More stories

  • in

    From seawater to drinking water, with the push of a button

    MIT researchers have developed a portable desalination unit, weighing less than 10 kilograms, that can remove particles and salts to generate drinking water.

    The suitcase-sized device, which requires less power to operate than a cell phone charger, can also be driven by a small, portable solar panel, which can be purchased online for around $50. It automatically generates drinking water that exceeds World Health Organization quality standards. The technology is packaged into a user-friendly device that runs with the push of one button.

    Unlike other portable desalination units that require water to pass through filters, this device utilizes electrical power to remove particles from drinking water. Eliminating the need for replacement filters greatly reduces the long-term maintenance requirements.

    This could enable the unit to be deployed in remote and severely resource-limited areas, such as communities on small islands or aboard seafaring cargo ships. It could also be used to aid refugees fleeing natural disasters or by soldiers carrying out long-term military operations.

    “This is really the culmination of a 10-year journey that I and my group have been on. We worked for years on the physics behind individual desalination processes, but pushing all those advances into a box, building a system, and demonstrating it in the ocean, that was a really meaningful and rewarding experience for me,” says senior author Jongyoon Han, a professor of electrical engineering and computer science and of biological engineering, and a member of the Research Laboratory of Electronics (RLE).

    Joining Han on the paper are first author Junghyo Yoon, a research scientist in RLE; Hyukjin J. Kwon, a former postdoc; SungKu Kang, a postdoc at Northeastern University; and Eric Brack of the U.S. Army Combat Capabilities Development Command (DEVCOM). The research has been published online in Environmental Science and Technology.

    Play video

    Filter-free technology

    Commercially available portable desalination units typically require high-pressure pumps to push water through filters, which are very difficult to miniaturize without compromising the energy-efficiency of the device, explains Yoon.

    Instead, their unit relies on a technique called ion concentration polarization (ICP), which was pioneered by Han’s group more than 10 years ago. Rather than filtering water, the ICP process applies an electrical field to membranes placed above and below a channel of water. The membranes repel positively or negatively charged particles — including salt molecules, bacteria, and viruses — as they flow past. The charged particles are funneled into a second stream of water that is eventually discharged.

    The process removes both dissolved and suspended solids, allowing clean water to pass through the channel. Since it only requires a low-pressure pump, ICP uses less energy than other techniques.

    But ICP does not always remove all the salts floating in the middle of the channel. So the researchers incorporated a second process, known as electrodialysis, to remove remaining salt ions.

    Yoon and Kang used machine learning to find the ideal combination of ICP and electrodialysis modules. The optimal setup includes a two-stage ICP process, with water flowing through six modules in the first stage then through three in the second stage, followed by a single electrodialysis process. This minimized energy usage while ensuring the process remains self-cleaning.

    “While it is true that some charged particles could be captured on the ion exchange membrane, if they get trapped, we just reverse the polarity of the electric field and the charged particles can be easily removed,” Yoon explains.

    They shrunk and stacked the ICP and electrodialysis modules to improve their energy efficiency and enable them to fit inside a portable device. The researchers designed the device for nonexperts, with just one button to launch the automatic desalination and purification process. Once the salinity level and the number of particles decrease to specific thresholds, the device notifies the user that the water is drinkable.

    The researchers also created a smartphone app that can control the unit wirelessly and report real-time data on power consumption and water salinity.

    Beach tests

    After running lab experiments using water with different salinity and turbidity (cloudiness) levels, they field-tested the device at Boston’s Carson Beach.

    Yoon and Kwon set the box near the shore and tossed the feed tube into the water. In about half an hour, the device had filled a plastic drinking cup with clear, drinkable water.

    “It was successful even in its first run, which was quite exciting and surprising. But I think the main reason we were successful is the accumulation of all these little advances that we made along the way,” Han says.

    The resulting water exceeded World Health Organization quality guidelines, and the unit reduced the amount of suspended solids by at least a factor of 10. Their prototype generates drinking water at a rate of 0.3 liters per hour, and requires only 20 watts of power per liter.

    “Right now, we are pushing our research to scale up that production rate,” Yoon says.

    One of the biggest challenges of designing the portable system was engineering an intuitive device that could be used by anyone, Han says.

    Yoon hopes to make the device more user-friendly and improve its energy efficiency and production rate through a startup he plans to launch to commercialize the technology.

    In the lab, Han wants to apply the lessons he’s learned over the past decade to water-quality issues that go beyond desalination, such as rapidly detecting contaminants in drinking water.

    “This is definitely an exciting project, and I am proud of the progress we have made so far, but there is still a lot of work to do,” he says.

    For example, while “development of portable systems using electro-membrane processes is an original and exciting direction in off-grid, small-scale desalination,” the effects of fouling, especially if the water has high turbidity, could significantly increase maintenance requirements and energy costs, notes Nidal Hilal, professor of engineering and director of the New York University Abu Dhabi Water research center, who was not involved with this research.

    “Another limitation is the use of expensive materials,” he adds. “It would be interesting to see similar systems with low-cost materials in place.”

    The research was funded, in part, by the DEVCOM Soldier Center, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), the Experimental AI Postdoc Fellowship Program of Northeastern University, and the Roux AI Institute. More

  • in

    Five MIT PhD students awarded 2022 J-WAFS fellowships for water and food solutions

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) recently announced the selection of its 2022-23 cohort of graduate fellows. Two students were named Rasikbhai L. Meswani Fellows for Water Solutions and three students were named J-WAFS Graduate Student Fellows. All five fellows will receive full tuition and a stipend for one semester, and J-WAFS will support the students throughout the 2022-23 academic year by providing networking, mentorship, and opportunities to showcase their research.

    New this year, fellowship nominations were open not only to students pursuing water research, but food-related research as well. The five students selected were chosen for their commitment to solutions-based research that aims to alleviate problems such as water supply or purification, food security, or agriculture. Their projects exemplify the wide range of research that J-WAFS supports, from enhancing nutrition through improved methods to deliver micronutrients to developing high-performance drip irrigation technology. The strong applicant pool reflects the passion MIT students have to address the water and food crises currently facing the planet.

    “This year’s fellows are drawn from a dynamic and engaged community across the Institute whose creativity and ingenuity are pushing forward transformational water and food solutions,” says J-WAFS executive director Renee J. Robins. “We congratulate these students as we recognize their outstanding achievements and their promise as up-and-coming leaders in global water and food sectors.”

    2022-23 Rasikbhai L. Meswani Fellows for Water SolutionsThe Rasikbhai L. Meswani Fellowship for Water Solutions is a fellowship for students pursuing water-related research at MIT. The Rasikbhai L. Meswani Fellowship for Water Solutions was made possible by a generous gift from Elina and Nikhil Meswani and family.

    Aditya Ghodgaonkar is a PhD candidate in the Department of Mechanical Engineering at MIT, where he works in the Global Engineering and Research (GEAR) Lab under Professor Amos Winter. Ghodgaonkar received a bachelor’s degree in mechanical engineering from the RV College of Engineering in India. He then moved to the United States and received a master’s degree in mechanical engineering from Purdue University.Ghodgaonkar is currently designing hydraulic components for drip irrigation that could support the development of water-efficient irrigation systems that are off-grid, inexpensive, and low-maintenance. He has focused on designing drip irrigation emitters that are resistant to clogging, seeking inspiration about flow regulation from marine fauna such as manta rays, as well as turbomachinery concepts. Ghodgaonkar notes that clogging is currently an expensive technical challenge to diagnose, mitigate, and resolve. With an eye on hundreds of millions of farms in developing countries, he aims to bring the benefits of irrigation technology to even the poorest farmers.Outside of his research, Ghodgaonkar is a mentor in MIT Makerworks and has been a teaching assistant for classes such as 2.007 (Design and Manufacturing I). He also helped organize the annual MIT Water Summit last fall.

    Devashish Gokhale is a PhD candidate advised by Professor Patrick Doyle in the Department of Chemical Engineering. He received a bachelor’s degree in chemical engineering from the Indian Institute of Technology Madras, where he researched fluid flow in energy-efficient pumps. Gokhale’s commitment to global water security stemmed from his experience growing up in India, where water sources are threatened by population growth, industrialization, and climate change.As a researcher in the Doyle group, Devashish is developing sustainable and reusable materials for water treatment, with a focus on the elimination of emerging contaminants and other micropollutants from water through cost-effective processes. Many of these contaminants are carcinogens or endocrine disruptors, posing significant threats to both humans and animals. His advisor notes that Devashish was the first researcher in the Doyle group to work on water purification, bringing his passion for the topic to the lab.Gokhale’s research won an award for potential scalability in last year’s J-WAFS World Water Day competition. He also serves as the lecture series chair in the MIT Water Club.

    2022-23 J-WAFS Graduate Student FellowsThe J-WAFS Fellowship for Water and Food Solutions is funded by the J-WAFS Research Affiliate Program, which offers companies the opportunity to collaborate with MIT on water and food research. A portion of each research affiliate’s fees supports this fellowship. The program is central to J-WAFS’ efforts to engage across sector and disciplinary boundaries in solving real-world problems. Currently, there are two J-WAFS Research Affiliates: Xylem, Inc., a water technology company, and GoAigua, a company leading the digital transformation of the water industry.

    James Zhang is a PhD candidate in the Department of Mechanical Engineering at MIT, where he has worked in the NanoEngineering Laboratory with Professor Gang Chen since 2019. As an undergraduate at Carnegie Mellon University, he double majored in mechanical engineering and engineering public policy. He then received a master’s degree in mechanical engineering from MIT. In addition to working in the NanoEngineering Laboratory, James has also worked in the Zhao Laboratory and in the Boriskina Research Group at MIT.Zhang is developing a technology that uses light-induced evaporation to clean water. He is currently investigating the fundamental properties of how light interacts with brackish water surfaces. With strong theoretical as well as experimental components, his research could lead to innovations in desalinating brackish water at high energy efficiencies. Outside of his research, Zhang has served as a student moderator for the MIT International Colloquia on Thermal Innovations.

    Katharina Fransen is a PhD candidate advised by Professor Bradley Olsen in the Department of Chemical Engineering at MIT. She received a bachelor’s degree in chemical engineering from the University of Minnesota, where she was involved in the Society of Women Engineers. Fransen is motivated by the challenge of protecting the most vulnerable global communities from the large quantities of plastic waste associated with traditional food packaging materials. As a researcher in the Olsen Lab, Fransen is developing new plastics that are biologically-based and biodegradable, so they can degrade in the environment instead of polluting communities with plastic waste. These polymers are also optimized for food packaging applications to keep food fresher for longer, preventing food waste.Outside of her research, Fransen is involved in Diversity in Chemical Engineering as the coordinator for the graduate application mentorship program for underrepresented groups. She is also an active member of Graduate Womxn in ChemE and mentors an Undergraduate Research Opportunities Program student.

    Linzixuan (Rhoda) Zhang is a PhD candidate advised by Professor Robert Langer and Ana Jaklenec in the Department of Chemical Engineering at MIT. She received a bachelor’s degree in chemical engineering from the University of Illinois at Urbana-Champaign, where she researched how to genetically engineer microorganisms for the efficient production of advanced biofuels and chemicals.Zhang is currently developing a micronutrient delivery platform that fortifies foods with essential vitamins and nutrients. She has helped develop a group of biodegradable polymers that can stabilize micronutrients under harsh conditions, enabling local food companies to fortify food with essential vitamins. This work aims to tackle a hidden crisis in low- and middle-income countries, where a chronic lack of essential micronutrients affects an estimated 2 billion people.Zhang is also working on the development of self-boosting vaccines to promote more widespread vaccine access and serves as a research mentor in the Langer Lab. More

  • in

    Empowering people to adapt on the frontlines of climate change

    On April 11, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the fifth in a five-part series highlighting the most promising concepts to emerge from the competition and the interdisciplinary research teams behind them.

    In the coastal south of Bangladesh, rice paddies that farmers could once harvest three times a year lie barren. Sea-level rise brings saltwater to the soil, ruining the staple crop. It’s one of many impacts, and inequities, of climate change. Despite producing less than 1 percent of global carbon emissions, Bangladesh is suffering more than most countries. Rising seas, heat waves, flooding, and cyclones threaten 90 million people.

    A platform being developed in a collaboration between MIT and BRAC, a Bangladesh-based global development organization, aims to inform and empower climate-threatened communities to proactively adapt to a changing future. Selected as one of five MIT Climate Grand Challenges flagship projects, the Climate Resilience Early Warning System (CREWSnet) will forecast the local impacts of climate change on people’s lives, homes, and livelihoods. These forecasts will guide BRAC’s development of climate-resiliency programs to help residents prepare for and adapt to life-altering conditions.

    “The communities that CREWSnet will focus on have done little to contribute to the problem of climate change in the first place. However, because of socioeconomic situations, they may be among the most vulnerable. We hope that by providing state-of-the-art projections and sharing them broadly with communities, and working through partners like BRAC, we can help improve the capacity of local communities to adapt to climate change, significantly,” says Elfatih Eltahir, the H.M. King Bhumibol Professor in the Department of Civil and Environmental Engineering.

    Eltahir leads the project with John Aldridge and Deborah Campbell in the Humanitarian Assistance and Disaster Relief Systems Group at Lincoln Laboratory. Additional partners across MIT include the Center for Global Change Science; the Department of Earth, Atmospheric and Planetary Sciences; the Joint Program on the Science and Policy of Global Change; and the Abdul Latif Jameel Poverty Action Lab. 

    Predicting local risks

    CREWSnet’s forecasts rely upon a sophisticated model, developed in Eltahir’s research group over the past 25 years, called the MIT Regional Climate Model. This model zooms in on climate processes at local scales, at a resolution as granular as 6 miles. In Bangladesh’s population-dense cities, a 6-mile area could encompass tens, or even hundreds, of thousands of people. The model takes into account the details of a region’s topography, land use, and coastline to predict changes in local conditions.

    When applying this model over Bangladesh, researchers found that heat waves will get more severe and more frequent over the next 30 years. In particular, wet-bulb temperatures, which indicate the ability for humans to cool down by sweating, will rise to dangerous levels rarely observed today, particularly in western, inland cities.

    Such hot spots exacerbate other challenges predicted to worsen near Bangladesh’s coast. Rising sea levels and powerful cyclones are eroding and flooding coastal communities, causing saltwater to surge into land and freshwater. This salinity intrusion is detrimental to human health, ruins drinking water supplies, and harms crops, livestock, and aquatic life that farmers and fishermen depend on for food and income.

    CREWSnet will fuse climate science with forecasting tools that predict the social and economic impacts to villages and cities. These forecasts — such as how often a crop season may fail, or how far floodwaters will reach — can steer decision-making.

    “What people need to know, whether they’re a governor or head of a household, is ‘What is going to happen in my area, and what decisions should I make for the people I’m responsible for?’ Our role is to integrate this science and technology together into a decision support system,” says Aldridge, whose group at Lincoln Laboratory specializes in this area. Most recently, they transitioned a hurricane-evacuation planning system to the U.S. government. “We know that making decisions based on climate change requires a deep level of trust. That’s why having a powerful partner like BRAC is so important,” he says.

    Testing interventions

    Established 50 years ago, just after Bangladesh’s independence, BRAC works in every district of the nation to provide social services that help people rise from extreme poverty. Today, it is one of the world’s largest nongovernmental organizations, serving 110 million people across 11 countries in Asia and Africa, but its success is cultivated locally.

    “BRAC is thrilled to partner with leading researchers at MIT to increase climate resilience in Bangladesh and provide a model that can be scaled around the globe,” says Donella Rapier, president and CEO of BRAC USA. “Locally led climate adaptation solutions that are developed in partnership with communities are urgently needed, particularly in the most vulnerable regions that are on the frontlines of climate change.”

    CREWSnet will help BRAC identify communities most vulnerable to forecasted impacts. In these areas, they will share knowledge and innovate or bolster programs to improve households’ capacity to adapt.

    Many climate initiatives are already underway. One program equips homes to filter and store rainwater, as salinity intrusion makes safe drinking water hard to access. Another program is building resilient housing, able to withstand 120-mile-per-hour winds, that can double as local shelters during cyclones and flooding. Other services are helping farmers switch to different livestock or crops better suited for wetter or saltier conditions (e.g., ducks instead of chickens, or salt-tolerant rice), providing interest-free loans to enable this change.

    But adapting in place will not always be possible, for example in areas predicted to be submerged or unbearably hot by midcentury. “Bangladesh is working on identifying and developing climate-resilient cities and towns across the country, as closer-by alternative destinations as compared to moving to Dhaka, the overcrowded capital of Bangladesh,” says Campbell. “CREWSnet can help identify regions better suited for migration, and climate-resilient adaptation strategies for those regions.” At the same time, BRAC’s Climate Bridge Fund is helping to prepare cities for climate-induced migration, building up infrastructure and financial services for people who have been displaced.

    Evaluating impact

    While CREWSnet’s goal is to enable action, it can’t quite measure the impact of those actions. The Abdul Latif Jameel Poverty Action Lab (J-PAL), a development economics program in the MIT School of Humanities, Arts, and Social Sciences, will help evaluate the effectiveness of the climate-adaptation programs.

    “We conduct randomized controlled trials, similar to medical trials, that help us understand if a program improved people’s lives,” says Claire Walsh, the project director of the King Climate Action Initiative at J-PAL. “Once CREWSnet helps BRAC implement adaptation programs, we will generate scientific evidence on their impacts, so that BRAC and CREWSnet can make a case to funders and governments to expand effective programs.”

    The team aspires to bring CREWSnet to other nations disproportionately impacted by climate change. “Our vision is to have this be a globally extensible capability,” says Campbell. CREWSnet’s name evokes another early-warning decision-support system, FEWSnet, that helped organizations address famine in eastern Africa in the 1980s. Today it is a pillar of food-security planning around the world.

    CREWSnet hopes for a similar impact in climate change planning. Its selection as an MIT Climate Grand Challenges flagship project will inject the project with more funding and resources, momentum that will also help BRAC’s fundraising. The team plans to deploy CREWSnet to southwestern Bangladesh within five years.

    “The communities that we are aspiring to reach with CREWSnet are deeply aware that their lives are changing — they have been looking climate change in the eye for many years. They are incredibly resilient, creative, and talented,” says Ashley Toombs, the external affairs director for BRAC USA. “As a team, we are excited to bring this system to Bangladesh. And what we learn together, we will apply at potentially even larger scales.” More

  • in

    New England renewables + Canadian hydropower

    The urgent need to cut carbon emissions has prompted a growing number of U.S. states to commit to achieving 100 percent clean electricity by 2040 or 2050. But figuring out how to meet those commitments and still have a reliable and affordable power system is a challenge. Wind and solar installations will form the backbone of a carbon-free power system, but what technologies can meet electricity demand when those intermittent renewable sources are not adequate?

    In general, the options being discussed include nuclear power, natural gas with carbon capture and storage (CCS), and energy storage technologies such as new and improved batteries and chemical storage in the form of hydrogen. But in the northeastern United States, there is one more possibility being proposed: electricity imported from hydropower plants in the neighboring Canadian province of Quebec.

    The proposition makes sense. Those plants can produce as much electricity as about 40 large nuclear power plants, and some power generated in Quebec already comes to the Northeast. So, there could be abundant additional supply to fill any shortfall when New England’s intermittent renewables underproduce. However, U.S. wind and solar investors view Canadian hydropower as a competitor and argue that reliance on foreign supply discourages further U.S. investment.

    Two years ago, three researchers affiliated with the MIT Center for Energy and Environmental Policy Research (CEEPR) — Emil Dimanchev SM ’18, now a PhD candidate at the Norwegian University of Science and Technology; Joshua Hodge, CEEPR’s executive director; and John Parsons, a senior lecturer in the MIT Sloan School of Management — began wondering whether viewing Canadian hydro as another source of electricity might be too narrow. “Hydropower is a more-than-hundred-year-old technology, and plants are already built up north,” says Dimanchev. “We might not need to build something new. We might just need to use those plants differently or to a greater extent.”

    So the researchers decided to examine the potential role and economic value of Quebec’s hydropower resource in a future low-carbon system in New England. Their goal was to help inform policymakers, utility decision-makers, and others about how best to incorporate Canadian hydropower into their plans and to determine how much time and money New England should spend to integrate more hydropower into its system. What they found out was surprising, even to them.

    The analytical methods

    To explore possible roles for Canadian hydropower to play in New England’s power system, the MIT researchers first needed to predict how the regional power system might look in 2050 — both the resources in place and how they would be operated, given any policy constraints. To perform that analysis, they used GenX, a modeling tool originally developed by Jesse Jenkins SM ’14, PhD ’18 and Nestor Sepulveda SM ’16, PhD ’20 while they were researchers at the MIT Energy Initiative (MITEI).

    The GenX model is designed to support decision-making related to power system investment and real-time operation and to examine the impacts of possible policy initiatives on those decisions. Given information on current and future technologies — different kinds of power plants, energy storage technologies, and so on — GenX calculates the combination of equipment and operating conditions that can meet a defined future demand at the lowest cost. The GenX modeling tool can also incorporate specified policy constraints, such as limits on carbon emissions.

    For their study, Dimanchev, Hodge, and Parsons set parameters in the GenX model using data and assumptions derived from a variety of sources to build a representation of the interconnected power systems in New England, New York, and Quebec. (They included New York to account for that state’s existing demand on the Canadian hydro resources.) For data on the available hydropower, they turned to Hydro-Québec, the public utility that owns and operates most of the hydropower plants in Quebec.

    It’s standard in such analyses to include real-world engineering constraints on equipment, such as how quickly certain power plants can be ramped up and down. With help from Hydro-Québec, the researchers also put hour-to-hour operating constraints on the hydropower resource.

    Most of Hydro-Québec’s plants are “reservoir hydropower” systems. In them, when power isn’t needed, the flow on a river is restrained by a dam downstream of a reservoir, and the reservoir fills up. When power is needed, the dam is opened, and the water in the reservoir runs through downstream pipes, turning turbines and generating electricity. Proper management of such a system requires adhering to certain operating constraints. For example, to prevent flooding, reservoirs must not be allowed to overfill — especially prior to spring snowmelt. And generation can’t be increased too quickly because a sudden flood of water could erode the river edges or disrupt fishing or water quality.

    Based on projections from the National Renewable Energy Laboratory and elsewhere, the researchers specified electricity demand for every hour of the year 2050, and the model calculated the cost-optimal mix of technologies and system operating regime that would satisfy that hourly demand, including the dispatch of the Hydro-Québec hydropower system. In addition, the model determined how electricity would be traded among New England, New York, and Quebec.

    Effects of decarbonization limits on technology mix and electricity trading

    To examine the impact of the emissions-reduction mandates in the New England states, the researchers ran the model assuming reductions in carbon emissions between 80 percent and 100 percent relative to 1990 levels. The results of those runs show that, as emissions limits get more stringent, New England uses more wind and solar and extends the lifetime of its existing nuclear plants. To balance the intermittency of the renewables, the region uses natural gas plants, demand-side management, battery storage (modeled as lithium-ion batteries), and trading with Quebec’s hydropower-based system. Meanwhile, the optimal mix in Quebec is mostly composed of existing hydro generation. Some solar is added, but new reservoirs are built only if renewable costs are assumed to be very high.

    The most significant — and perhaps surprising — outcome is that in all the scenarios, the hydropower-based system of Quebec is not only an exporter but also an importer of electricity, with the direction of flow on the Quebec-New England transmission lines changing over time.

    Historically, energy has always flowed from Quebec to New England. The model results for 2018 show electricity flowing from north to south, with the quantity capped by the current transmission capacity limit of 2,225 megawatts (MW).

    An analysis for 2050, assuming that New England decarbonizes 90 percent and the capacity of the transmission lines remains the same, finds electricity flows going both ways. Flows from north to south still dominate. But for nearly 3,500 of the 8,760 hours of the year, electricity flows in the opposite direction — from New England to Quebec. And for more than 2,200 of those hours, the flow going north is at the maximum the transmission lines can carry.

    The direction of flow is motivated by economics. When renewable generation is abundant in New England, prices are low, and it’s cheaper for Quebec to import electricity from New England and conserve water in its reservoirs. Conversely, when New England’s renewables are scarce and prices are high, New England imports hydro-generated electricity from Quebec.

    So rather than delivering electricity, Canadian hydro provides a means of storing the electricity generated by the intermittent renewables in New England.

    “We see this in our modeling because when we tell the model to meet electricity demand using these resources, the model decides that it is cost-optimal to use the reservoirs to store energy rather than anything else,” says Dimanchev. “We should be sending the energy back and forth, so the reservoirs in Quebec are in essence a battery that we use to store some of the electricity produced by our intermittent renewables and discharge it when we need it.”

    Given that outcome, the researchers decided to explore the impact of expanding the transmission capacity between New England and Quebec. Building transmission lines is always contentious, but what would be the impact if it could be done?

    Their model results shows that when transmission capacity is increased from 2,225 MW to 6,225 MW, flows in both directions are greater, and in both cases the flow is at the new maximum for more than 1,000 hours.

    Results of the analysis thus confirm that the economic response to expanded transmission capacity is more two-way trading. To continue the battery analogy, more transmission capacity to and from Quebec effectively increases the rate at which the battery can be charged and discharged.

    Effects of two-way trading on the energy mix

    What impact would the advent of two-way trading have on the mix of energy-generating sources in New England and Quebec in 2050?

    Assuming current transmission capacity, in New England, the change from one-way to two-way trading increases both wind and solar power generation and to a lesser extent nuclear; it also decreases the use of natural gas with CCS. The hydro reservoirs in Canada can provide long-duration storage — over weeks, months, and even seasons — so there is less need for natural gas with CCS to cover any gaps in supply. The level of imports is slightly lower, but now there are also exports. Meanwhile, in Quebec, two-way trading reduces solar power generation, and the use of wind disappears. Exports are roughly the same, but now there are imports as well. Thus, two-way trading reallocates renewables from Quebec to New England, where it’s more economical to install and operate solar and wind systems.

    Another analysis examined the impact on the energy mix of assuming two-way trading plus expanded transmission capacity. For New England, greater transmission capacity allows wind, solar, and nuclear to expand further; natural gas with CCS all but disappears; and both imports and exports increase significantly. In Quebec, solar decreases still further, and both exports and imports of electricity increase.

    Those results assume that the New England power system decarbonizes by 99 percent in 2050 relative to 1990 levels. But at 90 percent and even 80 percent decarbonization levels, the model concludes that natural gas capacity decreases with the addition of new transmission relative to the current transmission scenario. Existing plants are retired, and new plants are not built as they are no longer economically justified. Since natural gas plants are the only source of carbon emissions in the 2050 energy system, the researchers conclude that the greater access to hydro reservoirs made possible by expanded transmission would accelerate the decarbonization of the electricity system.

    Effects of transmission changes on costs

    The researchers also explored how two-way trading with expanded transmission capacity would affect costs in New England and Quebec, assuming 99 percent decarbonization in New England. New England’s savings on fixed costs (investments in new equipment) are largely due to a decreased need to invest in more natural gas with CCS, and its savings on variable costs (operating costs) are due to a reduced need to run those plants. Quebec’s savings on fixed costs come from a reduced need to invest in solar generation. The increase in cost — borne by New England — reflects the construction and operation of the increased transmission capacity. The net benefit for the region is substantial.

    Thus, the analysis shows that everyone wins as transmission capacity increases — and the benefit grows as the decarbonization target tightens. At 99 percent decarbonization, the overall New England-Quebec region pays about $21 per megawatt-hour (MWh) of electricity with today’s transmission capacity but only $18/MWh with expanded transmission. Assuming 100 percent reduction in carbon emissions, the region pays $29/MWh with current transmission capacity and only $22/MWh with expanded transmission.

    Addressing misconceptions

    These results shed light on several misconceptions that policymakers, supporters of renewable energy, and others tend to have.

    The first misconception is that the New England renewables and Canadian hydropower are competitors. The modeling results instead show that they’re complementary. When the power systems in New England and Quebec work together as an integrated system, the Canadian reservoirs are used part of the time to store the renewable electricity. And with more access to hydropower storage in Quebec, there’s generally more renewable investment in New England.

    The second misconception arises when policymakers refer to Canadian hydro as a “baseload resource,” which implies a dependable source of electricity — particularly one that supplies power all the time. “Our study shows that by viewing Canadian hydropower as a baseload source of electricity — or indeed a source of electricity at all — you’re not taking full advantage of what that resource can provide,” says Dimanchev. “What we show is that Quebec’s reservoir hydro can provide storage, specifically for wind and solar. It’s a solution to the intermittency problem that we foresee in carbon-free power systems for 2050.”

    While the MIT analysis focuses on New England and Quebec, the researchers believe that their results may have wider implications. As power systems in many regions expand production of renewables, the value of storage grows. Some hydropower systems have storage capacity that has not yet been fully utilized and could be a good complement to renewable generation. Taking advantage of that capacity can lower the cost of deep decarbonization and help move some regions toward a decarbonized supply of electricity.

    This research was funded by the MIT Center for Energy and Environmental Policy Research, which is supported in part by a consortium of industry and government associates.

    This article appears in the Autumn 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Ocean vital signs

    Without the ocean, the climate crisis would be even worse than it is. Each year, the ocean absorbs billions of tons of carbon from the atmosphere, preventing warming that greenhouse gas would otherwise cause. Scientists estimate about 25 to 30 percent of all carbon released into the atmosphere by both human and natural sources is absorbed by the ocean.

    “But there’s a lot of uncertainty in that number,” says Ryan Woosley, a marine chemist and a principal research scientist in the Department of Earth, Atmospheric and Planetary Sciences (EAPS) at MIT. Different parts of the ocean take in different amounts of carbon depending on many factors, such as the season and the amount of mixing from storms. Current models of the carbon cycle don’t adequately capture this variation.

    To close the gap, Woosley and a team of other MIT scientists developed a research proposal for the MIT Climate Grand Challenges competition — an Institute-wide campaign to catalyze and fund innovative research addressing the climate crisis. The team’s proposal, “Ocean Vital Signs,” involves sending a fleet of sailing drones to cruise the oceans taking detailed measurements of how much carbon the ocean is really absorbing. Those data would be used to improve the precision of global carbon cycle models and improve researchers’ ability to verify emissions reductions claimed by countries.

    “If we start to enact mitigation strategies—either through removing CO2 from the atmosphere or reducing emissions — we need to know where CO2 is going in order to know how effective they are,” says Woosley. Without more precise models there’s no way to confirm whether observed carbon reductions were thanks to policy and people, or thanks to the ocean.

    “So that’s the trillion-dollar question,” says Woosley. “If countries are spending all this money to reduce emissions, is it enough to matter?”

    In February, the team’s Climate Grand Challenges proposal was named one of 27 finalists out of the almost 100 entries submitted. From among this list of finalists, MIT will announce in April the selection of five flagship projects to receive further funding and support.

    Woosley is leading the team along with Christopher Hill, a principal research engineer in EAPS. The team includes physical and chemical oceanographers, marine microbiologists, biogeochemists, and experts in computational modeling from across the department, in addition to collaborators from the Media Lab and the departments of Mathematics, Aeronautics and Astronautics, and Electrical Engineering and Computer Science.

    Today, data on the flux of carbon dioxide between the air and the oceans are collected in a piecemeal way. Research ships intermittently cruise out to gather data. Some commercial ships are also fitted with sensors. But these present a limited view of the entire ocean, and include biases. For instance, commercial ships usually avoid storms, which can increase the turnover of water exposed to the atmosphere and cause a substantial increase in the amount of carbon absorbed by the ocean.

    “It’s very difficult for us to get to it and measure that,” says Woosley. “But these drones can.”

    If funded, the team’s project would begin by deploying a few drones in a small area to test the technology. The wind-powered drones — made by a California-based company called Saildrone — would autonomously navigate through an area, collecting data on air-sea carbon dioxide flux continuously with solar-powered sensors. This would then scale up to more than 5,000 drone-days’ worth of observations, spread over five years, and in all five ocean basins.

    Those data would be used to feed neural networks to create more precise maps of how much carbon is absorbed by the oceans, shrinking the uncertainties involved in the models. These models would continue to be verified and improved by new data. “The better the models are, the more we can rely on them,” says Woosley. “But we will always need measurements to verify the models.”

    Improved carbon cycle models are relevant beyond climate warming as well. “CO2 is involved in so much of how the world works,” says Woosley. “We’re made of carbon, and all the other organisms and ecosystems are as well. What does the perturbation to the carbon cycle do to these ecosystems?”

    One of the best understood impacts is ocean acidification. Carbon absorbed by the ocean reacts to form an acid. A more acidic ocean can have dire impacts on marine organisms like coral and oysters, whose calcium carbonate shells and skeletons can dissolve in the lower pH. Since the Industrial Revolution, the ocean has become about 30 percent more acidic on average.

    “So while it’s great for us that the oceans have been taking up the CO2, it’s not great for the oceans,” says Woosley. “Knowing how this uptake affects the health of the ocean is important as well.” More

  • in

    Q&A: Latifah Hamzah ’12 on creating sustainable solutions in Malaysia and beyond

    Latifah Hamzah ’12 graduated from MIT with a BS in mechanical engineering and minors in energy studies and music. During their time at MIT, Latifah participated in various student organizations, including the MIT Symphony Orchestra, Alpha Phi Omega, and the MIT Design/Build/Fly team. They also participated in the MIT Energy Initiative’s Undergraduate Research Opportunities Program (UROP) in the lab of former professor of mechanical engineering Alexander Mitsos, examining solar-powered thermal and electrical co-generation systems.

    After graduating from MIT, Latifah worked as a subsea engineer at Shell Global Solutions and co-founded Engineers Without Borders – Malaysia, a nonprofit organization dedicated to finding sustainable and empowering solutions that impact disadvantaged populations in Malaysia. More recently, Latifah received a master of science in mechanical engineering from Stanford University, where they are currently pursuing a PhD in environmental engineering with a focus on water and sanitation in developing contexts.

    Q: What inspired you to pursue energy studies as an undergraduate student at MIT?

    A: I grew up in Malaysia, where I was at once aware of both the extent to which the oil and gas industry is a cornerstone of the economy and the need to transition to a lower-carbon future. The Energy Studies minor was therefore enticing because it gave me a broader view of the energy space, including technical, policy, economic, and other viewpoints. This was my first exposure to how things worked in the real world — in that many different fields and perspectives had to be considered cohesively in order to have a successful, positive, and sustained impact. Although the minor was predominantly grounded in classroom learning, what I learned drove me to want to discover for myself how the forces of technology, society, and policy interacted in the field in my subsequent endeavors.

    In addition to the breadth that the minor added to my education, it also provided a structure and focus for me to build on my technical fundamentals. This included taking graduate-level classes and participating in UROPs that had specific energy foci. These were my first forays into questions that, while still predominantly technical, were more open-ended and with as-yet-unknown answers that would be substantially shaped by the framing of the question. This shift in mindset required from typical undergraduate classes and problem sets took a bit of adjusting to, but ultimately gave me the confidence and belief that I could succeed in a more challenging environment.

    Q: How did these experiences with energy help shape your path forward, particularly in regard to your work with Engineers Without Borders – Malaysia and now at Stanford?

    A: When I returned home after graduation, I was keen to harness my engineering education and explore in practice what the Energy Studies minor curriculum had taught by theory and case studies: to consider context, nuance, and interdisciplinary and myriad perspectives to craft successful, sustainable solutions. Recognizing that there were many underserved communities in Malaysia, I co-founded Engineers Without Borders – Malaysia with some friends with the aim of working with these communities to bring simple and sustainable engineering solutions. Many of these projects did have an energy focus. For example, we designed, sized, and installed micro-hydro or solar-power systems for various indigenous communities, allowing them to continue living on their ancestral lands while reducing energy poverty. Many other projects incorporated other aspects of engineering, such as hydrotherapy pools for folks with special needs, and water and sanitation systems for stateless maritime communities.

    Through my work with Engineers Without Borders – Malaysia, I found a passion for the broader aspects of sustainability, development, and equity. By spending time with communities in the field and sharing in their experiences, I recognized gaps in my skill set that I could work on to be more effective in advocating for social and environmental justice. In particular, I wanted to better understand communities and their perspectives while being mindful of my positionality. In addition, I wanted to address the more systemic aspects of the problems they faced, which I felt in many cases would only be possible through a combination of research, evidence, and policy. To this end, I embarked on a PhD in environmental engineering with a minor in anthropology and pursued a Community-Based Research Fellowship with Stanford’s Haas Center for Public Service. I have also participated in the Rising Environmental Leaders Program (RELP), which helps graduate students “hone their leadership and communications skills to maximize the impact of their research.” RELP afforded me the opportunity to interact with representatives from government, NGOs [nongovernmental organizations], think tanks, and industry, from which I gained a better understanding of the policy and adjacent ecosystems at both the federal and state levels.

    Q: What are you currently studying, and how does it relate to your past work and educational experiences?

    A: My dissertation investigates waste management and monitoring for improved planetary health in three distinct projects. Suboptimal waste management can lead to poor outcomes, including environmental contamination, overuse of resources, and lost economic and environmental opportunities in resource recovery. My first project showed that three combinations of factors resulted in ruminant feces contaminating the stored drinking water supplies of households in rural Kenya, and the results were published in the International Journal of Environmental Research and Public Health. Consequently, water and sanitation interventions must also consider animal waste for communities to have safe drinking water.

    My second project seeks to establish a circular economy in the chocolate industry with indigenous Malaysian farmers and the Chocolate Concierge, a tree-to-bar social enterprise. Having designed and optimized apparatuses and processes to create biochar from cacao husk waste, we are now examining its impact on the growth of cacao saplings and their root systems. The hope is that biochar will increase the resilience of saplings for when they are transplanted from the nursery to the farm. As biochar can improve soil health and yield while reducing fertilizer inputs and sequestering carbon, farmers can accrue substantial economic and environmental benefits, especially if they produce, use, and sell it themselves.

    My third project investigates the gap in sanitation coverage worldwide and potential ways of reducing it. Globally, 46 percent of the population lacks access to safely managed sanitation, while the majority of the 54 percent who do have access use on-site sanitation facilities such as septic tanks and latrines. Given that on-site, decentralized systems typically have a lower space and resource footprint, are cheaper to build and maintain, and can be designed to suit various contexts, they could represent the best chance of reaching the sanitation Sustainable Development Goal. To this end, I am part of a team of researchers at the Criddle Group at Stanford working to develop a household-scale system as part of the Gates Reinvent the Toilet Challenge, an initiative aimed at developing new sanitation and toilet technologies for developing contexts.

    The thread connecting these projects is a commitment to investigating both the technical and socio-anthropological dimensions of an issue to develop sustainable, reliable, and environmentally sensitive solutions, especially in low- and middle-income countries (LMICs). I believe that an interdisciplinary approach can provide a better understanding of the problem space, which will hopefully lead to effective potential solutions that can have a greater community impact.

    Q: What do you plan to do once you obtain your PhD?

    A: I hope to continue working in the spheres of water and sanitation and/or sustainability post-PhD. It is a fascinating moment to be in this space as a person of color from an LMIC, especially as ideas such as community-based research and decolonizing fields and institutions are becoming more widespread and acknowledged. Even during my time at Stanford, I have noticed some shifts in the discourse, although we still have a long way to go to achieve substantive and lasting change. Folks like me are underrepresented in forums where the priorities, policies, and financing of aid and development are discussed at the international or global scale. I hope I’ll be able to use my qualifications, experience, and background to advocate for more just outcomes.

    This article appears in the Autumn 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative More

  • in

    How to clean solar panels without water

    Solar power is expected to reach 10 percent of global power generation by the year 2030, and much of that is likely to be located in desert areas, where sunlight is abundant. But the accumulation of dust on solar panels or mirrors is already a significant issue — it can reduce the output of photovoltaic panels by as much as 30 percent in just one month — so regular cleaning is essential for such installations.

    But cleaning solar panels currently is estimated to use about 10 billion gallons of water per year — enough to supply drinking water for up to 2 million people. Attempts at waterless cleaning are labor intensive and tend to cause irreversible scratching of the surfaces, which also reduces efficiency. Now, a team of researchers at MIT has devised a way of automatically cleaning solar panels, or the mirrors of solar thermal plants, in a waterless, no-contact system that could significantly reduce the dust problem, they say.

    The new system uses electrostatic repulsion to cause dust particles to detach and virtually leap off the panel’s surface, without the need for water or brushes. To activate the system, a simple electrode passes just above the solar panel’s surface, imparting an electrical charge to the dust particles, which are then repelled by a charge applied to the panel itself. The system can be operated automatically using a simple electric motor and guide rails along the side of the panel. The research is described today in the journal Science Advances, in a paper by MIT graduate student Sreedath Panat and professor of mechanical engineering Kripa Varanasi.

    Play video

    Despite concerted efforts worldwide to develop ever more efficient solar panels, Varanasi says, “a mundane problem like dust can actually put a serious dent in the whole thing.” Lab tests conducted by Panat and Varanasi showed that the dropoff of energy output from the panels happens steeply at the very beginning of the process of dust accumulation and can easily reach 30 percent reduction after just one month without cleaning. Even a 1 percent reduction in power, for a 150-megawatt solar installation, they calculated, could result in a $200,000 loss in annual revenue. The researchers say that globally, a 3 to 4 percent reduction in power output from solar plants would amount to a loss of between $3.3 billion and $5.5 billion.

    “There is so much work going on in solar materials,” Varanasi says. “They’re pushing the boundaries, trying to gain a few percent here and there in improving the efficiency, and here you have something that can obliterate all of that right away.”

    Many of the largest solar power installations in the world, including ones in China, India, the U.A.E., and the U.S., are located in desert regions. The water used for cleaning these solar panels using pressurized water jets has to be trucked in from a distance, and it has to be very pure to avoid leaving behind deposits on the surfaces. Dry scrubbing is sometimes used but is less effective at cleaning the surfaces and can cause permanent scratching that also reduces light transmission.

    Water cleaning makes up about 10 percent of the operating costs of solar installations. The new system could potentially reduce these costs while improving the overall power output by allowing for more frequent automated cleanings, the researchers say.

    “The water footprint of the solar industry is mind boggling,” Varanasi says, and it will be increasing as these installations continue to expand worldwide. “So, the industry has to be very careful and thoughtful about how to make this a sustainable solution.”

    Other groups have tried to develop electrostatic based solutions, but these have relied on a layer called an electrodynamic screen, using interdigitated electrodes. These screens can have defects that allow moisture in and cause them to fail, Varanasi says. While they might be useful on a place like Mars, he says, where moisture is not an issue, even in desert environments on Earth this can be a serious problem.

    The new system they developed only requires an electrode, which can be a simple metal bar, to pass over the panel, producing an electric field that imparts a charge to the dust particles as it goes. An opposite charge applied to a transparent conductive layer just a few nanometers thick deposited on the glass covering of the the solar panel then repels the particles, and by calculating the right voltage to apply, the researchers were able to find a voltage range sufficient to overcome the pull of gravity and adhesion forces, and cause the dust to lift away.

    Using specially prepared laboratory samples of dust with a range of particle sizes, experiments proved that the process works effectively on a laboratory-scale test installation, Panat says. The tests showed that humidity in the air provided a thin coating of water on the particles, which turned out to be crucial to making the effect work. “We performed experiments at varying humidities from 5 percent to 95 percent,” Panat says. “As long as the ambient humidity is greater than 30 percent, you can remove almost all of the particles from the surface, but as humidity decreases, it becomes harder.”

    Varanasi says that “the good news is that when you get to 30 percent humidity, most deserts actually fall in this regime.” And even those that are typically drier than that tend to have higher humidity in the early morning hours, leading to dew formation, so the cleaning could be timed accordingly.

    “Moreover, unlike some of the prior work on electrodynamic screens, which actually do not work at high or even moderate humidity, our system can work at humidity even as high as 95 percent, indefinitely,” Panat says.

    In practice, at scale, each solar panel could be fitted with railings on each side, with an electrode spanning across the panel. A small electric motor, perhaps using a tiny portion of the output from the panel itself, would drive a belt system to move the electrode from one end of the panel to the other, causing all the dust to fall away. The whole process could be automated or controlled remotely. Alternatively, thin strips of conductive transparent material could be permanently arranged above the panel, eliminating the need for moving parts.

    By eliminating the dependency on trucked-in water, by eliminating the buildup of dust that can contain corrosive compounds, and by lowering the overall operational costs, such systems have the potential to significantly improve the overall efficiency and reliability of solar installations, Varanasi says.

    The research was supported by Italian energy firm Eni. S.p.A. through the MIT Energy Initiative. More

  • in

    Using soap to remove micropollutants from water

    Imagine millions of soapy sponges the size of human cells that can clean water by soaking up contaminants. This simplistic model is used to describe technology that MIT chemical engineers have recently developed to remove micropollutants from water — a concerning, worldwide problem.

    Patrick S. Doyle, the Robert T. Haslam Professor of Chemical Engineering, PhD student Devashish Pratap Gokhale, and undergraduate Ian Chen recently published their research on micropollutant removal in the journal ACS Applied Polymer Materials. The work is funded by MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS).

    In spite of their low concentrations (about 0.01–100 micrograms per liter), micropollutants can be hazardous to the ecosystem and to human health. They come from a variety of sources and have been detected in almost all bodies of water, says Gokhale. Pharmaceuticals passing through people and animals, for example, can end up as micropollutants in the water supply. Others, like endocrine disruptor bisphenol A (BPA), can leach from plastics during industrial manufacturing. Pesticides, dyes, petrochemicals, and per-and polyfluoroalkyl substances, more commonly known as PFAS, are also examples of micropollutants, as are some heavy metals like lead and arsenic. These are just some of the kinds of micropollutants, all of which can be toxic to humans and animals over time, potentially causing cancer, organ damage, developmental defects, or other adverse effects.

    Micropollutants are numerous but since their collective mass is small, they are difficult to remove from water. Currently, the most common practice for removing micropollutants from water is activated carbon adsorption. In this process, water passes through a carbon filter, removing only 30 percent of micropollutants. Activated carbon requires high temperatures to produce and regenerate, requiring specialized equipment and consuming large amounts of energy. Reverse osmosis can also be used to remove micropollutants from water; however, “it doesn’t lead to good elimination of this class of molecules, because of both their concentration and their molecular structure,” explains Doyle.

    Inspired by soap

    When devising their solution for how to remove micropollutants from water, the MIT researchers were inspired by a common household cleaning supply — soap. Soap cleans everything from our hands and bodies to dirty dishes to clothes, so perhaps the chemistry of soap could also be applied to sanitizing water. Soap has molecules called surfactants which have both hydrophobic (water-hating) and hydrophilic (water-loving) components. When water comes in contact with soap, the hydrophobic parts of the surfactant stick together, assembling into spherical structures called micelles with the hydrophobic portions of the molecules in the interior. The hydrophobic micelle cores trap and help carry away oily substances like dirt. 

    Doyle’s lab synthesized micelle-laden hydrogel particles to essentially cleanse water. Gokhale explains that they used microfluidics which “involve processing fluids on very small, micron-like scales” to generate uniform polymeric hydrogel particles continuously and reproducibly. These hydrogels, which are porous and absorbent, incorporate a surfactant, a photoinitiator (a molecule that creates reactive species), and a cross-linking agent known as PEGDA. The surfactant assembles into micelles that are chemically bonded to the hydrogel using ultraviolet light. When water flows through this micro-particle system, micropollutants latch onto the micelles and separate from the water. The physical interaction used in the system is strong enough to pull micropollutants from water, but weak enough that the hydrogel particles can be separated from the micropollutants, restabilized, and reused. Lab testing shows that both the speed and extent of pollutant removal increase when the amount of surfactant incorporated into the hydrogels is increased.

    “We’ve shown that in terms of rate of pullout, which is what really matters when you scale this up for industrial use, that with our initial format, we can already outperform the activated carbon,” says Doyle. “We can actually regenerate these particles very easily at room temperature. Nearly 10 regeneration cycles with minimal change in performance,” he adds.

    Regeneration of the particles occurs by soaking the micelles in 90 percent ethanol, whereby “all the pollutants just come out of the particles and back into the ethanol” says Gokhale. Ethanol is biosafe at low concentrations, inexpensive, and combustible, allowing for safe and economically feasible disposal. The recycling of the hydrogel particles makes this technology sustainable, which is a large advantage over activated carbon. The hydrogels can also be tuned to any hydrophobic micropollutant, making this system a novel, flexible approach to water purification.

    Scaling up

    The team experimented in the lab using 2-naphthol, a micropollutant that is an organic pollutant of concern and known to be difficult to remove by using conventional water filtration methods. They hope to continue testing with real water samples. 

    “Right now, we spike one micropollutant into pure lab water. We’d like to get water samples from the natural environment, that we can study and look at experimentally,” says Doyle. 

    By using microfluidics to increase particle production, Doyle and his lab hope to make household-scale filters to be tested with real wastewater. They then anticipate scaling up to municipal water treatment or even industrial wastewater treatment. 

    The lab recently filed an international patent application for their hydrogel technology that uses immobilized micelles. They plan to continue this work by experimenting with different kinds of hydrogels for the removal of heavy metal contaminants like lead from water. 

    Societal impacts

    Funded by a 2019 J-WAFS seed grant that is currently ongoing, this research has the potential to improve the speed, precision, efficiency, and environmental sustainability of water purification systems across the world. 

    “I always wanted to do work which had a social impact, and I was also always interested in water, because I think it’s really cool,” says Gokhale. He notes, “it’s really interesting how water sort of fits into different kinds of fields … we have to consider the cultures of peoples, how we’re going to use this, and then just the equity of these water processes.” Originally from India, Gokhale says he’s seen places that have barely any water at all and others that have floods year after year. “There’s a lot of interesting work to be done, and I think it’s work in this area that’s really going to impact a lot of people’s lives in years to come,” Gokhale says.

    Doyle adds, “water is the most important thing, perhaps for the next decades to come, so it’s very fulfilling to work on something that is so important to the whole world.” More