should happen widely in nature— everywhere from clouds to fogs to the surfaces of oceans, soils, and plants — and that it could also lead to new practical applications, including in energy and clean water production. “I think this has a lot of applications,” Chen says. “We’re exploring all these different directions. And of course, it also affects the basic science, like the effects of clouds on climate, because clouds are the most uncertain aspect of climate models.”

    A newfound phenomenon

    The new work builds on research reported last year, which described this new “photomolecular effect” but only under very specialized conditions: on the surface of specially prepared hydrogels soaked with water. In the new study, the researchers demonstrate that the hydrogel is not necessary for the process; it occurs at any water surface exposed to light, whether it’s a flat surface like a body of water or a curved surface like a droplet of cloud vapor.

    Because the effect was so unexpected, the team worked to prove its existence with as many different lines of evidence as possible. In this study, they report 14 different kinds of tests and measurements they carried out to establish that water was indeed evaporating — that is, molecules of water were being knocked loose from the water’s surface and wafted into the air — due to the light alone, not by heat, which was long assumed to be the only mechanism involved.

    One key indicator, which showed up consistently in four different kinds of experiments under different conditions, was that as the water began to evaporate from a test container under visible light, the air temperature measured above the water’s surface cooled down and then leveled off, showing that thermal energy was not the driving force behind the effect.

    Other key indicators that showed up included the way the evaporation effect varied depending on the angle of the light, the exact color of the light, and its polarization. None of these varying characteristics should happen because at these wavelengths, water hardly absorbs light at all — and yet the researchers observed them.

    The effect is strongest when light hits the water surface at an angle of 45 degrees. It is also strongest with a certain type of polarization, called transverse magnetic polarization. And it peaks in green light — which, oddly, is the color for which water is most transparent and thus interacts the least.

    Chen and his co-researchers have proposed a physical mechanism that can explain the angle and polarization dependence of the effect, showing that the photons of light can impart a net force on water molecules at the water surface that is sufficient to knock them loose from the body of water. But they cannot yet account for the color dependence, which they say will require further study.

    They have named this the photomolecular effect, by analogy with the photoelectric effect that was discovered by Heinrich Hertz in 1887 and finally explained by Albert Einstein in 1905. That effect was one of the first demonstrations that light also has particle characteristics, which had major implications in physics and led to a wide variety of applications, including LEDs. Just as the photoelectric effect liberates electrons from atoms in a material in response to being hit by a photon of light, the photomolecular effect shows that photons can liberate entire molecules from a liquid surface, the researchers say.

    “The finding of evaporation caused by light instead of heat provides new disruptive knowledge of light-water interaction,” says Xiulin Ruan, professor of mechanical engineering at Purdue University, who was not involved in the study. “It could help us gain new understanding of how sunlight interacts with cloud, fog, oceans, and other natural water bodies to affect weather and climate. It has significant potential practical applications such as high-performance water desalination driven by solar energy. This research is among the rare group of truly revolutionary discoveries which are not widely accepted by the community right away but take time, sometimes a long time, to be confirmed.”

    Solving a cloud conundrum

    The finding may solve an 80-year-old mystery in climate science. Measurements of how clouds absorb sunlight have often shown that they are absorbing more sunlight than conventional physics dictates possible. The additional evaporation caused by this effect could account for the longstanding discrepancy, which has been a subject of dispute since such measurements are difficult to make.

    “Those experiments are based on satellite data and flight data,“ Chen explains. “They fly an airplane on top of and below the clouds, and there are also data based on the ocean temperature and radiation balance. And they all conclude that there is more absorption by clouds than theory could calculate. However, due to the complexity of clouds and the difficulties of making such measurements, researchers have been debating whether such discrepancies are real or not. And what we discovered suggests that hey, there’s another mechanism for cloud absorption, which was not accounted for, and this mechanism might explain the discrepancies.”

    Chen says he recently spoke about the phenomenon at an American Physical Society conference, and one physicist there who studies clouds and climate said they had never thought about this possibility, which could affect calculations of the complex effects of clouds on climate. The team conducted experiments using LEDs shining on an artificial cloud chamber, and they observed heating of the fog, which was not supposed to happen since water does not absorb in the visible spectrum. “Such heating can be explained based on the photomolecular effect more easily,” he says.

    Lv says that of the many lines of evidence, “the flat region in the air-side temperature distribution above hot water will be the easiest for people to reproduce.” That temperature profile “is a signature” that demonstrates the effect clearly, he says.

    Zhang adds: “It is quite hard to explain how this kind of flat temperature profile comes about without invoking some other mechanism” beyond the accepted theories of thermal evaporation. “It ties together what a whole lot of people are reporting in their solar desalination devices,” which again show evaporation rates that cannot be explained by the thermal input.

    The effect can be substantial. Under the optimum conditions of color, angle, and polarization, Lv says, “the evaporation rate is four times the thermal limit.”

    Already, since publication of the first paper, the team has been approached by companies that hope to harness the effect, Chen says, including for evaporating syrup and drying paper in a paper mill. The likeliest first applications will come in the areas of solar desalinization systems or other industrial drying processes, he says. “Drying consumes 20 percent of all industrial energy usage,” he points out.

    Because the effect is so new and unexpected, Chen says, “This phenomenon should be very general, and our experiment is really just the beginning.” The experiments needed to demonstrate and quantify the effect are very time-consuming. “There are many variables, from understanding water itself, to extending to other materials, other liquids and even solids,” he says.

    “The observations in the manuscript points to a new physical mechanism that foundationally alters our thinking on the kinetics of evaporation,” says Shannon Yee, an associate professor of mechanical engineering at Georgia Tech, who was not associated with this work. He adds, “Who would have thought that we are still learning about something as quotidian as water evaporating?”

    “I think this work is very significant scientifically because it presents a new mechanism,” says University of Alberta Distinguished Professor Janet A.W. Elliott, who also was not associated with this work. “It may also turn out to be practically important for technology and our understanding of nature, because evaporation of water is ubiquitous and the effect appears to deliver significantly higher evaporation rates than the known thermal mechanism. …  My overall impression is this work is outstanding. It appears to be carefully done with many precise experiments lending support for one another.”

    The work was partly supported by an MIT Bose Award. More

  • in

    Advancing technology for aquaculture

    According to the National Oceanic and Atmospheric Administration, aquaculture in the United States represents a $1.5 billion industry annually. Like land-based farming, shellfish aquaculture requires healthy seed production in order to maintain a sustainable industry. Aquaculture hatchery production of shellfish larvae — seeds — requires close monitoring to track mortality rates and assess health from the earliest stages of life. 

    Careful observation is necessary to inform production scheduling, determine effects of naturally occurring harmful bacteria, and ensure sustainable seed production. This is an essential step for shellfish hatcheries but is currently a time-consuming manual process prone to human error. 

    With funding from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), MIT Sea Grant is working with Associate Professor Otto Cordero of the MIT Department of Civil and Environmental Engineering, Professor Taskin Padir and Research Scientist Mark Zolotas at the Northeastern University Institute for Experiential Robotics, and others at the Aquaculture Research Corporation (ARC), and the Cape Cod Commercial Fishermen’s Alliance, to advance technology for the aquaculture industry. Located on Cape Cod, ARC is a leading shellfish hatchery, farm, and wholesaler that plays a vital role in providing high-quality shellfish seed to local and regional growers.

    Two MIT students have joined the effort this semester, working with Robert Vincent, MIT Sea Grant’s assistant director of advisory services, through the Undergraduate Research Opportunities Program (UROP). 

    First-year student Unyime Usua and sophomore Santiago Borrego are using microscopy images of shellfish seed from ARC to train machine learning algorithms that will help automate the identification and counting process. The resulting user-friendly image recognition tool aims to aid aquaculturists in differentiating and counting healthy, unhealthy, and dead shellfish larvae, improving accuracy and reducing time and effort.

    Vincent explains that AI is a powerful tool for environmental science that enables researchers, industry, and resource managers to address challenges that have long been pinch points for accurate data collection, analysis, predictions, and streamlining processes. “Funding support from programs like J-WAFS enable us to tackle these problems head-on,” he says. 

    ARC faces challenges with manually quantifying larvae classes, an important step in their seed production process. “When larvae are in their growing stages they are constantly being sized and counted,” explains Cheryl James, ARC larval/juvenile production manager. “This process is critical to encourage optimal growth and strengthen the population.” 

    Developing an automated identification and counting system will help to improve this step in the production process with time and cost benefits. “This is not an easy task,” says Vincent, “but with the guidance of Dr. Zolotas at the Northeastern University Institute for Experiential Robotics and the work of the UROP students, we have made solid progress.” 

    The UROP program benefits both researchers and students. Involving MIT UROP students in developing these types of systems provides insights into AI applications that they might not have considered, providing opportunities to explore, learn, and apply themselves while contributing to solving real challenges.

    Borrego saw this project as an opportunity to apply what he’d learned in class 6.390 (Introduction to Machine Learning) to a real-world issue. “I was starting to form an idea of how computers can see images and extract information from them,” he says. “I wanted to keep exploring that.”

    Usua decided to pursue the project because of the direct industry impacts it could have. “I’m pretty interested in seeing how we can utilize machine learning to make people’s lives easier. We are using AI to help biologists make this counting and identification process easier.” While Usua wasn’t familiar with aquaculture before starting this project, she explains, “Just hearing about the hatcheries that Dr. Vincent was telling us about, it was unfortunate that not a lot of people know what’s going on and the problems that they’re facing.”

    On Cape Cod alone, aquaculture is an $18 million per year industry. But the Massachusetts Division of Marine Fisheries estimates that hatcheries are only able to meet 70–80 percent of seed demand annually, which impacts local growers and economies. Through this project, the partners aim to develop technology that will increase seed production, advance industry capabilities, and help understand and improve the hatchery microbiome.

    Borrego explains the initial challenge of having limited data to work with. “Starting out, we had to go through and label all of the data, but going through that process helped me learn a lot.” In true MIT fashion, he shares his takeaway from the project: “Try to get the best out of what you’re given with the data you have to work with. You’re going to have to adapt and change your strategies depending on what you have.”

    Usua describes her experience going through the research process, communicating in a team, and deciding what approaches to take. “Research is a difficult and long process, but there is a lot to gain from it because it teaches you to look for things on your own and find your own solutions to problems.”

    In addition to increasing seed production and reducing the human labor required in the hatchery process, the collaborators expect this project to contribute to cost savings and technology integration to support one of the most underserved industries in the United States. 

    Borrego and Usua both plan to continue their work for a second semester with MIT Sea Grant. Borrego is interested in learning more about how technology can be used to protect the environment and wildlife. Usua says she hopes to explore more projects related to aquaculture. “It seems like there’s an infinite amount of ways to tackle these issues.” More

  • in

    Q&A: Claire Walsh on how J-PAL’s King Climate Action Initiative tackles the twin climate and poverty crises

    The King Climate Action Initiative (K-CAI) is the flagship climate change program of the Abdul Latif Jameel Poverty Action Lab (J-PAL), which innovates, tests, and scales solutions at the nexus of climate change and poverty alleviation, together with policy partners worldwide.

    Claire Walsh is the associate director of policy at J-PAL Global at MIT. She is also the project director of K-CAI. Here, Walsh talks about the work of K-CAI since its launch in 2020, and describes the ways its projects are making a difference. This is part of an ongoing series exploring how the MIT School of Humanities, Arts, and Social Sciences is addressing the climate crisis.

    Q: According to the King Climate Action Initiative (K-CAI), any attempt to address poverty effectively must also simultaneously address climate change. Why is that?

    A: Climate change will disproportionately harm people in poverty, particularly in low- and middle-income countries, because they tend to live in places that are more exposed to climate risk. These are nations in sub-Saharan Africa and South and Southeast Asia where low-income communities rely heavily on agriculture for their livelihoods, so extreme weather — heat, droughts, and flooding — can be devastating for people’s jobs and food security. In fact, the World Bank estimates that up to 130 million more people may be pushed into poverty by climate change by 2030.

    This is unjust because these countries have historically emitted the least; their people didn’t cause the climate crisis. At the same time, they are trying to improve their economies and improve people’s welfare, so their energy demands are increasing, and they are emitting more. But they don’t have the same resources as wealthy nations for mitigation or adaptation, and many developing countries understandably don’t feel eager to put solving a problem they didn’t create at the top of their priority list. This makes finding paths forward to cutting emissions on a global scale politically challenging.

    For these reasons, the problems of enhancing the well-being of people experiencing poverty, addressing inequality, and reducing pollution and greenhouse gases are inextricably linked.

    Q: So how does K-CAI tackle this hybrid challenge?

    A: Our initiative is pretty unique. We are a competitive, policy-based research and development fund that focuses on innovating, testing, and scaling solutions. We support researchers from MIT and other universities, and their collaborators, who are actually implementing programs, whether NGOs [nongovernmental organizations], government, or the private sector. We fund pilots of small-scale ideas in a real-world setting to determine if they hold promise, followed by larger randomized, controlled trials of promising solutions in climate change mitigation, adaptation, pollution reduction, and energy access. Our goal is to determine, through rigorous research, if these solutions are actually working — for example, in cutting emissions or protecting forests or helping vulnerable communities adapt to climate change. And finally, we offer path-to-scale grants which enable governments and NGOs to expand access to programs that have been tested and have strong evidence of impact.

    We think this model is really powerful. Since we launched in 2020, we have built a portfolio of over 30 randomized evaluations and 13 scaling projects in more than 35 countries. And to date, these projects have informed the scale ups of evidence-based climate policies that have reached over 15 million people.

    Q: It seems like K-CAI is advancing a kind of policy science, demanding proof of a program’s capacity to deliver results at each stage. 

    A: This is one of the factors that drew me to J-PAL back in 2012. I majored in anthropology and studied abroad in Uganda. From those experiences I became very passionate about pursuing a career focused on poverty reduction. To me, it is unfair that in a world full of so much wealth and so much opportunity there exists so much extreme poverty. I wanted to dedicate my career to that, but I’m also a very detail-oriented nerd who really cares about whether a program that claims to be doing something for people is accomplishing what it claims.

    It’s been really rewarding to see demand from governments and NGOs for evidence-informed policymaking grow over my 12 years at J-PAL. This policy science approach holds exciting promise to help transform public policy and climate policy in the coming decades.  

    Q: Can you point to K-CAI-funded projects that meet this high bar and are now making a significant impact?

    A: Several examples jump to mind. In the state of Gujarat, India, pollution regulators are trying to cut particulate matter air pollution, which is devastating to human health. The region is home to many major industries whose emissions negatively affect most of the state’s 70 million residents.

    We partnered with state pollution regulators — kind of a regional EPA [Environmental Protection Agency] — to test an emissions trading scheme that is used widely in the U.S. and Europe but not in low- and middle-income countries. The government monitors pollution levels using technology installed at factories that sends data in real time, so the regulator knows exactly what their emissions look like. The regulator sets a cap on the overall level of pollution, allocates permits to pollute, and industries can trade emissions permits.

    In 2019, researchers in the J-PAL network conducted the world’s first randomized, controlled trial of this emissions trading scheme and found that it cut pollution by 20 to 30 percent — a surprising reduction. It also reduced firms’ costs, on average, because the costs of compliance went down. The state government was eager to scale up the pilot, and in the past two years, two other cities, including Ahmedabad, the biggest city in the state, have adopted the concept.

    We are also supporting a project in Niger, whose economy is hugely dependent on rain-fed agriculture but with climate change is experiencing rapid desertification. Researchers in the J-PAL network have been testing training farmers in a simple, inexpensive rainwater harvesting technique, where farmers dig a half-moon-shaped hole called a demi-lune right before the rainy season. This demi-lune feeds crops that are grown directly on top of it, and helps return land that resembled flat desert to arable production.

    Researchers found that training farmers in this simple technology increased adoption from 4 percent to 94 percent and that demi-lunes increased agricultural output and revenue for farmers from the first year. K-CAI is funding a path-to-scale grant so local implementers can teach this technique to over 8,000 farmers and build a more cost-effective program model. If this takes hold, the team will work with local partners to scale the training to other relevant regions of the country and potentially other countries in the Sahel.

    One final example that we are really proud of, because we first funded it as a pilot and now it’s in the path to scale phase: We supported a team of researchers working with partners in Bangladesh trying to reduce carbon emissions and other pollution from brick manufacturing, an industry that generates 17 percent of the country’s carbon emissions. The scale of manufacturing is so great that at some times of year, Dhaka (the capital of Bangladesh) looks like Mordor.

    Workers form these bricks and stack hundreds of thousands of them, which they then fire by burning coal. A team of local researchers and collaborators from our J-PAL network found that you can reduce the amount of coal needed for the kilns by making some low-cost changes to the manufacturing process, including stacking the bricks in a way that increases airflow in the kiln and feeding the coal fires more frequently in smaller rather than larger batches.

    In the randomized, controlled trial K-CAI supported, researchers found that this cut carbon and pollution emissions significantly, and now the government has invited the team to train 1,000 brick manufacturers in Dhaka in these techniques.

    Q: These are all fascinating and powerful instances of implementing ideas that address a range of problems in different parts of the world. But can K-CAI go big enough and fast enough to take a real bite out of the twin poverty and climate crisis?

    A: We’re not trying to find silver bullets. We are trying to build a large playbook of real solutions that work to solve specific problems in specific contexts. As you build those up in the hundreds, you have a deep bench of effective approaches to solve problems that can add up in a meaningful way. And because J-PAL works with governments and NGOs that have the capacity to take the research into action, since 2003, over 600 million people around the world have been reached by policies and programs that are informed by evidence that J-PAL-affiliated researchers produced. While global challenges seem daunting, J-PAL has shown that in 20 years we can achieve a great deal, and there is huge potential for future impact.

    But unfortunately, globally, there is an underinvestment in policy innovation to combat climate change that may generate quicker, lower-cost returns at a large scale — especially in policies that determine which technologies get adopted or commercialized. For example, a lot of the huge fall in prices of renewable energy was enabled by early European government investments in solar and wind, and then continuing support for innovation in renewable energy.

    That’s why I think social sciences have so much to offer in the fight against climate change and poverty; we are working where technology meets policy and where technology meets real people, which often determines their success or failure. The world should be investing in policy, economic, and social innovation just as much as it is investing in technological innovation.

    Q: Do you need to be an optimist in your job?

    A: I am half-optimist, half-pragmatist. I have no control over the climate change outcome for the world. And regardless of whether we can successfully avoid most of the potential damages of climate change, when I look back, I’m going to ask myself, “Did I fight or not?” The only choice I have is whether or not I fought, and I want to be a fighter. More

  • in

    Artificial reef designed by MIT engineers could protect marine life, reduce storm damage

    The beautiful, gnarled, nooked-and-crannied reefs that surround tropical islands serve as a marine refuge and natural buffer against stormy seas. But as the effects of climate change bleach and break down coral reefs around the world, and extreme weather events become more common, coastal communities are left increasingly vulnerable to frequent flooding and erosion.

    An MIT team is now hoping to fortify coastlines with “architected” reefs — sustainable, offshore structures engineered to mimic the wave-buffering effects of natural reefs while also providing pockets for fish and other marine life.

    The team’s reef design centers on a cylindrical structure surrounded by four rudder-like slats. The engineers found that when this structure stands up against a wave, it efficiently breaks the wave into turbulent jets that ultimately dissipate most of the wave’s total energy. The team has calculated that the new design could reduce as much wave energy as existing artificial reefs, using 10 times less material.

    The researchers plan to fabricate each cylindrical structure from sustainable cement, which they would mold in a pattern of “voxels” that could be automatically assembled, and would provide pockets for fish to explore and other marine life to settle in. The cylinders could be connected to form a long, semipermeable wall, which the engineers could erect along a coastline, about half a mile from shore. Based on the team’s initial experiments with lab-scale prototypes, the architected reef could reduce the energy of incoming waves by more than 95 percent.

    “This would be like a long wave-breaker,” says Michael Triantafyllou, the Henry L. and Grace Doherty Professor in Ocean Science and Engineering in the Department of Mechanical Engineering. “If waves are 6 meters high coming toward this reef structure, they would be ultimately less than a meter high on the other side. So, this kills the impact of the waves, which could prevent erosion and flooding.”

    Details of the architected reef design are reported today in a study appearing in the open-access journal PNAS Nexus. Triantafyllou’s MIT co-authors are Edvard Ronglan SM ’23; graduate students Alfonso Parra Rubio, Jose del Auila Ferrandis, and Erik Strand; research scientists Patricia Maria Stathatou and Carolina Bastidas; and Professor Neil Gershenfeld, director of the Center for Bits and Atoms; along with Alexis Oliveira Da Silva at the Polytechnic Institute of Paris, Dixia Fan of Westlake University, and Jeffrey Gair Jr. of Scinetics, Inc.

    Leveraging turbulence

    Some regions have already erected artificial reefs to protect their coastlines from encroaching storms. These structures are typically sunken ships, retired oil and gas platforms, and even assembled configurations of concrete, metal, tires, and stones. However, there’s variability in the types of artificial reefs that are currently in place, and no standard for engineering such structures. What’s more, the designs that are deployed tend to have a low wave dissipation per unit volume of material used. That is, it takes a huge amount of material to break enough wave energy to adequately protect coastal communities.

    The MIT team instead looked for ways to engineer an artificial reef that would efficiently dissipate wave energy with less material, while also providing a refuge for fish living along any vulnerable coast.

    “Remember, natural coral reefs are only found in tropical waters,” says Triantafyllou, who is director of the MIT Sea Grant. “We cannot have these reefs, for instance, in Massachusetts. But architected reefs don’t depend on temperature, so they can be placed in any water, to protect more coastal areas.”

    MIT researchers test the wave-breaking performance of two artificial reef structures in the MIT Towing Tank.Credit: Courtesy of the researchers

    The new effort is the result of a collaboration between researchers in MIT Sea Grant, who developed the reef structure’s hydrodynamic design, and researchers at the Center for Bits and Atoms (CBA), who worked to make the structure modular and easy to fabricate on location. The team’s architected reef design grew out of two seemingly unrelated problems. CBA researchers were developing ultralight cellular structures for the aerospace industry, while Sea Grant researchers were assessing the performance of blowout preventers in offshore oil structures — cylindrical valves that are used to seal off oil and gas wells and prevent them from leaking.

    The team’s tests showed that the structure’s cylindrical arrangement generated a high amount of drag. In other words, the structure appeared to be especially efficient in dissipating high-force flows of oil and gas. They wondered: Could the same arrangement dissipate another type of flow, in ocean waves?

    The researchers began to play with the general structure in simulations of water flow, tweaking its dimensions and adding certain elements to see whether and how waves changed as they crashed against each simulated design. This iterative process ultimately landed on an optimized geometry: a vertical cylinder flanked by four long slats, each attached to the cylinder in a way that leaves space for water to flow through the resulting structure. They found this setup essentially breaks up any incoming wave energy, causing parts of the wave-induced flow to spiral to the sides rather than crashing ahead.

    “We’re leveraging this turbulence and these powerful jets to ultimately dissipate wave energy,” Ferrandis says.

    Standing up to storms

    Once the researchers identified an optimal wave-dissipating structure, they fabricated a laboratory-scale version of an architected reef made from a series of the cylindrical structures, which they 3D-printed from plastic. Each test cylinder measured about 1 foot wide and 4 feet tall. They assembled a number of cylinders, each spaced about a foot apart, to form a fence-like structure, which they then lowered into a wave tank at MIT. They then generated waves of various heights and measured them before and after passing through the architected reef.

    “We saw the waves reduce substantially, as the reef destroyed their energy,” Triantafyllou says.

    The team has also looked into making the structures more porous, and friendly to fish. They found that, rather than making each structure from a solid slab of plastic, they could use a more affordable and sustainable type of cement.

    “We’ve worked with biologists to test the cement we intend to use, and it’s benign to fish, and ready to go,” he adds.

    They identified an ideal pattern of “voxels,” or microstructures, that cement could be molded into, in order to fabricate the reefs while creating pockets in which fish could live. This voxel geometry resembles individual egg cartons, stacked end to end, and appears to not affect the structure’s overall wave-dissipating power.

    “These voxels still maintain a big drag while allowing fish to move inside,” Ferrandis says.

    The team is currently fabricating cement voxel structures and assembling them into a lab-scale architected reef, which they will test under various wave conditions. They envision that the voxel design could be modular, and scalable to any desired size, and easy to transport and install in various offshore locations. “Now we’re simulating actual sea patterns, and testing how these models will perform when we eventually have to deploy them,” says Anjali Sinha, a graduate student at MIT who recently joined the group.

    Going forward, the team hopes to work with beach towns in Massachusetts to test the structures on a pilot scale.

    “These test structures would not be small,” Triantafyllou emphasizes. “They would be about a mile long, and about 5 meters tall, and would cost something like 6 million dollars per mile. So it’s not cheap. But it could prevent billions of dollars in storm damage. And with climate change, protecting the coasts will become a big issue.”

    This work was funded, in part, by the U.S. Defense Advanced Research Projects Agency. More

  • in

    Understanding the impacts of mining on local environments and communities

    Hydrosocial displacement refers to the idea that resolving water conflict in one area can shift the conflict to a different area. The concept was coined by Scott Odell, a visiting researcher in MIT’s Environmental Solutions Initiative (ESI). As part of ESI’s Program on Mining and the Circular Economy, Odell researches the impacts of extractive industries on local environments and communities, especially in Latin America. He discovered that hydrosocial displacements are often in regions where the mining industry is vying for use of precious water sources that are already stressed due to climate change.

    Odell is working with John Fernández, ESI director and professor in the Department of Architecture, on a project that is examining the converging impacts of climate change, mining, and agriculture in Chile. The work is funded by a seed grant from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS). Specifically, the project seeks to answer how the expansion of seawater desalination by the mining industry is affecting local populations, and how climate change and mining affect Andean glaciers and the agricultural communities dependent upon them.By working with communities in mining areas, Odell and Fernández are gaining a sense of the burden that mining minerals needed for the clean energy transition is placing on local populations, and the types of conflicts that arise when water sources become polluted or scarce. This work is of particular importance considering over 100 countries pledged a commitment to the clean energy transition at the recent United Nations climate change conference, known as COP28.

    Play video

    J-WAFS Community Spotlight on Scott Odell

    Water, humanity’s lifebloodAt the March 2023 United Nations (U.N.) Water Conference in New York, U.N. Secretary-General António Guterres warned “water is in deep trouble. We are draining humanity’s lifeblood through vampiric overconsumption and unsustainable use and evaporating it through global heating.” A quarter of the world’s population already faces “extremely high water stress,” according to the World Resources Institute. In an effort to raise awareness of major water-related issues and inspire action for innovative solutions, the U.N. created World Water Day, observed every year on March 22. This year’s theme is “Water for Peace,” underscoring the fact that even though water is a basic human right and intrinsic to every aspect of life, it is increasingly fought over as supplies dwindle due to problems including drought, overuse, or mismanagement.  

    The “Water for Peace” theme is exemplified in Fernández and Odell’s J-WAFS project, where findings are intended to inform policies to reduce social and environmental harms inflicted on mining communities and their limited water sources.“Despite broad academic engagement with mining and climate change separately, there has been a lack of analysis of the societal implications of the interactions between mining and climate change,” says Odell. “This project is helping to fill the knowledge gap. Results will be summarized in Spanish and English and distributed to interested and relevant parties in Chile, ensuring that the results can be of benefit to those most impacted by these challenges,” he adds.

    The effects of mining for the clean energy transition

    Global climate change is understood to be the most pressing environmental issue facing humanity today. Mitigating climate change requires reducing carbon emissions by transitioning away from conventional energy derived from burning fossil fuels, to more sustainable energy sources like solar and wind power. Because copper is an excellent conductor of electricity, it will be a crucial element in the clean energy transition, in which more solar panels, wind turbines, and electric vehicles will be manufactured. “We are going to see a major increase in demand for copper due to the clean energy transition,” says Odell.

    In 2021, Chile produced 26 percent of the world’s copper, more than twice as much as any other country, Odell explains. Much of Chile’s mining is concentrated in and around the Atacama Desert — the world’s driest desert. Unfortunately, mining requires large amounts of water for a variety of processes, including controlling dust at the extraction site, cooling machinery, and processing and transporting ore.

    Chile is also one of the world’s largest exporters of agricultural products. Farmland is typically situated in the valleys downstream of several mines in the high Andes region, meaning mines get first access to water. This can lead to water conflict between mining operations and agricultural communities. Compounding the problem of mining for greener energy materials to combat climate change, are the very effects of climate change. According to the Chilean government, the country has suffered 13 years of the worst drought in history. While this is detrimental to the mining industry, it is also concerning for those working in agriculture, including the Indigenous Atacameño communities that live closest to the Escondida mine, the largest copper mine in the world. “There was never a lot of water to go around, even before the mine,” Odell says. The addition of Escondida stresses an already strained water system, leaving Atacameño farmers and individuals vulnerable to severe water insecurity.

    What’s more, waste from mining, known as tailings, includes minerals and chemicals that can contaminate water in nearby communities if not properly handled and stored. Odell says the secure storage of tailings is a high priority in earthquake-prone Chile. “If an earthquake were to hit and damage a tailings dam, it could mean toxic materials flowing downstream and destroying farms and communities,” he says.

    Chile’s treasured glaciers are another piece of the mining, climate change, and agricultural puzzle. Caroline White-Nockleby, a PhD candidate in MIT’s Program in Science, Technology, and Society, is working with Odell and Fernández on the J-WAFS project and leading the research specifically on glaciers. “These may not be the picturesque bright blue glaciers that you might think of, but they are, nonetheless, an important source of water downstream,” says White-Nockleby. She goes on to explain that there are a few different ways that mines can impact glaciers.

    In some cases, mining companies have proposed to move or even destroy glaciers to get at the ore beneath. Other impacts include dust from mining that falls on glaciers. White-Nockleby says, “this makes the glaciers a darker color, so, instead of reflecting the sun’s rays away, [the glacier] may absorb the heat and melt faster.” This shows that even when not directly intervening with glaciers, mining activities can cause glacial decline, adding to the threat glaciers already face due to climate change. She also notes that “glaciers are an important water storage facility,” describing how, on an annual cycle, glaciers freeze and melt, allowing runoff that downstream agricultural communities can utilize. If glaciers suddenly melt too quickly, flooding of downstream communities can occur.

    Desalination offers a possible, but imperfect, solution

    Chile’s extensive coastline makes it uniquely positioned to utilize desalination — the removal of salts from seawater — to address water insecurity. Odell says that “over the last decade or so, there’s been billions of dollars of investments in desalination in Chile.”

    As part of his dissertation work at Clark University, Odell found broad optimism in Chile for solving water issues in the mining industry through desalination. Not only was the mining industry committed to building desalination plants, there was also political support, and support from some community members in highland communities near the mines. Yet, despite the optimism and investment, desalinated water was not replacing the use of continental water. He concluded that “desalination can’t solve water conflict if it doesn’t reduce demand for continental water supplies.”

    However, after publishing those results, Odell learned that new estimates at the national level showed that desalination operations had begun to replace the use of continental water after 2018. In two case studies that he currently focuses on — the Escondida and Los Pelambres copper mines — the mining companies have expanded their desalination objectives in order to reduce extraction from key continental sources. This seems to be due to a variety of factors. For one thing, in 2022, Chile’s water code was reformed to prioritize human water consumption and environmental protection of water during scarcity and in the allocation of future rights. It also shortened the granting of water rights from “in perpetuity” to 30 years. Under this new code, it is possible that the mining industry may have expanded its desalination efforts because it viewed continental water resources as less secure, Odell surmises.

    As part of the J-WAFS project, Odell has found that recent reactions have been mixed when it comes to the rapid increase in the use of desalination. He spent over two months doing fieldwork in Chile by conducting interviews with members of government, industry, and civil society at the Escondida, Los Pelambres, and Andina mining sites, as well as in Chile’s capital city, Santiago. He has spoken to local and national government officials, leaders of fishing unions, representatives of mining and desalination companies, and farmers. He observed that in the communities where the new desalination plants are being built, there have been concerns from community members as to whether they will get access to the desalinated water, or if it will belong solely to the mines.

    Interviews at the Escondida and Los Pelambres sites, in which desalination operations are already in place or under construction, indicate acceptance of the presence of desalination plants combined with apprehension about unknown long-term environmental impacts. At a third mining site, Andina, there have been active protests against a desalination project that would supply water to a neighboring mine, Los Bronces. In that community, there has been a blockade of the desalination operation by the fishing federation. “They were blockading that operation for three months because of concerns over what the desalination plant would do to their fishing grounds,” Odell says. And this is where the idea of hydrosocial displacement comes into the picture, he explains. Even though desalination operations are easing tensions with highland agricultural communities, new issues are arising for the communities on the coast. “We can’t just look to desalination to solve our problems if it’s going to create problems somewhere else” Odell advises.

    Within the process of hydrosocial displacement, interacting geographical, technical, economic, and political factors constrain the range of responses to address the water conflict. For example, communities that have more political and financial power tend to be better equipped to solve water conflict than less powerful communities. In addition, hydrosocial concerns usually follow the flow of water downstream, from the highlands to coastal regions. Odell says that this raises the need to look at water from a broader perspective.

    “We tend to address water concerns one by one and that can, in practice, end up being kind of like whack-a-mole,” says Odell. “When we think of the broader hydrological system, water is very much linked, and we need to look across the watershed. We can’t just be looking at the specific community affected now, but who else is affected downstream, and will be affected in the long term. If we do solve a water issue by moving it somewhere else, like moving a tailings dam somewhere else, or building a desalination plant, resources are needed in the receiving community to respond to that,” suggests Odell.

    The company building the desalination plant and the fishing federation ultimately reached an agreement and the desalination operation will be moving forward. But Odell notes, “the protest highlights concern about the impacts of the operation on local livelihoods and environments within the much larger context of industrial pollution in the area.”

    The power of communities

    The protest by the fishing federation is one example of communities coming together to have their voices heard. Recent proposals by mining companies that would affect glaciers and other water sources used by agriculture communities have led to other protests that resulted in new agreements to protect local water supplies and the withdrawal of some of the mining proposals.Odell observes that communities have also gone to the courts to raise their concerns. The Atacameño communities, for example, have drawn attention to over-extraction of water resources by the Escondida mine. “Community members are also pursuing education in these topics so that there’s not such a power imbalance between mining companies and local communities,” Odell remarks. This demonstrates the power local communities can have to protect continental water resources.The political and social landscape of Chile may also be changing in favor of local communities. Beginning with what is now referred to as the Estallido Social (social outburst) over inequality in 2019, Chile has undergone social upheaval that resulted in voters calling for a new constitution. Gabriel Boric, a progressive candidate, whose top priorities include social and environmental issues, was elected president during this period. These trends have brought major attention to issues of economic inequality, environmental harms of mining, and environmental justice, which is putting pressure on the mining industry to make a case for its operations in the country, and to justify the environmental costs of mining.

    What happens after the mine dries up?

    From his fieldwork interviews, Odell has learned that the development of mines within communities can offer benefits. Mining companies typically invest directly in communities through employment, road construction, and sometimes even by building or investing in schools, stadiums, or health clinics. Indirectly, mines can have spillover effects in the economy since miners might support local restaurants, hotels, or stores. But what happens when the mine closes? As one community member Odell interviewed stated: “When the mine is gone, what are we going to have left besides a big hole in the ground?”

    Odell suggests that a multi-pronged approach should be taken to address the future state of water and mining. First, he says we need to have broader conversations about the nature of our consumption and production at domestic and global scales. “Mining is driven indirectly by our consumption of energy and directly by our consumption of everything from our buildings to devices to cars,” Odell states. “We should be looking for ways to moderate our consumption and consume smarter through both policy and practice so that we don’t solve climate change while creating new environmental harms through mining.”One of the main ways we can do this is by advancing the circular economy by recycling metals already in the system, or even in landfills, to help build our new clean energy infrastructure. Even so, the clean energy transition will still require mining, but according to Odell, that mining can be done better. “Mining companies and government need to do a better job of consulting with communities. We need solid plans and financing for mine closures in place from the beginning of mining operations, so that when the mine dries up, there’s the money needed to secure tailings dams and protect the communities who will be there forever,” Odell concludes.Overall, it will take an engaged society — from the mining industry to government officials to individuals — to think critically about the role we each play in our quest for a more sustainable planet, and what that might mean for the most vulnerable populations among us. More