in

A geometric basis for surface habitat complexity and biodiversity

[adace-ad id="91168"]
  • 1.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS  Article  Google Scholar 

  • 2.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  Article  Google Scholar 

  • 3.

    Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc. Biol. Sci. 276, 3019–3025 (2009).

    Article  Google Scholar 

  • 4.

    Millennium Ecosystem Assessment Ecosystems and Human Well-Being: Synthesis (Island Press, 2005).

  • 5.

    Schulze, E. D. & Mooney, H. A. Biodiversity and Ecosystem Function (Springer, 1993).

  • 6.

    Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    Article  Google Scholar 

  • 7.

    Morse, D. R., Lawton, J. H., Dodson, M. M. & Williamson, M. H. Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature 314, 731–733 (1985).

    Article  Google Scholar 

  • 8.

    McCoy, E. D. & Bell, S. S. in Habitat Structure: the Physical Arrangement of Objects in Space (eds Bell, S. S. et al.) 3–27 (Springer, 1991).

  • 9.

    Beck, M. W. Separating the elements of habitat structure: independent effects of habitat complexity and structural components on rocky intertidal gastropods. J. Exp. Mar. Biol. Ecol. 249, 29–49 (2000).

    CAS  Article  Google Scholar 

  • 10.

    Kovalenko, K. E., Thomaz, S. M. & Warfe, D. M. Habitat complexity: approaches and future directions. Hydrobiologia 685, 1–17 (2012).

    Article  Google Scholar 

  • 11.

    Arrhenius, O. Species and area. J. Ecol. 9, 95–99 (1921).

    Article  Google Scholar 

  • 12.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  • 13.

    Mandelbrot, B. B. The Fractal Geometry of Nature (W. H. Freeman, 1983).

  • 14.

    Tokeshi, M. & Arakaki, S. Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685, 27–47 (2012).

    Article  Google Scholar 

  • 15.

    Johnson, M. P., Frost, N. J., Mosley, M. W. J., Roberts, M. F. & Hawkins, S. J. The area-independent effects of habitat complexity on biodiversity vary between regions. Ecol. Lett. 6, 126–132 (2003).

    Article  Google Scholar 

  • 16.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  • 17.

    Pianka, E. R. Evolutionary Ecology (Harper and Row, 1988).

  • 18.

    Sugihara, G. & May, R. M. Applications of fractals in ecology. Trends Ecol. Evol. 5, 79–86 (1990).

    CAS  Article  Google Scholar 

  • 19.

    Jones, C. G., Lawton, J. H. & Shachak, M. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78, 1946–1957 (1997).

    Article  Google Scholar 

  • 20.

    Brown, J. H. et al. The fractal nature of nature: power laws, ecological complexity and biodiversity. Phil. Trans. R. Soc. B 357, 619–626 (2002).

    Article  Google Scholar 

  • 21.

    Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).

    Article  Google Scholar 

  • 22.

    Madin, J. S. et al. Cumulative effects of cyclones and bleaching on coral cover and species richness at Lizard Island. Mar. Ecol. Prog. Ser. 604, 263–268 (2018).

    Article  Google Scholar 

  • 23.

    Hurlbert, S. H. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577–586 (1971).

    Article  Google Scholar 

  • 24.

    Hata, T. et al. Coral larvae are poor swimmers and require fine-scale reef structure to settle. Sci. Rep. 7, 2249 (2017).

    Article  Google Scholar 

  • 25.

    Madin, J. S. & Connolly, S. R. Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444, 477–480 (2006).

    CAS  Article  Google Scholar 

  • 26.

    Alvarez-Filip, L. et al. Drivers of region-wide declines in architectural complexity on Caribbean reefs. Coral Reefs 30, 1051–1060 (2011).

    Article  Google Scholar 

  • 27.

    Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro, M. & Kadmon, R. Area-heterogeneity tradeoff and the diversity of ecological communities. Proc. Natl Acad. Sci. USA 109, 17495–17500 (2012).

    CAS  Article  Google Scholar 

  • 28.

    Paxton, A. B., Pickering, E. A., Adler, A. M., Taylor, J. C. & Peterson, C. H. Flat and complex temperate reefs provide similar support for fish: evidence for a unimodal species-habitat relationship. PLoS ONE 12, e0183906 (2017).

    Article  Google Scholar 

  • 29.

    Huston, M. A. Patterns of species diversity on coral reefs. Annu. Rev. Ecol. Syst. 16, 149–177 (1985).

    Article  Google Scholar 

  • 30.

    Loke, L. H. L., Todd, P. A., Ladle, R. J. & Bouma, T. J. Creating complex habitats for restoration and reconciliation. Ecol. Eng. 77, 307–313 (2015).

    Article  Google Scholar 

  • 31.

    Young, G. C., Dey, S., Rogers, A. D. & Exton, D. Cost and time-effective method for multi-scale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3D models. PLoS ONE 12, e0175341 (2017).

    CAS  Article  Google Scholar 

  • 32.

    Friedman, A., Pizarro, O., Williams, S. B. & Johnson-Roberson, M. Multi-scale measures of rugosity, slope and aspect from benthic stereo image reconstructions. PLoS ONE 7, e50440 (2012).

    CAS  Article  Google Scholar 

  • 33.

    Weiher, E. & Keddy, P. A. Ecological Assembly Rules: Perspectives, Advances, Retreats (Cambridge Univ. Press, 2001).

  • 34.

    Bartholomew, A., Diaz, R. J. & Cicchetti, G. New dimensionless indices of structural habitat complexity: predicted and actual effects on a predator’s foraging success. Mar. Ecol. Prog. Ser. 206, 45–58 (2000).

    Article  Google Scholar 

  • 35.

    Strain, E. M. A. et al. Eco-engineering urban infrastructure for marine and coastal biodiversity: which interventions have the greatest ecological benefit? J. Appl. Ecol. 55, 426–441 (2018).

    Article  Google Scholar 

  • 36.

    Dubuc, B., Zucker, S. W., Tricot, C., Quiniou, J. F. & Wehbi, D. Evaluating the fractal dimension of surfaces. Proc. R. Soc. Lond. A Math. Phys. Sci. 425, 113–127 (1989).

    CAS  Google Scholar 

  • 37.

    Zhou, G. & Lam, N. S.-N. A comparison of fractal dimension estimators based on multiple surface generation algorithms. Comput. Geosci. 31, 1260–1269 (2005).

    Article  Google Scholar 

  • 38.

    Johnson‐Roberson, M. et al. High‐resolution underwater robotic vision‐based mapping and three‐dimensional reconstruction for archaeology. J. Field Robot. 34, 625–643 (2017).

    Article  Google Scholar 

  • 39.

    Pizarro, O., Friedman, A., Bryson, M., Williams, S. B. & Madin, J. A simple, fast, and repeatable survey method for underwater visual 3D benthic mapping and monitoring. Ecol. Evol. 7, 1770–1782 (2017).

    Article  Google Scholar 

  • 40.

    Mahon, I., Williams, S. B., Pizarro, O. & Johnson-Roberson, M. Efficient view-based SLAM using visual loop closures. IEEE Trans. Robot. 24, 1002–1014 (2008).

    Article  Google Scholar 

  • 41.

    Bryson, M. et al. Characterization of measurement errors using structure‐from‐motion and photogrammetry to measure marine habitat structural complexity. Ecol. Evol. 7, 5669–5681 (2017).

    Article  Google Scholar 

  • 42.

    Zawada, D. G. & Brock, J. C. A multi-scale analysis of coral reef topographic complexity using Lidar-derived bathymetry. J. Coast. Res. 10053, 6–15 (2009).

    Article  Google Scholar 

  • 43.

    Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. Applied Spatial Data Analysis with R (Springer, 2013).

  • 44.

    Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).

    CAS  Article  Google Scholar 

  • 45.

    R Core Team R: A Language and Environment For Statistical Computing (R Foundation for Statistical Computing, 2019).


  • Source: Ecology - nature.com

    MIT News – Food | Water

    Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes