More stories

  • in

    Alumnus’ thermal battery helps industry eliminate fossil fuels

    The explosion of renewable energy projects around the globe is leading to a saturation problem. As more renewable power contributes to the grid, the value of electricity is plummeting during the times of day when wind and solar hit peak productivity. The problem is limiting renewable energy investments in some of the sunniest and windiest places in the world.

    Now Antora Energy, co-founded by David Bierman SM ’14, PhD ’17, is addressing the intermittent nature of wind and solar with a low-cost, highly efficient thermal battery that stores electricity as heat to allow manufacturers and other energy-hungry businesses to eliminate their use of fossil fuels.

    “We take electricity when it’s cheapest, meaning when wind gusts are strongest and the sun is shining brightest,” Bierman explains. “We run that electricity through a resistive heater to drive up the temperature of a very inexpensive material — we use carbon blocks, which are extremely stable, produced at incredible scales, and are some of the cheapest materials on Earth. When you need to pull energy from the battery, you open a large shutter to extract thermal radiation, which is used to generate process heat or power using our thermophotovoltaic, or TPV, technology. The end result is a zero-carbon, flexible, combined heat and power system for industry.”

    Antora’s battery could dramatically expand the application of renewable energy by enabling its use in industry, a sector of the U.S. economy that accounted for nearly a quarter of all greenhouse gas emissions in 2021.

    Antora says it is able to deliver on the long-sought promise of heat-to-power TPV technology because it has achieved new levels of efficiency and scalability with its cells. Earlier this year, Antora opened a new manufacturing facility that will be capable of producing 2 megawatts of its TPV cells each year — which the company says makes it the largest TPV production facility in the world.

    Antora’s thermal battery manufacturing facilities and demonstration unit are located in sun-soaked California, where renewables make up close to a third of all electricity. But Antora’s team says its technology holds promise in other regions as increasingly large renewable projects connect to grids across the globe.

    “We see places today [with high renewables] as a sign of where things are going,” Bierman says. “If you look at the tailwinds we have in the renewable industry, there’s a sense of inevitability about solar and wind, which will need to be deployed at incredible scales to avoid a climate catastrophe. We’ll see terawatts and terawatts of new additions of these renewables, so what you see today in California or Texas or Kansas, with significant periods of renewable overproduction, is just the tip of the iceberg.”

    Bierman has been working on thermal energy storage and thermophotovoltaics since his time at MIT, and Antora’s ties to MIT are especially strong because its progress is the result of two MIT startups becoming one.

    Alumni join forces

    Bierman did his masters and doctoral work in MIT’s Department of Mechanical Engineering, where he worked on solid-state solar thermal energy conversion systems. In 2016, while taking course 15.366 (Climate and Energy Ventures), he met Jordan Kearns SM ’17, then a graduate student in the Technology and Policy Program and the Department of Nuclear Science and Engineering. The two were studying renewable energy when they began to think about the intermittent nature of wind and solar as an opportunity rather than a problem.

    “There are already places in the U.S. where we have more wind and solar at times than we know what to do with,” Kearns says. “That is an opportunity for not only emissions reductions but also for reducing energy costs. What’s the application? I don’t think the overproduction of energy was being talked about as much as the intermittency problem.”

    Kearns did research through the MIT Energy Initiative and the researchers received support from MIT’s Venture Mentoring Service and the MIT Sandbox Innovation Fund to further explore ways to capitalize on fluctuating power prices.

    Kearns officially founded a company called Medley Thermal in 2017 to help companies that use natural gas switch to energy produced by renewables when the price was right. To accomplish that, he combined an off-the-shelf electric boiler with novel control software so the companies could switch energy sources seamlessly from fossil fuel to electricity at especially windy or sunny times. Medley went on to become a finalist for the MIT Clean Energy Prize, and Kearns wanted Bierman to join him as a co-founder, but Bierman had received a fellowship to commercialize a thermal energy storage solution and decided to pursue that after graduation.

    The split ended up working out for both alumni. In the ensuing years, Kearns led Medley Thermal through a number of projects in which gradually larger companies switched from relying on natural gas or propane sources to renewable electricity from the grid. The work culminated in an installment at the Jay Peak resort in Vermont that Kearns says is one of the largest projects in the U.S. using renewable energy to produce heat. The project is expected to reduce about 2,500 tons of carbon dioxide per year.

    Bierman, meanwhile, further developed a thermal energy storage solution for industrial decarbonization, which works by using renewable electricity to heat blocks of carbon, which are stored in insulation to retain energy for long periods of time. The heat from those blocks can then be used to deliver electricity or heat to customers, at temperatures that can exceed 1,500 C. When Antora raised a $50 million Series A funding round last year, Bierman asked Kearns if he could buy out Medley’s team, and the researchers finally became co-workers.

    “Antora and Medley Thermal have a similar value prop: There’s low-cost electricity, and we want to connect that to the industrial sector,” Kearns explains. “But whereas Medley used renewables on an as-available basis, and then when the winds stop we went back to burning fossil fuel with a boiler, Antora has a thermal battery that takes in the electricity, converts it to heat, but also stores it as heat so even when the wind stops blowing we have a reservoir of heat that we can continue to pull from to make steam or power or whatever the facility needs. So, we can now further reduce energy costs by offsetting more fuel and offer a 100 percent clean energy solution.”

    United we scale

    Today, Kearns runs the project development arm of Antora.

    “There are other, much larger projects in the pipeline,” Kearns says. “The Jay Peak project is about 3 megawatts of power, but some of the ones we’re working on now are 30, 60 megawatt projects. Those are more industrial focused, and they’re located in places where we have a strong industrial base and an abundance of renewables, everywhere from Texas to Kansas to the Dakotas — that heart of the country that our team lovingly calls the Wind Belt.”

    Antora’s future projects will be with companies in the chemicals, mining, food and beverage, and oil and gas industries. Some of those projects are expected to come online as early as 2025.          

    The company’s scaling strategy is centered on the inexpensive production process for its batteries.

    “We constantly ask ourselves, ‘What is the best product we can make here?’” Bierman says. “We landed on a compact, containerized, modular system that gets shipped to sites and is easily integrated into industrial processes. It means we don’t have huge construction projects, timelines, and budget overruns. Instead, it’s all about scaling up the factory that builds these thermal batteries and just churning them out.”

    It was a winding journey for Kearns and Bierman, but they now believe they’re positioned to help huge companies become carbon-free while promoting the growth of the solar and wind industries.

    “The more I dig into this, the more shocked I am at how important a piece of the decarbonization puzzle this is today,” Bierman says. “The need has become super real since we first started talking about this in 2016. The economic opportunity has grown, but more importantly the awareness from industries that they need to decarbonize is totally different. Antora can help with that, so we’re scaling up as rapidly as possible to meet the demand we see in the market.” More

  • in

    Embracing the future we need

    When you picture MIT doctoral students taking small PhD courses together, you probably don’t imagine them going on class field trips. But it does happen, sometimes, and one of those trips changed Andy Sun’s career.

    Today, Sun is a faculty member at the MIT Sloan School of Management and a leading global expert on integrating renewable energy into the electric grid. Back in 2007, Sun was an operations research PhD candidate with a diversified academic background: He had studied electrical engineering, quantum computing, and analog computing but was still searching for a doctoral research subject involving energy. 

    One day, as part of a graduate energy class taught by visiting professor Ignacio J. Pérez Arriaga, the students visited the headquarters of ISO-New England, the organization that operates New England’s entire power grid and wholesale electricity market. Suddenly, it hit Sun. His understanding of engineering, used to design and optimize computing systems, could be applied to the grid as a whole, with all its connections, circuitry, and need for efficiency. 

    “The power grids in the U.S. continent are composed of two major interconnections, the Western Interconnection, the Eastern Interconnection, and one minor interconnection, the Texas grid,” Sun says. “Within each interconnection, the power grid is one big machine, essentially. It’s connected by tens of thousands of miles of transmission lines, thousands of generators, and consumers, and if anything is not synchronized, the system may collapse. It’s one of the most complicated engineering systems.”

    And just like that, Sun had a subject he was motivated to pursue. “That’s how I got into this field,” he says. “Taking a field trip.”Sun has barely looked back. He has published dozens of papers about optimizing the flow of intermittent renewable energy through the electricity grid, a major practical issue for grid operators, while also thinking broadly about the future form of the grid and the process of making almost all energy renewable. Sun, who in 2022 rejoined MIT as the Iberdrola-Avangrid Associate Professor in Electric Power Systems, and is also an associate professor of operations research, emphasizes the urgency of rapidly switching to renewables.

    “The decarbonization of our energy system is fundamental,” Sun says. “It will change a lot of things because it has to. We don’t have much time to get there. Two decades, three decades is the window in which we have to get a lot of things done. If you think about how much money will need to be invested, it’s not actually that much. We should embrace this future that we have to get to.”

    Successful operations

    Unexpected as it may have been, Sun’s journey toward being an electricity grid expert was informed by all the stages of his higher education. Sun grew up in China, and received his BA in electronic engineering from Tsinghua University in Beijing, in 2003. He then moved to MIT, joining the Media Lab as a graduate student. Sun intended to study quantum computing but instead began working on analog computer circuit design for Professor Neil Gershenfeld, another person whose worldview influenced Sun.  

    “He had this vision about how optimization is very important in things,” Sun says. “I had never heard of optimization before.” 

    To learn more about it, Sun started taking MIT courses in operations research. “I really enjoyed it, especially the nonlinear optimization course taught by Robert Freund in the Operations Research Center,” he recalls. 

    Sun enjoyed it so much that after a while, he joined MIT’s PhD program in operations research, thanks to the guidance of Freund. Later, he started working with MIT Sloan Professor Dimitri Bertsimas, a leading figure in the field. Still, Sun hadn’t quite nailed down what he wanted to focus on within operations research. Thinking of Sun’s engineering skills, Bertsimas suggested that Sun look for a research topic related to energy. 

    “He wasn’t an expert in energy at that time, but he knew that there are important problems there and encouraged me to go ahead and learn,” Sun says. 

    So it was that Sun found himself in ISO-New England headquarters one day in 2007, finally knowing what he wanted to study, and quickly finding opportunities to start learning from the organization’s experts on electricity markets. By 2011, Sun had finished his MIT PhD dissertation. Based in part on ISO-New England data, the thesis presented new modeling to more efficiently integrate renewable energy into the grid; built some new modeling tools grid operators could use; and developed a way to add fair short-term energy auctions to an efficient grid system.

    The core problem Sun deals with is that, unlike some other sources of electricity, renewables tend to be intermittent, generating power in an uneven pattern over time. That’s not an insurmountable problem for grid operators, but it does require some new approaches. Many of the papers Sun has written focus on precisely how to increasingly draw upon intermittent energy sources while ensuring that the grid’s current level of functionality remains intact. This is also the focus of his 2021 book, co-authored with Antonio J. Conejo, “Robust Optimiziation in Electric Energy Systems.”

    “A major theme of my research is how to achieve the integration of renewables and still operate the system reliably,” Sun says. “You have to keep the balance of supply and demand. This requires many time scales of operation from multidecade planning, to monthly or annual maintenance, to daily operations, down through second-by-second. I work on problems in all these timescales.”

    “I sit in the interface between power engineering and operations research,” Sun says. “I’m not a power engineer, but I sit in this boundary, and I keep the problems in optimization as my motivation.”

    Culture shift

    Sun’s presence on the MIT campus represents a homecoming of sorts. After receiving his doctorate from MIT, Sun spent a year as a postdoc at IBM’s Thomas J. Watson Research Center, then joined the faculty at Georgia Tech, where he remained for a decade. He returned to the Institute in January of 2022.

    “I’m just very excited about the opportunity of being back at MIT,” Sun says. “The MIT Energy Initiative is a such a vibrant place, where many people come together to work on energy. I sit in Sloan, but one very strong point of MIT is there are not many barriers, institutionally. I really look forward to working with colleagues from engineering, Sloan, everywhere, moving forward. We’re moving in the right direction, with a lot of people coming together to break the traditional academic boundaries.” 

    Still, Sun warns that some people may be underestimating the severity of the challenge ahead and the need to implement changes right now. The assets in power grids have long life time, lasting multiple decades. That means investment decisions made now could affect how much clean power is being used a generation from now. 

    “We’re talking about a short timeline, for changing something as huge as how a society fundamentally powers itself with energy,” Sun says. “A lot of that must come from the technology we have today. Renewables are becoming much better and cheaper, so their use has to go up.”

    And that means more people need to work on issues of how to deploy and integrate renewables into everyday life, in the electric grid, transportation, and more. Sun hopes people will increasingly recognize energy as a huge growth area for research and applied work. For instance, when MIT President Sally Kornbluth gave her inaugural address on May 1 this year, she emphasized tackling the climate crisis as her highest priority, something Sun noticed and applauded. 

    “I think the most important thing is the culture,” Sun says. “Bring climate up to the front, and create the platform to encourage people to come together and work on this issue.” More

  • in

    MIT engineers create an energy-storing supercapacitor from ancient materials

    Two of humanity’s most ubiquitous historical materials, cement and carbon black (which resembles very fine charcoal), may form the basis for a novel, low-cost energy storage system, according to a new study. The technology could facilitate the use of renewable energy sources such as solar, wind, and tidal power by allowing energy networks to remain stable despite fluctuations in renewable energy supply.

    The two materials, the researchers found, can be combined with water to make a supercapacitor — an alternative to batteries — that could provide storage of electrical energy. As an example, the MIT researchers who developed the system say that their supercapacitor could eventually be incorporated into the concrete foundation of a house, where it could store a full day’s worth of energy while adding little (or no) to the cost of the foundation and still providing the needed structural strength. The researchers also envision a concrete roadway that could provide contactless recharging for electric cars as they travel over that road.

    The simple but innovative technology is described this week in the journal PNAS, in a paper by MIT professors Franz-Josef Ulm, Admir Masic, and Yang-Shao Horn, and four others at MIT and at the Wyss Institute for Biologically Inspired Engineering.

    Capacitors are in principle very simple devices, consisting of two electrically conductive plates immersed in an electrolyte and separated by a membrane. When a voltage is applied across the capacitor, positively charged ions from the electrolyte accumulate on the negatively charged plate, while the positively charged plate accumulates negatively charged ions. Since the membrane in between the plates blocks charged ions from migrating across, this separation of charges creates an electric field between the plates, and the capacitor becomes charged. The two plates can maintain this pair of charges for a long time and then deliver them very quickly when needed. Supercapacitors are simply capacitors that can store exceptionally large charges.

    The amount of power a capacitor can store depends on the total surface area of its conductive plates. The key to the new supercapacitors developed by this team comes from a method of producing a cement-based material with an extremely high internal surface area due to a dense, interconnected network of conductive material within its bulk volume. The researchers achieved this by introducing carbon black — which is highly conductive — into a concrete mixture along with cement powder and water, and letting it cure. The water naturally forms a branching network of openings within the structure as it reacts with cement, and the carbon migrates into these spaces to make wire-like structures within the hardened cement. These structures have a fractal-like structure, with larger branches sprouting smaller branches, and those sprouting even smaller branchlets, and so on, ending up with an extremely large surface area within the confines of a relatively small volume. The material is then soaked in a standard electrolyte material, such as potassium chloride, a kind of salt, which provides the charged particles that accumulate on the carbon structures. Two electrodes made of this material, separated by a thin space or an insulating layer, form a very powerful supercapacitor, the researchers found.

    The two plates of the capacitor function just like the two poles of a rechargeable battery of equivalent voltage: When connected to a source of electricity, as with a battery, energy gets stored in the plates, and then when connected to a load, the electrical current flows back out to provide power.

    “The material is fascinating,” Masic says, “because you have the most-used manmade material in the world, cement, that is combined with carbon black, that is a well-known historical material — the Dead Sea Scrolls were written with it. You have these at least two-millennia-old materials that when you combine them in a specific manner you come up with a conductive nanocomposite, and that’s when things get really interesting.”

    As the mixture sets and cures, he says, “The water is systematically consumed through cement hydration reactions, and this hydration fundamentally affects nanoparticles of carbon because they are hydrophobic (water repelling).” As the mixture evolves, “the carbon black is self-assembling into a connected conductive wire,” he says. The process is easily reproducible, with materials that are inexpensive and readily available anywhere in the world. And the amount of carbon needed is very small — as little as 3 percent by volume of the mix — to achieve a percolated carbon network, Masic says.

    Supercapacitors made of this material have great potential to aid in the world’s transition to renewable energy, Ulm says. The principal sources of emissions-free energy, wind, solar, and tidal power, all produce their output at variable times that often do not correspond to the peaks in electricity usage, so ways of storing that power are essential. “There is a huge need for big energy storage,” he says, and existing batteries are too expensive and mostly rely on materials such as lithium, whose supply is limited, so cheaper alternatives are badly needed. “That’s where our technology is extremely promising, because cement is ubiquitous,” Ulm says.

    The team calculated that a block of nanocarbon-black-doped concrete that is 45 cubic meters (or yards) in size — equivalent to a cube about 3.5 meters across — would have enough capacity to store about 10 kilowatt-hours of energy, which is considered the average daily electricity usage for a household. Since the concrete would retain its strength, a house with a foundation made of this material could store a day’s worth of energy produced by solar panels or windmills and allow it to be used whenever it’s needed. And, supercapacitors can be charged and discharged much more rapidly than batteries.

    After a series of tests used to determine the most effective ratios of cement, carbon black, and water, the team demonstrated the process by making small supercapacitors, about the size of some button-cell batteries, about 1 centimeter across and 1 millimeter thick, that could each be charged to 1 volt, comparable to a 1-volt battery. They then connected three of these to demonstrate their ability to light up a 3-volt light-emitting diode (LED). Having proved the principle, they now plan to build a series of larger versions, starting with ones about the size of a typical 12-volt car battery, then working up to a 45-cubic-meter version to demonstrate its ability to store a house-worth of power.

    There is a tradeoff between the storage capacity of the material and its structural strength, they found. By adding more carbon black, the resulting supercapacitor can store more energy, but the concrete is slightly weaker, and this could be useful for applications where the concrete is not playing a structural role or where the full strength-potential of concrete is not required. For applications such as a foundation, or structural elements of the base of a wind turbine, the “sweet spot” is around 10 percent carbon black in the mix, they found.

    Another potential application for carbon-cement supercapacitors is for building concrete roadways that could store energy produced by solar panels alongside the road and then deliver that energy to electric vehicles traveling along the road using the same kind of technology used for wirelessly rechargeable phones. A related type of car-recharging system is already being developed by companies in Germany and the Netherlands, but using standard batteries for storage.

    Initial uses of the technology might be for isolated homes or buildings or shelters far from grid power, which could be powered by solar panels attached to the cement supercapacitors, the researchers say.

    Ulm says that the system is very scalable, as the energy-storage capacity is a direct function of the volume of the electrodes. “You can go from 1-millimeter-thick electrodes to 1-meter-thick electrodes, and by doing so basically you can scale the energy storage capacity from lighting an LED for a few seconds, to powering a whole house,” he says.

    Depending on the properties desired for a given application, the system could be tuned by adjusting the mixture. For a vehicle-charging road, very fast charging and discharging rates would be needed, while for powering a home “you have the whole day to charge it up,” so slower-charging material could be used, Ulm says.

    “So, it’s really a multifunctional material,” he adds. Besides its ability to store energy in the form of supercapacitors, the same kind of concrete mixture can be used as a heating system, by simply applying electricity to the carbon-laced concrete.

    Ulm sees this as “a new way of looking toward the future of concrete as part of the energy transition.”

    The research team also included postdocs Nicolas Chanut and Damian Stefaniuk at MIT’s Department of Civil and Environmental Engineering, James Weaver at the Wyss Institute, and Yunguang Zhu in MIT’s Department of Mechanical Engineering. The work was supported by the MIT Concrete Sustainability Hub, with sponsorship by the Concrete Advancement Foundation. More

  • in

    Six ways MIT is taking action on climate

    From reuse and recycling to new carbon markets, events during Earth Month at MIT spanned an astonishing range of ideas and approaches to tackling the climate crisis. The MIT Climate Nucleus offered funding to departments and student organizations to develop programming that would showcase the countless initiatives underway to make a better world.

    Here are six — just six of many — ways the MIT community is making a difference on climate right now.

    1. Exchanging knowledge with policymakers to meet local, regional, and global challenges

    Creating solutions begins with understanding the problem.

    Speaking during the annual Earth Day Colloquium of the MIT Energy Initiative (MITEI) about the practical challenges of implementing wind-power projects, for instance, Massachusetts State Senator Michael J. Barrett offered a sobering assessment.

    The senate chair of the Joint Committee on Telecommunications, Utilities, and Energy, Barrett reported that while the coast of Massachusetts provides a conducive site for offshore wind, economic forces have knocked a major offshore wind installation project off track. The combination of the pandemic and global geopolitical instability has led to such great supply chain disruptions and rising commodity costs that a project considered necessary for the state to meet its near-term climate goals now faces delays, he said.

    Like others at MIT, MITEI researchers keep their work grounded in the real-world constraints and possibilities for decarbonization, engaging with policymakers and industry to understand the on-the-ground challenges to technological and policy-based solutions and highlight the opportunities for greatest impact.

    2. Developing new ways to prevent, mitigate, and adapt to the effects of climate change

    An estimated 20 percent of MIT faculty work on some aspect of the climate crisis, an enormous research effort distributed throughout the departments, labs, centers, and institutes.

    About a dozen such projects were on display at a poster session coordinated by the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), Environmental Solutions Initiative (ESI), and MITEI.

    Students and postdocs presented innovations including:

    Graduate student Alexa Reese Canaan describes her research on household energy consumption to Massachusetts State Senator Michael J. Barrett, chair of the Joint Committee on Telecommunications, Utilities, and Energy.

    Photo: Caitlin Cunningham

    Previous item
    Next item

    3. Preparing students to meet the challenges of a climate-changed world

    Faculty and staff from more than 30 institutions of higher education convened at the MIT Symposium on Advancing Climate Education to exchange best practices and innovations in teaching and learning. Speakers and participants considered paths to structural change in higher education, the imperative to place equity and justice at the center of new educational approaches, and what it means to “educate the whole student” so that graduates are prepared to live and thrive in a world marked by global environmental and economic disruption.

    Later in April, MIT faculty voted to approve the creation of a new joint degree program in climate system science and engineering.

    4. Offering climate curricula to K-12 teachers

    At a daylong conference on climate education for K-12 schools, the attendees were not just science teachers. Close to 50 teachers of arts, literature, history, math, mental health, English language, world languages, and even carpentry were all hungry for materials and approaches to integrate into their curricula. They were joined by another 50 high school students, ready to test out the workshops and content developed by MIT Climate Action Through Education (CATE), which are already being piloted in at least a dozen schools.

    The CATE initiative is led by Christopher Knittel, the George P. Shultz Professor of Energy Economics at the MIT Sloan School of Management, deputy director for policy at MITEI, and faculty director of the MIT Center for Energy and Environmental Policy Research. The K-12 Climate Action and Education Conference was hosted as a collaboration with the Massachusetts Teachers Association Climate Action Network and Earth Day Boston.

    “We will be honest about the threats posed by climate change, but also give students a sense of agency that they can do something about this,” Knittel told MITEI Energy Futures earlier this spring. “And for the many teachers — especially non-science teachers — starved for knowledge and background material, CATE offers resources to give them confidence to implement our curriculum.”

    High school students and K-12 teachers participated in a workshop on “Exploring a Green City,” part of the Climate Action and Education Conference on April 1.

    Photo: Tony Rinaldo

    Previous item
    Next item

    5. Guiding our communities in making sense of the coming changes

    The arts and humanities, vital in their own right, are also central to the sharing of scientific knowledge and its integration into culture, behavior, and decision-making. A message well-delivered can reach new audiences and prompt reflection and reckoning on ethics and values, identity, and optimism.

    The Climate Machine, part of ESI’s Arts and Climate program, produced an evening art installation on campus featuring dynamic, large-scale projections onto the façade of MIT’s new music building and a musical performance by electronic duo Warung. Passers-by were invited to take a Climate Identity Quiz, with the responses reflected in the visuals. Another exhibit displayed the results of a workshop in which attendees had used an artificial intelligence art tool to imagine the future of their hometowns, while another highlighted native Massachusetts wildlife.

    The Climate Machine is an MIT research project undertaken in collaboration with record label Anjunabeats. The collaborative team imagines interactive experiences centered on sustainability that could be deployed at musical events and festivals to inspire climate action.

    Dillon Ames (left) and Aaron Hopkins, known as the duo Warung, perform a live set during the Climate Machine art installation.

    Photo: Caitlin Cunningham

    Previous item
    Next item

    6. Empowering students to seize this unique policy moment

    ESI’s TILclimate Podcast, which breaks down important climate topics for general listeners, held a live taping at the MIT Museum and offered an explainer on three recent, major pieces of federal legislation: the Inflation Reduction Act of 2022, the Bipartisan Infrastructure Bill of 2021, and the CHIPS and Science Act of 2022.

    The combination of funding and financial incentives for energy- and climate-related projects, along with reinvestment in industrial infrastructure, create “a real moment and an opportunity,” said special guest Elisabeth Reynolds, speaking with host Laur Hesse Fisher. Reynolds was a member of the National Economic Council from 2021 to 2022, serving as special assistant to the president for manufacturing and economic development; after leaving the White House, Reynolds returned to MIT, where she is a lecturer in MIT’s Department of Urban Studies and Planning.

    For students, the opportunities to engage have never been better, Reynolds urged: “There is so much need. … Find a way to contribute, and find a way to help us make this transformation.”

    “What we’re embarking on now, you just can’t overstate the significance of it,” she said.

    For more information on how MIT is advancing climate action across education; research and innovation; policy; economic, social, and environmental justice; public and global engagement; sustainable campus operations; and more, visit Fast Forward: MIT’s Climate Action Plan for the Decade. The actions described in the plan aim to accelerate the global transition to net-zero carbon emissions, and to “educate and empower the next generation.” More

  • in

    Mike Barrett: Climate goals may take longer, but we’ll get there

    The Covid-19 pandemic, inflation, and the war in Ukraine have combined to cause unavoidable delays in implementation of Massachusetts’s ambitious goals to tackle climate change, state Senator Mike Barrett said during his April 19 presentation at the MIT Energy Initiative (MITEI) Earth Day Colloquium. But, he added, he remains optimistic that the goals will be reached, with a lag of perhaps two years.

    Barrett, who is senate chair of the state’s Joint Committee on Telecommunications, Utilities, and Energy, spoke on the topic of “Decarbonizing Massachusetts” at MIT’s Wong Auditorium as part of the Institute’s celebration of Earth Week. The event was accompanied by a poster session highlighting some the work of MIT students and faculty aimed at tackling aspects of the climate issue.

    Martha Broad, MITEI’s executive director, introduced Barrett by pointing out that he was largely responsible for the passage of two major climate-related bills by the Massachusetts legislature: the Roadmap Act in 2021 and the Drive Act in 2022, which together helped to place the state as one of the nation’s leaders in the implementation of measures to ratchet down greenhouse gas emissions.

    The two key pieces of legislation, Barrett said, were complicated bills that included many components, but a major feature of the Roadmap Act was to reduce the time between reassessments of the state’s climate plans from 10 years to five, and to divide the targets for emissions reductions into six separate categories instead of just a single overall number.

    The six sectors the bill delineated are transportation; commercial, industrial, and institutional buildings; residential buildings; industrial processes; natural gas infrastructure; and electricity generation. Each of these faces different challenges, and needs to be evaluated separately, he said.

    The second bill, the Drive Act, set specific targets for implementation of carbon-free electricity generation. “We prioritize offshore wind,” he pointed out, because that’s one resource where Massachusetts has a real edge over other states and regions. Because of especially shallow offshore waters and strong, steady offshore winds that tend to be strongest during the peak demand hours of late afternoon and evening, the state’s coastal waters are an especially promising site for offshore wind farms, he said.

    Whereas the majority of offshore wind installations around the world are in deep water, which precludes fixed foundations and adds significantly to construction costs, Massachusetts’s shallow waters can allow relatively inexpensive construction. “So you can see why offshore wind became a linchpin, not only to our cleaning up the grid, but to feeding it into the building system, and for that matter into transportation, through our electric vehicles,” he said.

    Massachusetts’s needs in addressing climate change are quite different from global averages, or even U.S. averages, he pointed out. Worldwide, agriculture accounts for some 22 percent of greenhouse gas emissions, and 11 percent nationally. In Massachusetts the figure is less than one-half of 1 percent. The industrial sector is also much smaller than the national average. Meanwhile, buildings account for only about 6 percent of U.S. emissions, but 13 percent in the state. That means that overall, “buildings, transportation, and power generation become the whole ballgame” for this state, “requiring a real focus in terms of our thinking,” he said.

    Because of that, in those climate bills “we really insisted on reducing emissions in the energy generation sector, and our primary way to get there … lies with wind, and most of that is offshore.” The law calls for emissions from power generation to be cut by 53 percent by 2025, and 70 percent by 2030. Meeting that goal depends heavily on offshore wind. “Clean power is critical because the transmission and transportation and buildings depend on clean power, and offshore wind is critical to that clean power strategy,” he said.

    At the time the bills passed, plans for new offshore wind farm installations showed that the state was well on target to meet these goals, Barrett said. “There was plenty of reason for Massachusetts to feel very optimistic about offshore wind … Everyone was bullish.” While Massachusetts is a small state — 44th out of 50 — because of its unusually favorable offshore conditions, “we are second in the United States in terms of plans to deploy offshore wind,” after New York, he said.

    But then the real world got in the way.

    As Europe and the U.K. quickly tried to pivot away from natural gas and oil in the wake of Russia’s invasion of Ukraine, the picture changed quickly. “Offshore wind suddenly had a lot of competition for the expertise, the equipment, and the materials,” he said.

    As just one example, he said, the ships needed for installation became unavailable. “Suddenly worldwide, there weren’t enough installation vessels to hold these very heavy components that have to be brought out to sea,” he said. About 20 to 40 such vessels are needed to install a single wind farm. “There are a limited number of these vessels capable of carrying these huge pieces of infrastructure in the world. And in the wake of stepped-up demand from Europe, and other places, including China, there was an enormous shortage of appropriate vessels.”

    That wasn’t the only obstacle. Prices of some key commodities also shot up, partly due to supply chain issues associated with the pandemic, and the resulting worldwide inflation. “The ramifications of these kinds of disruptions obviously have been felt worldwide,“ he said. For example, the Hornsea Project off the coast of the United Kingdom is the largest proposed offshore wind farm in the world, and one the U.K. was strongly dependent on to meet climate targets. But the developer of the project, Ørsted, said it could no longer proceed without a major government bailout. At this point, the project remains in limbo.

    In Massachusetts, the company Avangrid had a contract to build 60 offshore wind turbines to deliver 1,200 megawatts of power. But last month, in a highly unusual move for a major company, “they informed Massachusetts that they were terminating a contract they had signed.” That contract was a big part of the state’s overall clean energy strategy, he said. A second developer, that had also signed a contract for a 1,200-MW offshore farm, signaled that it too could not meet its contract.

    “We technically haven’t failed yet” in meeting the goals that were set for emissions reduction, Barrett said. “In theory, we have two years to recover from the setbacks that I’m describing.” Realistically, though, he said “it is quite likely that we’re not going to hit our 2025 and 2030 benchmarks.”

    But despite all this, Barrett ended his remarks on an essentially optimistic note. “I hate to see us fall off-pace in any way,” he said. But, he added, “the truth is that a short delay — and I think we’re looking at just a couple of years delay — is a speed bump, it’s not a roadblock. It is not the end of climate policy.”

    Worldwide demand for offshore wind power remains “extraordinary,” said Barrett, mainly as a result of the need to get off of Russian fossil fuel. As a result, “eventually supply will come into balance with this demand … The balance will be restored.”

    To monitor the process, Barrett said he has submitted legislation to create a new independent Climate Policy Commission, to examine in detail the data on performance in meeting the state’s climate goals and to make recommendations. The measure would provide open access to information for the public, allowing everyone to see the progress being made from an unbiased source.

    “Setbacks are going to happen,” he said. “This is a tough, tough job. While the real world is going to surprise us, persistence is critical.”

    He concluded that “I think we’re going to wind up building every windmill that we need for our emissions reduction policy. Just not on the timeline that we had hoped for.”

    The poster session was co-hosted by the MIT Abdul Latif Jameel Water and Food Systems Lab and MIT Environmental Solutions Initiative. The full event was sponsored by the MIT Climate Nucleus. More

  • in

    The answer may be blowing in the wind

    Capturing energy from the winds gusting off the coasts of the United States could more than double the nation’s electricity generation. It’s no wonder the Biden administration views this immense, clean-energy resource as central to its ambitious climate goals of 100 percent carbon-emissions-free electricity by 2035 and a net-zero emissions economy by 2050. The White House is aiming for 30 gigawatts of offshore wind by 2030 — enough to power 10 million homes.

    At the MIT Energy Initiative’s Spring Symposium, academic experts, energy analysts, wind developers, government officials, and utility representatives explored the immense opportunities and formidable challenges of tapping this titanic resource, both in the United States and elsewhere in the world.

    “There’s a lot of work to do to figure out how to use this resource economically — and sooner rather than later,” said Robert C. Armstrong, MITEI director and the Chevron Professor of Chemical Engineering, in his introduction to the event. 

    In sessions devoted to technology, deployment and integration, policy, and regulation, participants framed the issues critical to the development of offshore wind, described threats to its rapid rollout, and offered potential paths for breaking through gridlock.

    R&D advances

    Moderating a panel on MIT research that is moving the industry forward, Robert Stoner, MITEI’s deputy director for science and technology, provided context for the audience about the industry.

    “We have a high degree of geographic coincidence between where that wind capacity is and where most of us are, and it’s complementary to solar,” he said. Turbines sited in deeper, offshore waters gain the advantage of higher-velocity winds. “You can make these machines huge, creating substantial economies of scale,” said Stoner. An onshore turbine generates approximately 3 megawatts; offshore structures can each produce 15 to 17 megawatts, with blades the length of a football field and heights greater than the Washington Monument.

    To harness the power of wind farms spread over hundreds of nautical miles in deep water, Stoner said, researchers must first address some serious issues, including building and maintaining these massive rigs in harsh environments, laying out wind farms to optimize generation, and creating reliable and socially acceptable connections to the onshore grid. MIT scientists described how they are tackling a number of these problems.

    “When you design a floating structure, you have to prepare for the worst possible conditions,” said Paul Sclavounos, a professor of mechanical engineering and naval architecture who is developing turbines that can withstand severe storms that batter turbine blades and towers with thousands of tons of wind force. Sclavounos described systems used in the oil industry for tethering giant, buoyant rigs to the ocean floor that could be adapted for wind platforms. Relatively inexpensive components such as polyester mooring lines and composite materials “can mitigate the impact of high waves and big, big wind loads.”

    To extract the maximum power from individual turbines, developers must take into account the aerodynamics among turbines in a single wind farm and between adjacent wind farms, according to Michael Howland, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering. Howland’s work modeling turbulence in the atmosphere and wind speeds has demonstrated that angling turbines by just a small amount relative to each other can increase power production significantly for offshore installations, dramatically improving their efficiencies. Howland hopes his research will promote “changing the design of wind farms from the beginning of the process.”

    There’s a staggering complexity to integrating electricity from offshore wind into regional grids such as the one operated by ISO New England, whether converting voltages or monitoring utility load. Steven B. Leeb, a professor of electrical engineering and computer science and of mechanical engineering, is developing sensors that can indicate electronic failures in a micro grid connected to a wind farm. And Marija Ilić, a joint adjunct professor in the Department of Electrical Engineering and Computer Science and a senior research scientist at the Laboratory for Information and Decision Systems, is developing software that would enable real-time scheduling of controllable equipment to compensate for the variable power generated by wind and other variable renewable resources. She is also working on adaptive distributed automation of this equipment to ensure a stable electric power grid.

    “How do we get from here to there?”

    Symposium speakers provided snapshots of the emerging offshore industry, sharing their sense of urgency as well as some frustrations.

    Climate poses “an existential crisis” that calls for “a massive war-footing undertaking,” said Melissa Hoffer, who occupies the newly created cabinet position of climate chief for the Commonwealth of Massachusetts. She views wind power “as the backbone of electric sector decarbonization.” With the Vineyard Wind project, the state will be one of the first in the nation to add offshore wind to the grid. “We are actually going to see the first 400 megawatts … likely interconnected and coming online by the end of this year, which is a fantastic milestone for us,” said Hoffer.

    The journey to completing Vineyard Wind involved a plethora of painstaking environmental reviews, lawsuits over lease siting, negotiations over the price of the electricity it will produce, buy-in from towns where its underground cable comes ashore, and travels to an Eversource substation. It’s a familiar story to Alla Weinstein, founder and CEO of Trident Winds, Inc. On the West Coast, where deep waters (greater than 60 meters) begin closer to shore, Weinstein is trying to launch floating offshore wind projects. “I’ve been in marine renewables for 20 years, and when people ask why I do what I do, I tell them it’s because it matters,” she said. “Because if we don’t do it, we may not have a planet that’s suitable for humans.”

    Weinstein’s “picture of reality” describes a multiyear process during which Trident Winds must address the concerns of such stakeholders as tribal communities and the fishing industry and ensure compliance with, among other regulations, the Marine Mammal Protection Act and the Migratory Bird Species Act. Construction of these massive floating platforms, when it finally happens, will require as-yet unbuilt specialized port infrastructure and boats, and a large skilled labor force for assembly and transmission. “This is a once-in-a-lifetime opportunity to create a new industry,” she said, but “how do we get from here to there?”

    Danielle Jensen, technical manager for Shell’s Offshore Wind Americas, is working on a project off of Rhode Island. The blueprint calls for high-voltage, direct-current cable snaking to landfall in Massachusetts, where direct-current lines switch to alternating current to connect to the grid. “None of this exists, so we have to find a space, the lands, and the right types of cables, tie into the interconnection point, and work with interconnection operators to do that safely and reliably,” she said.

    Utilities are partnering with developers to begin clearing some of these obstacles. Julia Bovey, director of offshore wind for Eversource, described her firm’s redevelopment or improvement of five ports, and new transport vessels for offshore assembly of wind farm components in Atlantic waters. The utility is also digging under roads to lay cables for new power lines. Bovey notes that snags in supply chains and inflation have been driving up costs. This makes determining future electricity rates more complex, especially since utility contracts and markets work differently in each state.

    Just seven up

    Other nations hold a commanding lead in offshore wind: To date, the United States claims just seven operating turbines, while Denmark boasts 6,200 and the U.K. 2,600. Europe’s combined offshore power capacity stands at 30 gigawatts — which, as MITEI Research Scientist Tim Schittekatte notes, is the U.S. goal for 2030.

    The European Union wants 400 gigawatts of offshore wind by 2050, a target made all the more urgent by threats to Europe’s energy security from the war in Ukraine. “The idea is to connect all those windmills, creating a mesh offshore grid,” Schittekatte said, aided by E.U. regulations that establish “a harmonized process to build cross-border infrastructure.”

    Morten Pindstrup, the international chief engineer at Energinet, Denmark’s state-owned energy enterprise, described one component of this pan-European plan: a hybrid Danish-German offshore wind network. Energinet is also constructing energy islands in the North Sea and the Baltic to pool power from offshore wind farms and feed power to different countries.

    The European wind industry benefits from centralized planning, regulation, and markets, said Johannes P. Pfeifenberger, a principal of The Brattle Group. “The grid planning process in the U.S. is not suitable today to find cost-effective solutions to get us to a clean energy grid in time,” he said. Pfeifenberger recommended that the United States immediately pursue a series of moves including a multistate agreement for cooperating on offshore wind and establishment by grid operators of compatible transmission technologies.

    Symposium speakers expressed sharp concerns that complicated and prolonged approvals, as well as partisan politics, could hobble the nation’s nascent offshore industry. “You can develop whatever you want and agree on what you’re doing, and then the people in charge change, and everything falls apart,” said Weinstein. “We can’t slow down, and we actually need to accelerate.”

    Larry Susskind, the Ford Professor of Urban and Environmental Planning, had ideas for breaking through permitting and political gridlock. A negotiations expert, he suggested convening confidential meetings for stakeholders with competing interests for collaborative problem-solving sessions. He announced the creation of a Renewable Energy Facility Siting Clinic at MIT. “We get people to agree that there is a problem, and to accept that without a solution, the system won’t work in the future, and we have to start fixing it now.”

    Other symposium participants were more sanguine about the success of offshore wind. “Trust me, floating wind is not a pie-in-the-sky, exotic technology that is difficult to implement,” said Sclavounos. “There will be companies investing in this technology because it produces huge amounts of energy, and even though the process may not be streamlined, the economics will work itself out.” More

  • in

    MIT Energy Conference grapples with geopolitics

    As Russia’s war in Ukraine rages on, this year’s MIT Energy Conference spotlighted the role of geopolitics in the world’s efforts to lower greenhouse gas emissions and mitigate the worst effects of climate change.

    Each year, the student-run conference, which its organizers say is the largest of its kind, brings together leaders from around the globe to discuss humanity’s most pressing energy and sustainability challenges.

    The event always involves perspectives from the investment, business, research, and startup communities. But this year, as more than 600 attendees gathered on April 11 and 12 for a whirlwind of keynote talks, fireside chats, and panel discussions, common themes also included the influence of Russia’s war, rising tensions between the U.S. and China, and international collaboration.

    As participants grappled with the evolving geopolitical landscape, some speakers encouraged moving past isolationist tendencies.

    “Some people push for self-sufficiency, others emphasize that we should not rely on trading partners that don’t share our values — I think both arguments are misguided,” said Juan Carlos Jobet, Chile’s former ministry of energy and mining. “No country has all that’s needed to create an energy system that’s affordable, clean, and secure. … A third of the world’s energy output is generated in nondemocratic countries. Can we really make our energy systems affordable and secure and curb climate change while excluding those countries from our collective effort? If we enter an area of protectionism and disintegration, we will all be worse off.”

    Another theme was optimism, such as that expressed by Volodymyr Kudrytskyi, CEO of Ukraine’s national power company, who spoke to the conference live from Kyiv. Kudrytskyi outlined Russia’s attacks on Ukraine’s power grids, which included more than 1,000 heavy missiles, making it the largest-ever campaign against a country’s power grid.

    Still, Kudrytskyi said he was confident he’d be able to attend the conference in person next year. As it happened, Kudrytskyi’s presentation marked the day Ukraine resumed its energy exports to other countries.

    “The good news is, after all of that, our system survived and continues operations,” he said.

    Energy security and the green transition

    Richard Duke, the U.S. Department of State’s deputy special envoy for climate, opened the conference with a keynote centered on the U.S.’ role in the global shift toward cleaner energy. Duke was among those advocating for a more integrated and diversified global energy system, noting that no country can address climate change on its own.

    “We need to do all of these things in parallel, in concert with other governments, and through the architecture of the Paris Climate agreement that wraps it together in ambitious net greenhouse gas abatement targets,” Duke said.

    Following his talk, Ditte Juul Jørgensen, the European Commission’s director general for energy, discussed the shift in the EU’s energy policies spurred by the Russian invasion of Ukraine.

    She admitted the EU had grown too dependent on Russian natural gas, but said the invasion forced European states to revise their energy strategy while keeping their long-term objective of net neutrality by 2050.

    “We see energy security and the green transition as interlinked. There is no energy security without the energy transition toward climate neutrality, and there’s no energy transition without energy security,” Jorgensen said.

    Jørgensen also outlined steps the EU has taken to improve its energy security over the last year, including rolling out additional renewable energy projects and replacing Russian fuel with fuel from the U.S., which has now become the continent’s main supplier of energy.

    “The fight against climate change is our shared ambition, it’s our shared responsibility, and I think we’ve shown over these last few years that we can turn that ambition into action and bring results,” she said.

    A challenge and an opportunity

    Optimism also shone through in the way speakers framed the green energy transition as a business opportunity. In keeping with the idea, the conference included a showcase of more than 30 startups focused on clean energy and sustainability.

    “We’re all battling a huge problem that needs a collective effort,” said Malav Sukhadia of Sol Clarity, a conference exhibitor that uses electricity to clean solar panels as a way to replace water cleaning. “This is one of the best energy conferences in the world. We felt if you’re in climate tech, you have to be here.”

    Technological development was a pillar of the conference, and a big topic in those discussions was green hydrogen, a clean fuel source that could replace natural gas in a number of applications and be produced using renewable energy. In one panel discussion on the technology, Sunita Satyapal of the Department of Energy noted the agency has been funding hydrogen development since the 1970s. Other panel members also stressed the maturity of the technology.

    “A lot of the technology needed to advance the ecosystem exists now,” said Laura Parkan, vice president of hydrogen energy at Air Liquide Americas. “The challenge is to get things to a large enough scale so that the costs come down to make it more affordable and really advance the hydrogen ecosystem.”

    Still, panel members acknowledged more technological development is needed to leverage the full potential of hydrogen, such as better mechanisms for storage and transportation.

    Other advanced technologies mentioned in panel discussions included advanced geothermal energy and small modular nuclear reactors that could be built and deployed more quickly than conventional reactors.

    “Exploring these different technologies may actually get us to the net zero — or even a zero carbon future — that we’re hoping for in electricity generation,” said Emma Wong of the OECD Nuclear Energy Agency, noting there are more than 80 advanced reactor designs that have been explored around the world. “There are various challenges and enabling conditions to be addressed, but places like China and Russia are already building these things, so there’s not a technological barrier.”

    “Glass half full”

    Despite the tall tasks that lie ahead, some speakers took a moment to celebrate accomplishments thus far.

    “It’s incredible to think about the progress we’ve made in the last 10 years,” said Neil Brown of the KKR investment firm, whose company is working to build a large offshore wind project. “Solar and wind and electric vehicles have gone from impossibly expensive and hard to imagine penetrating the market to being very close to, if not already at, cost parity. We’ve really come an awful long way.”

    Other speakers mixed their positivity with a confession of envy for the opportunity ahead of the young people in the audience, many of them students from MIT.

    “I have a mix of excitement from the speakers we’ve heard so far and a little bit of envy as well for the open road the young students and professionals here have in front of them,” said Jobert. “Coming back to this place has made me reconnect with the sense of opportunity and responsibility that I felt as a student.”

    Jobert offered lessons learned from his country’s struggles with an energy crisis, populist policies, and severe droughts. His talk finished with questions that struck at the heart of the conference.

    “The evidence is clear: The Earth will change. How much is still to be decided,” Jobert said. “The energy sector has been a central part of the problem. We now must work to become an essential pierce of the solution. Where should we focus our efforts? What can we learn from each other?” More

  • in

    An interdisciplinary approach to fighting climate change through clean energy solutions

    In early 2021, the U.S. government set an ambitious goal: to decarbonize its power grid, the system that generates and transmits electricity throughout the country, by 2035. It’s an important goal in the fight against climate change, and will require a switch from current, greenhouse-gas producing energy sources (such as coal and natural gas), to predominantly renewable ones (such as wind and solar).

    Getting the power grid to zero carbon will be a challenging undertaking, as Audun Botterud, a principal research scientist at the MIT Laboratory for Information and Decision Systems (LIDS) who has long been interested in the problem, knows well. It will require building lots of renewable energy generators and new infrastructure; designing better technology to capture, store, and carry electricity; creating the right regulatory and economic incentives; and more. Decarbonizing the grid also presents many computational challenges, which is where Botterud’s focus lies. Botterud has modeled different aspects of the grid — the mechanics of energy supply, demand, and storage, and electricity markets — where economic factors can have a huge effect on how quickly renewable solutions get adopted.

    On again, off again

    A major challenge of decarbonization is that the grid must be designed and operated to reliably meet demand. Using renewable energy sources complicates this, as wind and solar power depend on an infamously volatile system: the weather. A sunny day becomes gray and blustery, and wind turbines get a boost but solar farms go idle. This will make the grid’s energy supply variable and hard to predict. Additional resources, including batteries and backup power generators, will need to be incorporated to regulate supply. Extreme weather events, which are becoming more common with climate change, can further strain both supply and demand. Managing a renewables-driven grid will require algorithms that can minimize uncertainty in the face of constant, sometimes random fluctuations to make better predictions of supply and demand, guide how resources are added to the grid, and inform how those resources are committed and dispatched across the entire United States.

    “The problem of managing supply and demand in the grid has to happen every second throughout the year, and given how much we rely on electricity in society, we need to get this right,” Botterud says. “You cannot let the reliability drop as you increase the amount of renewables, especially because I think that will lead to resistance towards adopting renewables.”

    That is why Botterud feels fortunate to be working on the decarbonization problem at LIDS — even though a career here is not something he had originally planned. Botterud’s first experience with MIT came during his time as a graduate student in his home country of Norway, when he spent a year as a visiting student with what is now called the MIT Energy Initiative. He might never have returned, except that while at MIT, Botterud met his future wife, Bilge Yildiz. The pair both ended up working at the Argonne National Laboratory outside of Chicago, with Botterud focusing on challenges related to power systems and electricity markets. Then Yildiz got a faculty position at MIT, where she is a professor of nuclear and materials science and engineering. Botterud moved back to the Cambridge area with her and continued to work for Argonne remotely, but he also kept an eye on local opportunities. Eventually, a position at LIDS became available, and Botterud took it, while maintaining his connections to Argonne.

    “At first glance, it may not be an obvious fit,” Botterud says. “My work is very focused on a specific application, power system challenges, and LIDS tends to be more focused on fundamental methods to use across many different application areas. However, being at LIDS, my lab [the Energy Analytics Group] has access to the most recent advances in these fundamental methods, and we can apply them to power and energy problems. Other people at LIDS are working on energy too, so there is growing momentum to address these important problems.”

    Weather, space, and time

    Much of Botterud’s research involves optimization, using mathematical programming to compare alternatives and find the best solution. Common computational challenges include dealing with large geographical areas that contain regions with different weather, different types and quantities of renewable energy available, and different infrastructure and consumer needs — such as the entire United States. Another challenge is the need for granular time resolution, sometimes even down to the sub-second level, to account for changes in energy supply and demand.

    Often, Botterud’s group will use decomposition to solve such large problems piecemeal and then stitch together solutions. However, it’s also important to consider systems as a whole. For example, in a recent paper, Botterud’s lab looked at the effect of building new transmission lines as part of national decarbonization. They modeled solutions assuming coordination at the state, regional, or national level, and found that the more regions coordinate to build transmission infrastructure and distribute electricity, the less they will need to spend to reach zero carbon.

    In other projects, Botterud uses game theory approaches to study strategic interactions in electricity markets. For example, he has designed agent-based models to analyze electricity markets. These assume each actor will make strategic decisions in their own best interest and then simulate interactions between them. Interested parties can use the models to see what would happen under different conditions and market rules, which may lead companies to make different investment decisions, or governing bodies to issue different regulations and incentives. These choices can shape how quickly the grid gets decarbonized.

    Botterud is also collaborating with researchers in MIT’s chemical engineering department who are working on improving battery storage technologies. Batteries will help manage variable renewable energy supply by capturing surplus energy during periods of high generation to release during periods of insufficient generation. Botterud’s group models the sort of charge cycles that batteries are likely to experience in the power grid, so that chemical engineers in the lab can test their batteries’ abilities in more realistic scenarios. In turn, this also leads to a more realistic representation of batteries in power system optimization models.

    These are only some of the problems that Botterud works on. He enjoys the challenge of tackling a spectrum of different projects, collaborating with everyone from engineers to architects to economists. He also believes that such collaboration leads to better solutions. The problems created by climate change are myriad and complex, and solving them will require researchers to cooperate and explore.

    “In order to have a real impact on interdisciplinary problems like energy and climate,” Botterud says, “you need to get outside of your research sweet spot and broaden your approach.” More