Letchumanan, V., Chan, K. G. & Lee, L. H. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front. Microbiol. 5, 705, https://doi.org/10.3389/fmicb.2014.00705 (2014).
DePaola, A., Hopkins, L. H., Peeler, J. T., Wentz, B. & McPhearson, R. M. Incidence of Vibrio parahaemolyticus in U.S. coastal waters and oysters. Appl. Environ. Microbiol. 56, 2299–2302 (1990).
Daniels, N. A. et al. Emergence of a new Vibrio parahaemolyticus serotype in raw oysters: a prevention quandary. JAMA. 284, 1541–1545, https://doi.org/10.1001/jama.284.12.1541 (2000).
McLaughlin, J. B. et al. Outbreak of Vibrio parahaemolyticus gastroenteritis associated with Alaskan oysters. N. Engl. J. Med. 353, 1463–1470, https://doi.org/10.1056/NEJMoa051594 (2005).
Ralph, A. & Currie, B. J. Vibrio vulnificus and V. parahaemolyticus necrotising fasciitis in fishermen visiting an estuarine tropical northern Australian location. J. Infect. 54, e111–114, https://doi.org/10.1016/j.jinf.2006.06.015 (2007).
Akther, F. et al. Major tdh(+)Vibrio parahaemolyticus serotype changes temporally in the Bay of Bengal estuary of Bangladesh. Infect. Genet. Evol. 41, 153–159, https://doi.org/10.1016/j.meegid.2016.04.003 (2016).
Caburlotto, G. et al. Occurrence and molecular characterisation of Vibrio parahaemolyticus in crustaceans commercialised in Venice area, Italy. Int. J. Food Microbiol. 220, 39–49, https://doi.org/10.1016/j.ijfoodmicro.2015.12.007 (2016).
Arakawa, E. et al. Emergence and prevalence of a novel Vibrio parahaemolyticus O3:K6 clone in Japan. Jpn. J. Infect. Dis. 52, 246–247 (1999).
Leal, N. C. et al. Vibrio parahaemolyticus serovar O3:K6 gastroenteritis in northeast Brazil. J. Appl. Microbiol. 105, 691–697, https://doi.org/10.1111/j.1365-2672.2008.03782.x (2008).
Shaw, K. S., Sapkota, A. R., Jacobs, J. M., He, X. & Crump, B. C. Recreational swimmers’ exposure to Vibrio vulnificus and Vibrio parahaemolyticus in the Chesapeake Bay, Maryland, USA. Environ. Int. 74, 99–105, https://doi.org/10.1016/j.envint.2014.09.016 (2015).
Liu, J. et al. Trends of foodborne diseases in China: lessons from laboratory-based surveillance since 2011. Front. Med. 12, 48–57, https://doi.org/10.1007/s11684-017-0608-6 (2018).
Paudyal, N. et al. A meta-analysis of major foodborne pathogens in Chinese food commodities between 2006 and 2016. Foodborne Pathog. Dis. 15, 187–197, https://doi.org/10.1089/fpd.2017.2417 (2018).
Deng, C., Deng, Y. & Yi, J. Analysis of microbial food poisoning from 2010 to 2016 in Sanya city. Hainan Med. J. 28, 2723–2725 (2017).
Xu, X. et al. Prevalence, pathogenicity, and serotypes of Vibrio parahaemolyticus in shrimp from Chinese retail markets. Food Control. 46, 81–85, https://doi.org/10.1016/j.foodcont.2014.04.042 (2014).
Xie, T., Wu, Q., Xu, X., Zhang, J. & Guo, W. Prevalence and population analysis of Vibrio parahaemolyticus in aquatic products from South China markets. FEMS Microbiol. Lett. 362, https://doi.org/10.1093/femsle/fnv178 (2015).
Xu, X., Cheng, J., Wu, Q., Zhang, J. & Xie, T. Prevalence, characterization, and antibiotic susceptibility of Vibrio parahaemolyticus isolated from retail aquatic products in North China. BMC Microbiol. 16, 32, https://doi.org/10.1186/s12866-016-0650-6 (2016).
Xie, T., Xu, X., Wu, Q., Zhang, J. & Cheng, J. Prevalence, molecular characterization, and antibiotic susceptibility of Vibrio parahaemolyticus from Ready-to-Eat foods in China. Front. Microbiol. 7, 549, https://doi.org/10.3389/fmicb.2016.00549 (2016).
Pang, R. et al. Comparative genomic analysis reveals the potential risk of Vibrio parahaemolyticus isolated from Ready-To-Eat foods in China. Front. Microbiol. 10, 186, https://doi.org/10.3389/fmicb.2019.00186 (2019).
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477, https://doi.org/10.1089/cmb.2012.0021 (2012).
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 30, 2068–2069, https://doi.org/10.1093/bioinformatics/btu153 (2014).
Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 31, 3691–3693, https://doi.org/10.1093/bioinformatics/btv421 (2015).
Nabil-Fareed, A., Zhemin, Z., Sergeant, M. J. & Achtman, M. A genomic overview of the population structure of Salmonella. PLoS Genet. 14, e1007261, https://doi.org/10.1371/journal.pgen.1007261 (2018).
Nakamura, T., Yamada, K. D., Tomii, K. & Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics. 34, 2490–2492, https://doi.org/10.1093/bioinformatics/bty121 (2018).
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One. 5, e9490, https://doi.org/10.1371/journal.pone.0009490 (2010).
Pang, R. & Wu, Q. A database for risk assessment and comparative genomic analysis of foodborne Vibrio parahaemolyticus in China. figshare https://doi.org/10.6084/m9.figshare.12210287 (2020).
Pang, R. & Wu, Q. Genome assemblies and annotations of food-borne Vibrio parahaemolyticus strains. figshare https://doi.org/10.6084/m9.figshare.12004416 (2020).
Pang, R. et al. Comparative genomic analysis of foodborne Vibrio parahaemolyticus in China. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP253458 (2020).
Chen, Y. et al. Foodborne disease outbreaks in 2006 report of the National Foodborne Disease Surveillance Network, China. Wei Sheng Yan Jiu. 39, 331–334 (2010).
Li, L. et al. Comparative genomic analysis of clinical and environmental strains provides insight into the pathogenicity and evolution of Vibrio parahaemolyticus. BMC Genomics. 15, 1135, https://doi.org/10.1186/1471-2164-15-1135 (2014).
McInerney, J. O., McNally, A. & O’Connell, M. J. Why prokaryotes have pangenomes. Nat. Microbiol. 2, 17040, https://doi.org/10.1038/nmicrobiol.2017.40 (2017).
Gonzalez-Escalona, N., Jolley, K. A., Reed, E. & Martinez-Urtaza, J. Defining a core genome multilocus sequence typing scheme for the global epidemiology of Vibrio parahaemolyticus. J. Clin. Microbiol. 55, 1682–1697, https://doi.org/10.1128/JCM.00227-17 (2017).
Source: Ecology - nature.com