in

A framework for in situ molecular characterization of coral holobionts using nanopore sequencing

  • 1.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 2.

    LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580. https://doi.org/10.1016/j.cub.2018.07.008 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 3.

    Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340. https://doi.org/10.1146/annurev-micro-102215-095440 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 4.

    Peixoto, R. S., Rosado, P. M., Leite, D. C. D., Rosado, A. S. & Bourne, D. G. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. https://doi.org/10.3389/Fmicb.2017.00341 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068–2073. https://doi.org/10.1111/j.1462-2920.2006.01148.x (2006).

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152. https://doi.org/10.3354/meps07008 (2007).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Ben-Haim, Y. et al. Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int. J. System. Evol. Microbiol. 53, 309–315. https://doi.org/10.1099/ijs.0.02402-0 (2003).

    CAS  Article  Google Scholar 

  • 8.

    Johnston, E. C. et al. A genomic glance through the fog of plasticity and diversification in Pocillopora. Sci. Rep. https://doi.org/10.1038/S41598-017-06085-3 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Shearer, T. L., Van Oppen, M. J., Romano, S. L. & Worheide, G. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol. Ecol. 11, 2475–2487 (2002).

    CAS  Article  Google Scholar 

  • 10.

    Hellberg, M. E. No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol. Biol. 6, 24. https://doi.org/10.1186/1471-2148-6-24 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Wares, J. P. Mitochondrial cytochrome b sequence data are not an improvement for species identification in scleractinian corals. PeerJ 2, e564. https://doi.org/10.7717/peerj.564 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Arrigoni, R. et al. A new sequence data set of SSU rRNA gene for Scleractinia and its phylogenetic and ecological applications. Mol. Ecol. Resour. 17, 1054–1071. https://doi.org/10.1111/1755-0998.12640 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 13.

    Suzuki, G. & Nomura, K. Species boundaries of Astreopora corals (Scleractinia, Acroporidae) inferred by mitochondrial and nuclear molecular markers. Zool. Sci. 30, 626–632. https://doi.org/10.2108/zsj.30.626 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 14.

    Gelin, P., Postaire, B., Fauvelot, C. & Magalon, H. Reevaluating species number, distribution and endemism of the coral genus Pocillopora Lamarck, 1816 using species delimitation methods and microsatellites. Mol. Phylogenet. Evol. 109, 430–446. https://doi.org/10.1016/j.ympev.2017.01.018 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 15.

    LaJeunesse, T. C. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the its region: In search of a “species” level marker. J. Phycol. 37, 866–880. https://doi.org/10.1046/j.1529-8817.2001.01031.x (2001).

    CAS  Article  Google Scholar 

  • 16.

    Hume, B. C. C. et al. An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region. PeerJ 6, e4816. https://doi.org/10.7717/peerj.4816 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 17.

    Hume, B. C. C. et al. SymPortal: A novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080. https://doi.org/10.1111/1755-0998.13004 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Arif, C. et al. Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol. Ecol. 23, 4418–4433. https://doi.org/10.1111/mec.12869 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Smith, E. G., Ketchum, R. N. & Burt, J. A. Host specificity of Symbiodinium variants revealed by an ITS2 metahaplotype approach. Isme J. 11, 1500–1503. https://doi.org/10.1038/ismej.2016.206 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 20.

    Ziegler, M. et al. Biogeography and molecular diversity of coral symbionts in the genus Symbiodinium around the Arabian Peninsula. J. Biogeogr. 44, 674–686. https://doi.org/10.1111/jbi.12913 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Mouchka, M. E., Hewson, I. & Harvell, C. D. Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr. Comp. Biol. 50, 662–674. https://doi.org/10.1093/icb/icq061 (2010).

    Article  PubMed  Google Scholar 

  • 22.

    Hernandez-Agreda, A., Leggat, W., Bongaerts, P. & Ainsworth, T. D. The microbial signature provides insight into the mechanistic basis of coral success across reef habitats. mBio https://doi.org/10.1128/mBio.00560-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Neave, M. J., Apprill, A., Ferrier-Pages, C. & Voolstra, C. R. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl. Microbiol. Biotechnol. 100, 8315–8324. https://doi.org/10.1007/s00253-016-7777-0 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Hernandez-Agreda, A., Gates, R. D. & Ainsworth, T. D. Defining the Core Microbiome in Corals’ Microbial Soup. Trends Microbiol. 25, 125–140. https://doi.org/10.1016/j.tim.2016.11.003 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 25.

    Roder, C., Bayer, T., Aranda, M., Kruse, M. & Voolstra, C. R. Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences. Mol. Ecol. 24, 3501–3511. https://doi.org/10.1111/mec.13251 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Pogoreutz, C. et al. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol. Evol. 8, 2240–2252. https://doi.org/10.1002/ece3.3830 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Neave, M. J. et al. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. Isme J. 11, 186–200. https://doi.org/10.1038/ismej.2016.95 (2017).

    Article  PubMed  Google Scholar 

  • 28.

    Menegon, M. et al. On site DNA barcoding by nanopore sequencing. PLoS ONE 12, e0184741. https://doi.org/10.1371/journal.pone.0184741 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Parker, J., Helmstetter, A. J., Devey, D., Wilkinson, T. & Papadopulos, A. S. T. Field-based species identification of closely-related plants using real-time nanopore sequencing. Sci. Rep. 7, 8345. https://doi.org/10.1038/s41598-017-08461-5 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Pomerantz, A. et al. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. Gigascience https://doi.org/10.1093/gigascience/giy033 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Santos, A., van Aerle, R., Barrientos, L. & Martinez-Urtaza, J. Computational methods for 16S metabarcoding studies using Nanopore sequencing data. Comput. Struct. Biotechnol. J. 18, 296–305. https://doi.org/10.1016/j.csbj.2020.01.005 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Berntson, E. A., Bayer, F. M., McArthur, A. G. & France, S. C. Phylogenetic relationships within the Octocorallia (Cnidaria:Anthozoa) based on nuclear 18S rRNA sequences. Mar. Biol. 138, 235–246. https://doi.org/10.1007/s002270000457 (2001).

    CAS  Article  Google Scholar 

  • 33.

    Pootakham, W. et al. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci. Rep. 7, 2774. https://doi.org/10.1038/s41598-017-03139-4 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Hume, B. et al. Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar. Pollut. Bull. 72, 313–322. https://doi.org/10.1016/j.marpolbul.2012.11.032 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 35.

    Hume, B. C. et al. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Sci. Rep. 5, 8562. https://doi.org/10.1038/srep08562 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100. https://doi.org/10.1093/bioinformatics/bty191 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Noonan, S. H. C., Fabricius, K. E. & Humphrey, C. Symbiodinium community composition in scleractinian corals is not affected by life-long exposure to elevated carbon dioxide. PLoS ONE https://doi.org/10.1371/journal.pone.0063985 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    Bayer, T. et al. Bacteria of the genus Endozoicomonas dominate the microbiome of the Mediterranean gorgonian coral Eunicella cavolini. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps10197 (2013).

    Article  Google Scholar 

  • 39.

    Glasl, B., Herndl, G. J. & Frade, P. R. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. Isme J. 10, 2280–2292. https://doi.org/10.1038/ismej.2016.9 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Morrow, K. M. et al. Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. Isme J. 9, 894–908. https://doi.org/10.1038/ismej.2014.188 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    Morrow, K. M., Bromhall, K., Motti, C. A., Munn, C. B. & Bourne, D. G. Allelochemicals produced by brown macroalgae of the lobophora genus are active against coral larvae and associated bacteria, supporting pathogenic shifts to vibrio dominance. Appl. Environ. Microb. https://doi.org/10.1128/AEM.02391-16 (2017).

    Article  Google Scholar 

  • 42.

    Neave, M. J., Michell, C. T., Apprill, A. & Voolstra, C. R. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci. Rep. 7, 40579. https://doi.org/10.1038/srep40579 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Cardenas, A. et al. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. Isme J. 12, 59–76. https://doi.org/10.1038/ismej.2017.142 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. https://doi.org/10.1038/S41467-018-07275-X (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Cardenas, A., Rodriguez, L. M., Pizarro, V., Cadavid, L. F. & Arevalo-Ferro, C. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease. Isme J. 6, 502–512. https://doi.org/10.1038/ismej.2011.123 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 46.

    Gajigan, A. P., Diaz, L. A. & Conaco, C. Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature. Microbiologyopen https://doi.org/10.1002/mbo3.478 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Shnit-Orland, M., Sivan, A. & Kushmaro, A. Shewanella corallii sp. nov., a marine bacterium isolated from a Red Sea coral. Int. J. System. Evol. Microbiol. 60, 2293–2297. https://doi.org/10.1099/ijs.0.015768-0 (2010).

    CAS  Article  Google Scholar 

  • 48.

    Ziegler, M. et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. 105, 629–640. https://doi.org/10.1016/j.marpolbul.2015.12.045 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 49.

    Paramasivam, N. et al. Bacterial Consortium of Millepora dichotoma exhibiting unusual multifocal lesion event in the gulf of Eilat Red Sea. Microb Ecol 65, 50–59. https://doi.org/10.1007/s00248-012-0097-8 (2013).

    Article  PubMed  Google Scholar 

  • 50.

    Paramasivam, N., Ben-Dov, E., Arotsker, L. & Kushmaro, A. Eilatimonas milleporae gen. nov., sp. nov., a marine bacterium isolated from the hydrocoral Millepora dichotoma. Int. J. Syst. Evol. Microbiol. 63, 1880–1884. https://doi.org/10.1099/ijs.0.043976-0 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 51.

    Spring, S., Lunsdorf, H., Fuchs, B. M. & Tindall, B. J. The photosynthetic apparatus and its regulation in the aerobic Gammaproteobacterium Congregibacter litoralis gen. nov., sp nov. PLoS ONE https://doi.org/10.1371/journal.pone.0004866 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Roder, C. et al. Bacterial profiling of White Plague Disease in a comparative coral species framework. Isme J. 8, 31–39. https://doi.org/10.1038/ismej.2013.127 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Sekar, R., Mills, D. K., Remily, E. R., Voss, J. D. & Richardson, L. L. Microbial communities in the surface mucopolysaccharide layer and the black band microbial mat of black band-diseased Siderastrea siderea. Appl. Environ. Microbiol. 72, 5963–5973. https://doi.org/10.1128/AEM.00843-06 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Blackall, L. L., Wilson, B. & van Oppen, M. J. Coral-the world’s most diverse symbiotic ecosystem. Mol. Ecol. 24, 5330–5347. https://doi.org/10.1111/mec.13400 (2015).

    Article  PubMed  Google Scholar 

  • 55.

    LaJeunesse, T. C. “Species” radiations of symbiotic Dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition (vol 22, pg 570, 2005). Mol. Biol. Evol. 22, 1158–1158. https://doi.org/10.1093/molbev/msi042 (2005).

    CAS  Article  Google Scholar 

  • 56.

    Hume, B. C. et al. Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc. Natl. Acad. Sci. USA 113, 4416–4421. https://doi.org/10.1073/pnas.1601910113 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 57.

    Thornhill, D. J., Lewis, A. M., Wham, D. C. & LaJeunesse, T. C. Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68, 352–367. https://doi.org/10.1111/evo.12270 (2014).

    CAS  Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Genetic structure in Orkney island mice: isolation promotes morphological diversification

    Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize in Zimbabwe