in

3-D ocean particle tracking modeling reveals extensive vertical movement and downstream interdependence of closed areas in the northwest Atlantic

  • 1.

    Dullo, W. C., Flögel, S. & Rüggeberg, A. Cold-water coral growth in relation to the hydrography of the Celtic and Nordic European continental margin. Mar. Ecol. Prog. Ser. 371, 165–176 (2008).

    ADS  Article  Google Scholar 

  • 2.

    Puerta, P. et al. Influence of water masses on the biodiversity and biogeography of deep-sea benthic ecosystems in the North Atlantic. Front. Mar. Sci. 7, 239. https://doi.org/10.3389/fmars.2020.00239 (2020).

    Article  Google Scholar 

  • 3.

    Davies, A. J. & Guinotte, J. M. Global habitat suitability for framework-forming cold-water corals. PLoS ONE 6(4), e18483. https://doi.org/10.1371/journal.pone.0018483 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Davies, A. J. et al. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef Complex. Limnol. Oceanogr. 54, 620–629 (2009).

    ADS  Article  Google Scholar 

  • 5.

    Xu, G., McGillicuddy, D. J. Jr., Mills, S. W. & Mullineaux, L. S. Dispersal of hydrothermal vent larvae at East Pacific rise 9–10° N segment. J. Geophys. Res. Oceans 123, 7877–7895 (2018).

    ADS  Article  Google Scholar 

  • 6.

    Bracco, A., Liu, G., Galaska, M., Quattrini, A. M. & Herrera, S. Integrating physical circulation models and genetic approaches to investigate population connectivity in deep-sea corals. J. Mar. Syst. 198, 103189. https://doi.org/10.1016/j.jmarsys.2019.103189 (2019).

    Article  Google Scholar 

  • 7.

    Kenchington, E. et al. Connectivity modelling of areas closed to protect vulnerable marine ecosystems in the northwest Atlantic. Deep Sea Res. I Oceanogr. Res. Pap. 143, 85–103 (2019).

    ADS  Article  Google Scholar 

  • 8.

    Zeng, X., Adams, A., Roffer, M. & He, R. Potential connectivity among spatially distinct management zones for bonefish (Albula vulpes) via larval dispersal. Environ. Biol. Fishes 102, 233–252 (2019).

    Article  Google Scholar 

  • 9.

    Lange, M. & van Sebille, E. Parcels v0.9: Prototyping a lagrangian ocean analysis framework for the petascale age. Geosci. Model Dev. 10, 4175–4186 (2017).

    ADS  Article  Google Scholar 

  • 10.

    Knudby, A., Kenchington, E. & Murillo, F. J. Modeling the distribution of Geodia sponges and sponge grounds in the northwest Atlantic. PLoS ONE 8(12), e82306. https://doi.org/10.1371/journal.pone.0082306 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Knudby, A., Lirette, C., Kenchington, E. & Murillo, F. J. Species distribution models of black corals, large gorgonian corals and sea pens in the NAFO Regulatory Area. Ser. No. N6276. NAFO SCR Doc. 13/78 (2013). (Accessed 5 November 2020); https://www.nafo.int/Portals/0/PDFs/sc/2013/scr13-078.pdf.

  • 12.

    Beazley, L., Kenchington, E., Yashayaev, I. & Murillo, F. J. Drivers of epibenthic megafaunal composition in the sponge grounds of the Sackville Spur, northwest Atlantic. Deep Sea Res. I Oceanogr. Res. Pap. 98, 102–114 (2015).

    ADS  Article  Google Scholar 

  • 13.

    Murillo, F. J., Kenchington, E., Lawson, J. M., Li, G. & Piper, D. Ancient deep-sea sponge grounds on the Flemish Cap and Grand Bank, northwest Atlantic. Mar. Biol. 163, 63. https://doi.org/10.1007/s00227-016-2839-5 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Kenchington, E., Yashayaev, I., Tendal, O. S. & Jørgensbye, H. Water mass characteristics and associated fauna of a recently discovered Lophelia pertusa (Scleractinia: Anthozoa) reef in Greenlandic waters. Polar Biol. 40, 321–337 (2017).

    Article  Google Scholar 

  • 15.

    FAO. International Guidelines for the Management of Deep-Sea Fisheries in the High Seas p73 (FAO, Quebec, 2009).

    Google Scholar 

  • 16.

    NAFO. Conservation and Enforcement Measures. Ser. No. N6638. NAFO/FC Doc. 17/01 (2017). (Accessed 5 November 2020); https://www.nafo.int/Portals/0/PDFs/fc/2017/CEM-2017-web.pdf.

  • 17.

    Williams, J. C., Revelle, C. S. & Levin, S. A. Spatial attributes and reserve design models: A review. Environ. Model. Assess. 10, 163–181 (2005).

    Article  Google Scholar 

  • 18.

    Yashayaev, I. Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr. 73, 242–276 (2007).

    ADS  Article  Google Scholar 

  • 19.

    Yashayaev, I. & Loder, J. W. Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability. J. Geophys. Res. Oceans 121, 8095–8114 (2016).

    ADS  Article  Google Scholar 

  • 20.

    Wang, S., Wang, Z., Lirette, C., Davies, A. & Kenchington, E. Comparison of physical connectivity particle tracking models in the Flemish Cap region. Can. Tech. Rep. Fish. Aquat. Sci. 3353, 39 (2019).

    Article  Google Scholar 

  • 21.

    Morato, T. et al. Climate-induced changes in the habitat suitability of cold-water corals and commercially important deep-sea fish in the North Atlantic. Glob. Change Biol. 26, 2181–2202 (2020).

    ADS  Article  Google Scholar 

  • 22.

    Han, G. & Wang, Z. Monthly-mean circulation in the Flemish Cap region: A modeling study. In Estuarine and Coastal Modeling: Proceedings of the Ninth International Conference on Estuarine and Coastal Modeling (ed. Spaulding, M. L.) 138–154 (American Society of Civil Engineers, Reston, 2006).

    Google Scholar 

  • 23.

    Han, G. et al. Seasonal variability of the Labrador current and shelf circulation off Newfoundland. J. Geophys. Res. Oceans 113, C10013. https://doi.org/10.1029/2007JC004376 (2008).

    ADS  Article  Google Scholar 

  • 24.

    Maldonado, M. The ecology of the sponge larva. Can. J. Zool. 84, 175–194 (2006).

    Article  Google Scholar 

  • 25.

    Wang, Z., Hamilton, J. & Su, J. Variations in freshwater pathways from the Arctic Ocean into the North Atlantic Ocean. Progr. Oceanogr. 155, 54–73 (2017).

    ADS  Article  Google Scholar 

  • 26.

    Ross, R. E., Nimmo-Smith, W. A. M. & Howell, K. L. Increasing the depth of current understanding: Sensitivity testing of deep-sea larval dispersal models for ecologists. PLoS ONE 11(8), e0161220. https://doi.org/10.1371/journal.pone.0161220 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Wang, Z., Brickman, D. & Greenan, B. J. W. Characteristic evolution of the Atlantic Meridional Overturning Circulation from 1990 to 2015: An eddy-resolving ocean model study. Deep Sea Res. I Oceanogr. Res. Pap. 149, 103056. https://doi.org/10.1016/j.dsr.2019.06.002 (2019).

    Article  Google Scholar 

  • 28.

    Lazier, J. R. N. & Wright, D. G. Annual velocity variations in the Labrador current. J. Phys. Oceanogr. 23, 659–678 (1993).

    ADS  Article  Google Scholar 

  • 29.

    Hall, M. M., Torres, D. J. & Yashayaev, I. Absolute velocity along the AR7W section in the Labrador sea. Deep Sea Res. I Oceanogr. Res. Pap. 72, 72–87 (2013).

    ADS  Article  Google Scholar 

  • 30.

    Schneider, L. et al. Variability of Labrador Sea water transported through Flemish Pass during 1993–2013. J. Geophys. Res. Oceans 120, 5514–5533 (2015).

    ADS  Article  Google Scholar 

  • 31.

    Varotsou, E., Jochumsen, K., Serra, N., Kieke, D. & Schneider, L. Interannual transport variability of Upper Labrador Sea Water at Flemish Cap. J. Geophys. Res. Oceans 120, 5074–5089 (2015).

    ADS  Article  Google Scholar 

  • 32.

    Layton, C., Greenan, B. J. W., Hebert, D. E. & Kelley, D. Low-frequency oceanographic variability near Flemish Cap and Sackville Spur. J. Geophys. Res. Oceans 123, 1814–1826 (2018).

    ADS  Article  Google Scholar 

  • 33.

    Wang, Z., Brickman, D., Greenan, B. J. W. & Yashayaev, I. An abrupt shift in the Labrador current system in relation to winter NAO events. J. Geophys. Res. Oceans 121, 5338–5349 (2016).

    ADS  Article  Google Scholar 

  • 34.

    Yashayaev, I. & Loder, J. Further intensification of deep convection in the Labrador Sea in 2016. Geophys. Res. Lett. 44, 1429–1438 (2016).

    ADS  Article  Google Scholar 

  • 35.

    Delandmeter, P. & van Sebille, E. The parcels v2.0 Lagrangian framework: New field interpolation schemes. Geosci. Model Dev. 12, 3571–3584 (2019).

    ADS  Article  Google Scholar 

  • 36.

    Brickman, D., Wang, Z. & DeTracey, B. Variability of current streams in Atlantic Canadian Waters: A model study. Atmos. Ocean 54, 1–12 (2015).

    Google Scholar 

  • 37.

    Brickman, D., Hebert, D. & Wang, Z. Mechanism for the recent ocean warming events on the Scotian Shelf of eastern Canada. Cont. Shelf Res. 156, 11–22 (2018).

    ADS  Article  Google Scholar 

  • 38.

    Pepin, P., Han, G. & Head, E. J. Modelling the dispersal of Calanus finmarchicus on the Newfoundland Shelf: Implications for the analysis of population dynamics from a high frequency monitoring site. Fish. Oceanogr. 22, 371–387 (2013).

    Article  Google Scholar 

  • 39.

    Le Corre, N., Pepin, P., Han, G., Ma, Z. & Snelgrove, P. V. R. Assessing connectivity patterns among management units of the Newfoundland and Labrador shrimp population. Fish. Oceanogr. 28, 183–202 (2019).

    Article  Google Scholar 

  • 40.

    Han, G. & Kulka, D. Dispersion of eggs, larvae and pelagic juveniles of White Hake (Urophycis tenuis) in relation to ocean currents of the Grand Bank: A modelling approach. J. Northw. Atl. Fish. Sci. 41, 183–196 (2009).

    Article  Google Scholar 

  • 41.

    Lynch, D. G. D. et al. Particles in the Coastal Ocean. Theory and Applications 389–452 (Cambridge University Press, Cambridge, 2014).

    Google Scholar 

  • 42.

    Murillo, F. J., Serrano, A., Kenchington, E. & Mora, J. Epibenthic assemblages of the tail of the Grand Bank and Flemish Cap (northwest Atlantic) in relation to environmental parameters and trawling intensity. Deep Sea Res. I Oceanogr. Res. Pap. 109, 99–122 (2016).

    ADS  Article  Google Scholar 

  • 43.

    Mariani, S., Uriz, M.-J. & Turon, X. The dynamics of sponge larvae assemblages from northwestern Mediterranean nearshore bottoms. J. Plankton Res. 27, 249–262 (2005).

    Article  Google Scholar 

  • 44.

    Mariani, S., Uriz, M.-J. & Alcoverro, T. Dispersal strategies in sponge larvae: Integrating the life history of larvae and the hydrologic component. Oecologia 149, 174–184 (2006).

    ADS  Article  PubMed  Google Scholar 

  • 45.

    NAFO. Northwest Atlantic Fisheries Organization. Conservation and Enforcement Measures 2020. Ser. No. N7028. NAFO/COM Doc. 20-01 (2020). (Accessed 5 November 2020); https://www.nafo.int/Portals/0/PDFs/com/2020/CEM-2020-web.pdf.

  • 46.

    Goldsmit, J. et al. Where else? Assessing zones of alternate ballast water exchange in the Canadian eastern Arctic. Mar. Pollut. Bull. 139, 74–90 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 47.

    Kim, M. et al. Transit time distributions and storage selection functions in a sloping soil lysimeter with time-varying flow paths: Direct observation of internal and external transport variability. Water Resour. Res. 52, 7105–7129 (2016).

    ADS  Article  Google Scholar 

  • 48.

    Gary, S.F. The Interior Pathway of the Atlantic Meridional Overturning Circulation. Doctor of Philosophy Thesis (Duke University, 2011). (Accessed 5 November 2020); https://dukespace.lib.duke.edu/dspace/handle/10161/4980.

  • 49.

    Good, S. A., Martin, M. J. & Rayner, N. A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 118, 6704–6716 (2013).

    ADS  Article  Google Scholar 

  • 50.

    Boyer, T. P. et al. World Ocean Database 09. In NOAA Atlas NESDIS 66 (ed. Levitus, S.) (U.S. Government Printing Office, New York, 2009).

    Google Scholar 

  • 51.

    Wang, S., Wang, Z., Kenchington, E., Yashayaev, I. & Davies, A. 3-D ocean particle tracking modeling reveals extensive vertical movement and downstream interdependence of closed areas in the northwest Atlantic. Mendeley Data https://doi.org/10.17632/chfcjmnvcv.1 (2020).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Field geology at a distance

    MISTI pilots conversations in energy