in

A competing-risks model explains hierarchical spatial coupling of measles epidemics en route to national elimination

  • 1.

    Verguet, S. et al. Measles control in sub-Saharan Africa: South Africa as a case study. Vaccine 30, 1594–1600 (2012).

    • Article
    • Google Scholar
  • 2.

    Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 27, 93–115 (1995).

    • Article
    • Google Scholar
  • 3.

    Sabbe, M. Measles resurgence in Belgium from January to mid-April 2011: a preliminary report. Eurosurveillance 16, 19848 (2011).

    • PubMed
    • Google Scholar
  • 4.

    Châtelet, I. P., du, Floret, D., Antona, D. & Lévy-Bruhl, D. Measles resurgence in France in 2008, a preliminary report. Eurosurveillance 14, 19118 (2009).

    • Google Scholar
  • 5.

    Grenfell, B. T., Bjørnstad, O. N. & Kappey, J. Travelling waves and spatial hierarchies in measles epidemics. Nature 414, 716–723 (2001).

  • 6.

    Finkenstädt, B. F. & Grenfell, B. T. Time series modelling of childhood diseases: a dynamical systems approach. J. R. Stat. Soc. Ser. C 49, 187–205 (2000).

    • Article
    • Google Scholar
  • 7.

    King, A. A. & Schaffer, W. M. The geometry of a population cycle: a mechanistic model of snowshoe hare demography. Ecology 82, 814–830 (2001).

    • Article
    • Google Scholar
  • 8.

    Wilson, H. B. & Hassell, M. P. Host–parasitoid spatial models: the interplay of demographic stochasticity and dynamics. Proc. R. Soc. Lond. B 264, 1189–1195 (1997).

    • Article
    • Google Scholar
  • 9.

    Xia, Y., Bjørnstad, O. N. & Grenfell, B. T. Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics. Am. Nat. 164, 267–281 (2004).

    • Article
    • Google Scholar
  • 10.

    Keeling, M. J. & Grenfell, B. T. Disease extinction and community size: modeling the persistence of measles. Science 275, 65–67 (1997).

  • 11.

    Bolker, B. M. & Grenfell, B. T. Impact of vaccination on the spatial correlation and persistence of measles dynamics. Proc. Natl Acad. Sci. USA 93, 12648–12653 (1996).

  • 12.

    Bak, P. How Nature Works: The Science of Self-Organized Criticality (Springer Science & Business Media, 2013).

  • 13.

    Grenfell, B. & Harwood, J. (Meta)population dynamics of infectious diseases. Trends Ecol. Evol. 12, 395–399 (1997).

  • 14.

    Erlander, S. & Stewart, N. F. The Gravity Model in Transportation Analysis: Theory and Extensions (VSP, 1990).

  • 15.

    Murray, G. D. & Cliff, A. D. A stochastic model for measles epidemics in a multi-region setting. Trans. Inst. Br. Geogr. 2, 158–174 (1977).

    • Article
    • Google Scholar
  • 16.

    Ferrari, M. J. et al. A gravity model for the spread of a pollinator‐borne plant pathogen. Am. Nat. 168, 294–303 (2006).

    • Article
    • Google Scholar
  • 17.

    Viboud, C. et al. Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312, 447–451 (2006).

  • 18.

    Jandarov, R., Haran, M., Bjørnstad, O. & Grenfell, B. Emulating a gravity model to infer the spatiotemporal dynamics of an infectious disease. J. R. Stat. Soc. Ser. C 63, 423–444 (2014).

    • Article
    • Google Scholar
  • 19.

    Bjørnstad, O. N. & Grenfell, B. T. Hazards, spatial transmission and timing of outbreaks in epidemic metapopulations. Environ. Ecol. Stat. 15, 265–277 (2007).

    • Article
    • Google Scholar
  • 20.

    Birnbaum, Z. W. On the Mathematics of Competing Risks (US Dept. of Health, Education, and Welfare, Public Health Service, Office of the Assistant Secretary for Health, National Center for Health Statistics, 1979).

  • 21.

    Bjørnstad, O. N., Finkenstädt, B. F. & Grenfell, B. T. Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model. Ecol. Monogr. 72, 169–184 (2002).

    • Article
    • Google Scholar
  • 22.

    Bharti, N., Xia, Y., Bjornstad, O. N. & Grenfell, B. T. Measles on the edge: coastal heterogeneities and infection dynamics. PLoS ONE 3, e1941 (2008).

    • Article
    • Google Scholar
  • 23.

    Bjørnstad, O. N. & Falck, W. Nonparametric spatial covariance functions: estimation and testing. Environ. Ecol. Stat. 8, 53–70 (2001).

    • Article
    • Google Scholar
  • 24.

    Graham, M. et al. Measles and the canonical path to elimination. Science 364, 584–587 (2019).

  • 25.

    Lloyd, A. L. & May, R. M. Spatial heterogeneity in epidemic models. J. Theor. Biol. 179, 1–11 (1996).

  • 26.

    Ramsay, M. E. et al. The elimination of indigenous measles transmission in England and Wales. J. Infect. Dis. 187, S198–S207 (2003).

    • Article
    • Google Scholar
  • 27.

    Jin, L., Brown, D. W., Ramsay, M. E., Rota, P. A. & Bellini, W. J. The diversity of measles virus in the United Kingdom, 1992–1995. J. Gen. Virol. 78, 1287–1294 (1997).

  • 28.

    Jansen, Va. A. et al. Measles outbreaks in a population with declining vaccine uptake. Science 301, 804–804 (2003).

  • 29.

    Gastañaduy, P. A. et al. Impact of public health responses during a measles outbreak in an Amish community in Ohio: modeling the dynamics of transmission. Am. J. Epidemiol. 187, 2002–2010 (2018).

    • Article
    • Google Scholar
  • 30.

    Metcalf, C. J. E. et al. Use of serological surveys to generate key insights into the changing global landscape of infectious disease. Lancet 388, 728–730 (2016).

    • Article
    • Google Scholar
  • 31.

    van Panhuis, W. G. et al. Contagious diseases in the United States from 1888 to the present. N. Engl. J. Med. 369, 2152–2158 (2013).

    • Article
    • Google Scholar
  • 32.

    Kermack, W. O. & McKendrick, A. G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 115, 700–721 (1927).

    • Google Scholar
  • 33.

    Keeling, M. J. & Rohani, P. Modeling Infectious Diseases in Humans and Animals (Princeton Univ. Press, 2008).

  • 34.

    Bjornstad, O. N. Package ‘ncf’: Spatial nonparametric covariance functions v.1.1–7 (R Foundation for Statistical Computing, 2016); http://CRAN.R-project.org/package=ncf


  • Source: Ecology - nature.com

    Associate Professor Amy Moran-Thomas receives the 2020 Levitan Prize in the Humanities

    Engineers develop precision injection system for plants