in

A global class reunion with multiple groups feasting on the declining insect smorgasbord

  • 1.

    Darwin, C. On the Origin of Species (John Murray, London, 1859).

    Google Scholar 

  • 2.

    Gause, G. F. The Struggle for Existence (Williams & Wilkins, Philadelphia, 1934).

    Google Scholar 

  • 3.

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Article  Google Scholar 

  • 4.

    Vamosi, S. M., Heard, S. B., Vamosi, J. C. & Webb, C. O. Emerging patterns in the comparative analysis of phylogenetic community structure. Mol. Ecol. 18, 572–592 (2009).

    CAS  Article  Google Scholar 

  • 5.

    Biere, A. & Bennett, A. E. Three-way interactions between plants, microbes and insects. Funct. Ecol. 27, 567–573 (2013).

    Article  Google Scholar 

  • 6.

    Biesmeijer, J. C. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Harvey, J. A. et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-019-1079-8 (2020).

    Article  Google Scholar 

  • 8.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 9.

    Leather, S. R. “Ecological Armageddon”—more evidence for the drastic decline in insect numbers: Insect declines. Ann. Appl. Biol. 172, 1–3 (2018).

    Article  Google Scholar 

  • 10.

    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article  Google Scholar 

  • 11.

    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).

    Article  Google Scholar 

  • 12.

    Ford, H. A., Barrett, G. W., Saunders, D. A. & Recher, H. F. Why have birds in the woodlands of Southern Australia declined?. Biol. Conserv. 97, 71–88 (2001).

    Article  Google Scholar 

  • 13.

    Córdoba-Aguilar, A. & Rocha-Ortega, M. Damselfly (Odonata: Calopterygidae) population decline in an urbanizing watershed. J. Insect Sci. 19, 30 (2019).

    PubMed Central  Article  PubMed  Google Scholar 

  • 14.

    Kalkman, V. J. et al. Diversity and conservation of European dragonflies and damselflies (Odonata). Hydrobiologia 811, 269–282 (2018).

    Article  Google Scholar 

  • 15.

    Rosenberg, K. V. et al. Decline of the North American avifauna. Science https://doi.org/10.1126/science.aaw1313 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Rodhouse, T. J. et al. Evidence of region-wide bat population decline from long-term monitoring and Bayesian occupancy models with empirically informed priors. Ecol. Evol. https://doi.org/10.1002/ece3.5612 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  • 17.

    Kaunisto, K. M. et al. Threats from the air: Damselfly predation on diverse prey taxa. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13184 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Simmons, B. I. et al. Worldwide insect declines: An important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).

    PubMed Central  Article  PubMed  Google Scholar 

  • 19.

    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on earth and in the ocean?. PLoS Biol. 9, e1001127 (2011).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  • 20.

    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on earth. Proc. Natl. Acad. Sci. 115, 6506–6511 (2018).

    CAS  Article  Google Scholar 

  • 21.

    Nyffeler, M., Şekercioğlu, ÇH. & Whelan, C. J. Insectivorous birds consume an estimated 400–500 million tons of prey annually. Sci. Nat. 105, 47 (2018).

    Article  CAS  Google Scholar 

  • 22.

    Vesterinen, E. J. et al. What you need is what you eat? Prey selection by the bat Myotis daubentonii. Mol. Ecol. 25, 1581–1594 (2016).

    CAS  Article  Google Scholar 

  • 23.

    Vesterinen, E. J., Puisto, A. I. E., Blomberg, A. & Lilley, T. M. Table for five, please: Dietary partitioning in boreal bats. Ecol. Evol. 8, 10914–10937 (2018).

    PubMed Central  Article  PubMed  Google Scholar 

  • 24.

    Vesterinen, E. J., Puisto, A. I. E., Blomberg, A. S. & Lilley, T. M. Data from: Table for five, please: Dietary partitioning in boreal bats. Dryad Dataset https://doi.org/10.5061/dryad.6880rf1 (2019).

    Article  Google Scholar 

  • 25.

    Kaunisto, K. M., Roslin, T., Sääksjärvi, I. E. & Vesterinen, E. J. Pellets of proof: First glimpse of the dietary composition of adult odonates as revealed by metabarcoding of feces. Ecol. Evol. 7, 8588–8598 (2017).

    PubMed Central  Article  PubMed  Google Scholar 

  • 26.

    Kaunisto, K. M., Roslin, T. L., Sääksjärvi, I. E. & Vesterinen, E. J. Data from: Pellets of proof: first glimpse of the dietary composition of adult odonates as revealed by metabarcoding of feces. Dryad Dataset https://doi.org/10.5061/dryad.5n92p (2018).

    Article  Google Scholar 

  • 27.

    Vesterinen, E. J. et al.Threats from the air: damselfly predation on diverse prey taxa. 1438406240 bytes (2019) https://doi.org/10.5061/DRYAD.ZS7H44J4Z.

  • 28.

    Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406 (2019).

    Article  Google Scholar 

  • 29.

    Dormann, C. F., Frund, J., Bluthgen, N. & Gruber, B. Indices, graphs and null models: Analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).

    Article  Google Scholar 

  • 30.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).

  • 31.

    Oksanen, J. et al. vegan: Community Ecology Package. (2013).

  • 32.

    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168 (2010).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Fuszara, E. et al. Population changes in Natterer’s bat (Myotis nattereri) and Daubenton’s bat (M. daubentonii) in winter roosts of central Poland. Pol. J. Ecol. 58, 769–781 (2010).

    Google Scholar 

  • 35.

    Kim, K. C. & Byrne, L. B. Biodiversity loss and the taxonomic bottleneck: Emerging biodiversity science. Ecol. Res. 21, 794 (2006).

    Article  Google Scholar 

  • 36.

    Sekercioglu, C. H. et al. Disappearance of insectivorous birds from tropical forest fragments. Proc. Natl. Acad. Sci. USA. 99, 263–267 (2002).

    ADS  CAS  Article  Google Scholar 

  • 37.

    Spiller, K. J. & Dettmers, R. Evidence for multiple drivers of aerial insectivore declines in North America. Condor 121, 10 (2019).

    Article  Google Scholar 

  • 38.

    Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. 115, E10397–E10406 (2018).

    CAS  Article  Google Scholar 

  • 39.

    Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Ochieng, H., de Ruyter van Steveninck, E. D. & Wanda, F. M. Mouthpart deformities in Chironomidae (Diptera) as indicators of heavy metal pollution in northern Lake Victoria, Uganda. Afr. J. Aquat. Sci. 33, 135–142 (2008).

    CAS  Article  Google Scholar 

  • 41.

    Luoto, T. P. Hydrological change in lakes inferred from midge assemblages through use of an intralake calibration set. Ecol. Monogr. 80, 303–329 (2010).

    Article  Google Scholar 

  • 42.

    Aquatic insects of North Europe—A Taxonomic Handbook. vol. 2 (Apollo Books, 1997).

  • 43.

    Wirta, H. K. et al. Exposing the structure of an Arctic food web. Ecol. Evol. 5, 3842–3856 (2015).

    PubMed Central  Article  PubMed  Google Scholar 

  • 44.

    Vesterinen, E. J., Lilley, T., Laine, V. N. & Wahlberg, N. Next generation sequencing of fecal DNA reveals the dietary diversity of the widespread insectivorous predator Daubenton’s bat (Myotis daubentonii) in southwestern Finland. PLoS ONE 8, e82168 (2013).

    ADS  PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 45.

    Clare, E. L., Fraser, E. E., Braid, H. E., Fenton, M. B. & Hebert, P. D. N. Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): Using a molecular approach to detect arthropod prey. Mol. Ecol. 18, 2532–2542 (2009).

    Article  Google Scholar 

  • 46.

    Clare, E. L. et al. The diet of Myotis lucifugus across Canada: Assessing foraging quality and diet variability. Mol. Ecol. 23, 3618–3632 (2014).

    Article  Google Scholar 

  • 47.

    Rytkönen, S. et al. From feces to data: A metabarcoding method for analyzing consumed and available prey in a bird-insect food web. Ecol. Evol. 9, 631–639 (2019).

    Article  Google Scholar 

  • 48.

    Eitzinger, B. et al. Assessing changes in arthropod predator–prey interactions through DNA-based gut content analysis—variable environment, stable diet. Mol. Ecol. 28, 266–280 (2019).

    CAS  Article  Google Scholar 

  • 49.

    Schmidt, N. M., Mosbacher, J. B., Eitzinger, B., Vesterinen, E. J. & Roslin, T. High resistance towards herbivore-induced habitat change in a high Arctic arthropod community. Biol. Lett. 14, 20180054 (2018).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 50.

    Schmidt, N. M., Mosbacher, J. B., Vesterinen, E. J., Roslin, T. & Michelsen, A. Limited dietary overlap amongst resident Arctic herbivores in winter: Complementary insights from complementary methods. Oecologia 187, 689–699 (2018).

    ADS  Article  Google Scholar 

  • 51.

    Gripenberg, S. et al. A highly resolved food web for insect seed predators in a species-rich tropical forest: Host use by insect seed predators. Ecol. Lett. https://doi.org/10.1111/ele.13359 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  • 52.

    Basset, Y. et al. A cross-continental comparison of assemblages of seed- and fruit-feeding insects in tropical rain forests: Faunal composition and rates of attack. J. Biogeogr. 45, 1395–1407 (2018).

    Article  Google Scholar 

  • 53.

    Raitif, J., Plantegenest, M., Agator, O., Piscart, C. & Roussel, J.-M. Seasonal and spatial variations of stream insect emergence in an intensive agricultural landscape. Sci. Total Environ. 644, 594–601 (2018).

    ADS  CAS  Article  Google Scholar 

  • 54.

    Rogers, L. E., Buschbom, R. L. & Watson, C. R. Length-weight relationships of shrub-steppe invertebrates1. Ann. Entomol. Soc. Am. 70, 51–53 (1977).

    Article  Google Scholar 

  • 55.

    De Felici, L., Piersma, T. & Howison, R. A. Abundance of arthropods as food for meadow bird chicks in response to short- and long-term soil wetting in Dutch dairy grasslands. PeerJ 7, e7401 (2019).

    PubMed Central  Article  PubMed  Google Scholar 

  • 56.

    Aziz, M. A. et al. Using non-invasively collected genetic data to estimate density and population size of tigers in the Bangladesh Sundarbans. Glob. Ecol. Conserv. 12, 272–282 (2017).

    Article  Google Scholar 

  • 57.

    Greenop, A., Woodcock, B. A., Wilby, A., Cook, S. M. & Pywell, R. F. Functional diversity positively affects prey suppression by invertebrate predators: A meta-analysis. Ecology 99, 1771–1782 (2018).

    PubMed Central  Article  PubMed  Google Scholar 

  • 58.

    Kissick, A. L., Dunning, J. B., Fernandez-Juricic, E. & Holland, J. D. Different responses of predator and prey functional diversity to fragmentation. Ecol. Appl. 28, 1853–1866 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).

    Article  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Comparing the benefits of scooter-sharing vs. bike-sharing

    Integrative ecological and molecular analysis indicate high diversity and strict elevational separation of canopy beetles in tropical mountain forests