in

A database of chlorophyll and water chemistry in freshwater lakes

  • 1.

    Beeton, A. M. Large freshwater lakes: present state, trends, and future. Environ Conserv. 29, 21–38 (2002).

    CAS  Google Scholar 

  • 2.

    Shiklomanov, I. A. Water in Crisis: A Guide to the World’s Fresh Water Resources (Oxford Univ. Press, 1993).

  • 3.

    McMichael, A. J., Woodruff, R. E. & Hales, S. Climate change and human health: present and future risks. The Lancet 367, 859–869 (2006).

    Google Scholar 

  • 4.

    Meyer, M. F., Labou, S. G., Cramer, A. N., Brousil, M. R. & Luff, B. T. The global lake area, climate, and population dataset. Sci. Data 7, 1–12 (2020).

    Google Scholar 

  • 5.

    Wrona, F. J. et al. Climate change effects on aquatic biota, ecosystem structure and function. Ambio 35, 359–369 (2006).

    CAS  PubMed  Google Scholar 

  • 6.

    Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Nürnberg, G. K. & Shaw, M. Productivity of clear and humic lakes: nutrients, phytoplankton, bacteria. Hydrobiologia 382, 97–112 (1998).

    Google Scholar 

  • 8.

    Makri, S., Lami, A., Lods-Crozet, B. & Loizeau, J. L. Reconstruction of trophic state shifts over the past 90 years in a eutrophicated lake in western Switzerland, inferred from the sedimentary record of photosynthetic pigments. J. Paleolimnol. 61, 129–145 (2019).

    ADS  Google Scholar 

  • 9.

    Håkanson, L. & Boulion, V. V. Regularities in primary production, Secchi depth and fish yield and a new system to define trophic and humic state indices for lake ecosystems. Int. Rev. Hydrobiol. 86, 23–62 (2001).

    Google Scholar 

  • 10.

    Carlson, R. E. A trophic state index for lakes. Limnol. Oceanogr. 22, 361–369 (1977).

    ADS  CAS  Google Scholar 

  • 11.

    Sterner, R. W. In situ-measured primary production in Lake Superior. J. Great Lakes Res. 36, 139–149 (2010).

    Google Scholar 

  • 12.

    Li, X., Sha, J. & Wang, Z. L. Chlorophyll-a prediction of lakes with different water quality patterns in China based on hybrid neural networks. Water 9, 524 (2017).

    ADS  Google Scholar 

  • 13.

    Vollenweider, R. & Kerekes, J. Eutrophication of Waters: Monitoring, Assessment and Control. OECD (1982).

  • 14.

    Bennion, D. H., Warner, D. M., Esselman, P. C., Hobson, B. & Kieft, B. A comparison of chlorophyll a values obtained from an autonomous underwater vehicle to satellite-based measures for Lake Michigan. J. Great Lakes Res. 45, 726–734 (2019).

    CAS  Google Scholar 

  • 15.

    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).

    PubMed  Google Scholar 

  • 16.

    Hall, R. I., Leavitt, P. R., Quinlan, R., Dixit, A. S. & Smol, J. P. Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol. Oceanogr. 44, 739–756 (1999).

    ADS  CAS  Google Scholar 

  • 17.

    Bennett, E. M., Carpenter, S. R. & Caraco, N. F. Human impact on erodable phosphorus and eutrophication: a global perspective: increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication. AIBS Bulletin 51, 227–234 (2001).

    Google Scholar 

  • 18.

    Williamson, C. E., Dodds, W., Kratz, T. K. & Palmer, M. A. Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front. Ecol. Environ. 6, 247–254 (2008).

    Google Scholar 

  • 19.

    Carpenter, S. R. et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559–568 (1998).

    Google Scholar 

  • 20.

    Williamson, C. E., Saros, J. E., Vincent, W. F. & Smol, J. P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 54, 2273–2282 (2009).

    ADS  Google Scholar 

  • 21.

    Li, L., Li, L., Shi, K., Li, Z. & Song, K. A semi-analytical algorithm for remote estimation of phycocyanin in inland waters. Sci. Total Environ. 435, 141–150 (2012).

    ADS  PubMed  Google Scholar 

  • 22.

    Odermatt, D., Danne, O., Philipson, P. & Brockmann, C. Diversity II water quality parameters from ENVISAT (2002-2012): a new global information source for lakes. Earth Syst. Sci. Data 10, 1527–1549 (2018).

    ADS  Google Scholar 

  • 23.

    Palmer, S. C., Kutser, T. & Hunter, P. D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 157, 1–8 (2015).

    ADS  Google Scholar 

  • 24.

    Salama, M. S. & Verhoef, W. Two-stream remote sensing model for water quality mapping: 2SeaColor. Remote Sens. Environ. 157, 111–122 (2015).

    ADS  Google Scholar 

  • 25.

    Soranno, P. A. et al. LAGOS-NE: A multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of U.S. lakes. Gigascience 6, 1–22 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Zeng, L. H. & Li, D. L. Development of in situ sensors for chlorophyll concentration measurement. J. Sens. 2015, 1–16 (2015).

    Google Scholar 

  • 27.

    Shimaraeva, S. V., Pislegina, E. V., Krashchuk, L. S., Shchapov, K. S. & Silow, E. A. Dynamics of chlorophyll a concentration in the South Baikal pelagic during the direct temperature stratification period. Inland Water Biol. 10, 59–63 (2017).

    Google Scholar 

  • 28.

    Eaton, A. D., & Franson, M. A. H. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, Denver, Alexandria (2005).

  • 29.

    Torremorell, A., del Carmen Diéguez, M., Queimaliños, C., Izaguirre, I. & Zagarese, H. E. Phytoplankton limitation in Patagonian and Pampean shallow lakes: effect of phosphorus and light. Hydrobiologia 816, 91–105 (2018).

    CAS  Google Scholar 

  • 30.

    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Filazzola, A. et al. A global database of chlorophyll and water chemistry in freshwater lakes. KNB Data Repository https://doi.org/10.5063/F1RV0M1S (2020).

  • 32.

    Marselina, M. & Burhanudin, M. Trophic status assessment of Saguling Reservoir, Upper Citarum Basin, Indonesia. Air, Soil and Water Res. 10, 1–8 (2017).

    Google Scholar 

  • 33.

    R Development Core Team. R: A language and environment for statistical computing (2019).

  • 34.

    Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R package version 1.0.0. https://CRAN.R-project.org/package=tidyr (2019).

  • 35.

    Wickham, H., François, R., Henry, L., & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 0.8.3. https://CRAN.R-project.org/package=dplyr (2019).

  • 36.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, New York, 2016).

    Google Scholar 

  • 37.

    Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high‐resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).

    ADS  Google Scholar 

  • 38.

    Filazzola, A. afilazzola/ChlorophyllDataPaper: Initial-Release. Zenodo https://doi.org/10.5281/zenodo.3968735 (2020).

  • 39.

    Hampton, S. E. et al. Ecology under lake ice. Ecol. Lett. 20, 98–111 (2017).

    PubMed  Google Scholar 

  • 40.

    Karatayev, Vadim, A. et al. Eutrophication and Dreissena invasion as drivers of biodiversity: A century of change in the mollusc community of Oneida Lake. PloS One 9 (2014).

  • 41.

    Richardson, D. C. et al. Transparency, geomorphology and mixing regime explain variability in trends in lake temperature and stratification across northeastern North America (1975–2014). Water 9, 442 (2017).

    Google Scholar 

  • 42.

    Mantzouki, E. et al. The European Multi Lake Survey (EMLS) dataset of physical, chemical, algal pigments and cyanotoxin parameters 2015. Environmental Data Initiative (2018).

  • 43.

    Pollard, AminaI., Hampton, StephanieE. & Leech, DinaM. The Promise and Potential of Continental‐Scale Limnology Using the US Environmental Protection Agency’s National Lakes. Assessment. Limnol.Oceanogr. Bull. 27, 36–41 (2018).

    Google Scholar 

  • 44.

    Burnett, L., Moorhead, D., Hawes, I. & Howard-Williams, C. Environmental factors associated with deep chlorophyll maxima in Dry Valley lakes, South Victoria Land, Antarctica. Arct. Antarct. Alp. Res. 38, 179–189 (2006).

    Google Scholar 

  • 45.

    Takamura, N. & Nakagawa, M. The densities of bacteria, picophytoplankton, heterotrophic nanoflagellates and ciliates in Lake Kasumigaura (Japan) monitored monthly since 1996. Ecol. Res. 27, 839 (2012).

    Google Scholar 

  • 46.

    Gries, C., Gahler, M. R., Hanson, P. C., Kratz, T. K. & Stanley, E. H. Information management at the North Temperate Lakes Long-term Ecological Research site—Successful support of research in a large, diverse, and long running project. Ecol. Inform. 36, 201–208 (2016).

    Google Scholar 


  • Source: Ecology - nature.com

    Evaluating battery revenues for offshore wind farms using advanced modeling

    Phytoliths in selected broad-leaved trees in China