in

A global-scale data set of mining areas

  • 1.

    Giljum, S., Dittrich, M., Lieber, M. & Lutter, S. Global patterns of material flows and their socio-economic and environmental implications: A MFA study on all countries world-wide from 1980 to 2009. Resources 3, 319–339 (2014).

    Article  Google Scholar 

  • 2.

    IRP, U. Global Resources Outlook 2019: Natural Resources for the Future we Want. A Report of the International Resource Panel. Report No. DTI/2226/NA (United Nations Environment Programme, 2019).

  • 3.

    Krausmann, F., Schandl, H., Eisenmenger, N., Giljum, S. & Jackson, T. Material flow accounting: Measuring global material use for sustainable development. Ann. Rev. Env. Resour. 42, 647–675 (2017).

    Article  Google Scholar 

  • 4.

    Calvo, G., Mudd, G., Valero, A. & Valero, A. Decreasing ore grades in global metallic mining: A theoretical issue or a global reality? Resources 5 (2016).

  • 5.

    Prior, T., Giurco, D., Mudd, G., Mason, L. & Behrisch, J. Resource depletion, peak minerals and the implications for sustainable resource management. Glob. Environ. Change 22, 577–587 (2012).

    Article  Google Scholar 

  • 6.

    West, J. Decreasing metal ore grades. J. Ind. Ecol. 15, 165–168 (2011).

    Article  Google Scholar 

  • 7.

    Mudd, G. M. Global trends in gold mining: Towards quantifying environmental and resource sustainability. Resour. Policy 32, 42–56 (2007).

    Article  Google Scholar 

  • 8.

    Sonter, L. J., Moran, C. J., Barrett, D. J. & Soares-Filho, B. S. Processes of land use change in mining regions. J. Clean. Prod. 84, 494–501 (2014).

    Article  Google Scholar 

  • 9.

    Werner, T., Bebbington, A. & Gregory, G. Assessing impacts of mining: Recent contributions from GIS and remote sensing. Extract. Indus. Soc. 6, 993–1012 (2019).

    Article  Google Scholar 

  • 10.

    Kobayashi, H., Watando, H. & Kakimoto, M. A global extent site-level analysis of land cover and protected area overlap with mining activities as an indicator of biodiversity pressure. J. Clean. Prod. 84, 459–468 (2014).

    Article  Google Scholar 

  • 11.

    Sonter, L. J., Ali, S. H. & Watson, J. E. M. Mining and biodiversity: key issues and research needs in conservation science. Proc. Biol. Sci. 285 (2018).

  • 12.

    Islam, K., Vilaysouk, X. & Murakami, S. Integrating remote sensing and life cycle assessment to quantify the environmental impacts of copper-silver-gold mining: A case study from laos. Resour. Conserv. Recy. 154, 104630 (2020).

    Article  Google Scholar 

  • 13.

    Butt, N. et al. Biodiversity risks from fossil fuel extraction. Science 342, 425–426 (2013).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Murguía, D. I., Bringezu, S. & Schaldach, R. Global direct pressures on biodiversity by large-scale metal mining: Spatial distribution and implications for conservation. J. Eenviron. Manage. 180, 409–420 (2016).

    Google Scholar 

  • 15.

    Endl, A., Tost, M., Hitch, M., Moser, P. & Feiel, S. Europe’s mining innovation trends and their contribution to the sustainable development goals: Blind spots and strong points. Resour. Policy 101440 (2019).

  • 16.

    Bruckner, M., Fischer, G., Tramberend, S. & Giljum, S. Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods. Ecol. Econ. 114, 11–21 (2015).

    Article  Google Scholar 

  • 17.

    Schaffartzik, A. et al. Trading land: A review of approaches to accounting for upstream land requirements of traded products. J. Ind. Ecol. 19, 703–714 (2015).

    Article  Google Scholar 

  • 18.

    USGS – United States Geological Survey. Mineral resources online spatial data, https://mrdata.usgs.gov/ (2018).

  • 19.

    S&P Global Market Intelligence. SNL metals and mining database, https://www.spglobal.com/marketintelligence/en/campaigns/metals-mining (2018).

  • 20.

    Murguía, D. I. & Bringezu, S. Measuring the specific land requirements of large-scale metal mines for iron, bauxite, copper, gold and silver. Prog. Ind. Ecol. 10, 264–285 (2016).

    Article  Google Scholar 

  • 21.

    Werner, T. T. et al. Global-scale remote sensing of mine areas and analysis of factors explaining their extent. Glob. Environ. Change 60 (2020).

  • 22.

    Mountrakis, G., Im, J. & Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. 66, 247–259 (2011).

    Article  Google Scholar 

  • 23.

    Belgiu, M. & Dragu, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. 114, 24–31 (2016).

    Article  Google Scholar 

  • 24.

    Zhu, X. X. et al. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosc. Rem. Sen. M. 5, 8–36 (2017).

    Article  Google Scholar 

  • 25.

    Wulder, M. A., Coops, N. C., Roy, D. P., White, J. C. & Hermosilla, T. Land cover 2.0. Int. J. Remote Sens. 39, 4254–4284 (2018).

    ADS  Article  Google Scholar 

  • 26.

    Zhu, Z. et al. Benefits of the free and open Landsat data policy. Remote Sens. Environ. 224, 382–385 (2019).

    ADS  Article  Google Scholar 

  • 27.

    Petropoulos, G. P., Partsinevelos, P. & Mitraka, Z. Change detection of surface mining activity and reclamation based on a machine learning approach of multi-temporal Landsat TM imagery. Geocarto Int. 28, 323–342 (2013).

    Article  Google Scholar 

  • 28.

    LaJeunesse Connette, K. J. et al. Assessment of mining extent and expansion in Myanmar based on freely-available satellite imagery. Remote Sens. 8 (2016).

  • 29.

    Yu, L. et al. Monitoring surface mining belts using multiple remote sensing datasets: A global perspective. Ore Geol. Rev. 101, 675–687 (2018).

    Article  Google Scholar 

  • 30.

    Vasuki, Y. et al. The spatial-temporal patterns of land cover changes due to mining activities in the darling range, western australia: A visual analytics approach. Ore Geol. Rev. 108, 23–32 (2019).

    Article  Google Scholar 

  • 31.

    Mukherjee, J., Mukherjee, J., Chakravarty, D. & Aikat, S. A novel index to detect opencast coal mine areas from Landsat 8 OLI/TIRS. IEEE J-STARS 12, 891–897 (2019).

    Google Scholar 

  • 32.

    Waldrop, M. M. News Feature: What are the limits of deep learning? PNAS 116, 1074–1077 (2019).

    CAS  Article  Google Scholar 

  • 33.

    EOX IT Services GmbH. Sentinel-2 cloudless (contains modified Copernicus sentinel data 2017 and 2018), https://s2maps.eu (2018).

  • 34.

    Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 10, 439–446 (2018).

    Article  Google Scholar 

  • 35.

    Gutschlhofer, J. & Maus, V. Web application for mining area polygonization version 1.2. Zenodo https://doi.org/10.5281/zenodo.3691743 (2020).

  • 36.

    Lesiv, M. et al. Characterizing the spatial and temporal availability of very high resolution satellite imagery in Google Earth and Microsoft Bing maps as a source of reference data. Land 7 (2018).

  • 37.

    Bradshaw, A. Restoration of mined lands—using natural processes. Ecol. Eng. 8, 255–269 (1997).

    Article  Google Scholar 

  • 38.

    EUROSTAT. Countries, 2016 – administrative units – dataset (generalised dataset derived from eurogeographics and UN-FAO GI data), https://ec.europa.eu/eurostat/cache/GISCO/distribution/v2/countries/ (2018).

  • 39.

    Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).

    Article  Google Scholar 

  • 40.

    Maus, V. et al. Global-scale mining polygons (version 1). Pangaea https://doi.org/10.1594/PANGAEA.910894 (2020).

  • 41.

    Marazuela, M., Vázquez-Suñé, E., Ayora, C., García-Gil, A. & Palma, T. The effect of brine pumping on the natural hydrodynamics of the Salar de Atacama: The damping capacity of salt flats. Sci. Total Environ. 654, 1118–1131 (2019).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Liu, W., Agusdinata, D. B. & Myint, S. W. Spatiotemporal patterns of lithium mining and environmental degradation in the Atacama Salt Flat, Chile. Int. J. Appl. Earth Obs. 80, 145–156 (2019).

    Article  Google Scholar 

  • 43.

    Hansen, K. Brazil’s Carajás mines, NASA Earth Observatory, https://earthobservatory.nasa.gov/images/144457/brazils-carajas-mines (2018).

  • 44.

    Mining Technology. Batu Hijau copper-gold mine, Indonesia, https://www.mining-technology.com/projects/batu/ (2020).

  • 45.

    Shen, L. & Gunson, A. J. The role of artisanal and small-scale mining in China’s economy. J. Clean. Prod. 14, 427–435 (2006).

    Article  Google Scholar 

  • 46.

    Shen, L., Dai, T. & Gunson, A. J. Small-scale mining in China: Assessing recent advances in the policy and regulatory framework. Resour. Policy 34, 150–157 (2009).

    Article  Google Scholar 

  • 47.

    Potere, D. Horizontal positional accuracy of Google Earth’s high-resolution imagery archive. Sensors 8, 7973–7981 (2008).

    Article  Google Scholar 

  • 48.

    Vajsová B & Åstrand, P. J. New sensors benchmark report on Sentinel-2A sensor over Maussane test site for CAP purposes. Report No. EUR 27674EN (Publications Office of the European Union, 2015).

  • 49.

    Cochran, W. G. Sampling Techniques. Series in Probability and Statistics (Wiley, 1977), 3 edn.

  • 50.

    Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).

    ADS  Article  Google Scholar 

  • 51.

    OGC – Open Geospatial Consortium. GeoPackage Encoding Standard, https://www.geopackage.org/ (2005).

  • 52.

    OGC – Open Geospatial Consortium. Geographic tagged image file format (GeoTIFF), https://www.ogc.org/standards/geotiff (2019).

  • 53.

    The Internet Society. RFC 4180: Common format and MIME type for comma-separated values (CSV). https://tools.ietf.org/html/rfc4180 (2005).

  • 54.

    Wang, J.-F., Zhang, T.-L. & Fu, B.-J. A measure of spatial stratified heterogeneity. Ecol. Indic. 67, 250–256 (2016).

    Article  Google Scholar 

  • 55.

    Brunsdon, C., Fotheringham, A. S. & Charlton, M. E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 28, 281–298 (1996).

    Article  Google Scholar 

  • 56.

    Brunsdon, C., Fotheringham, S. & Charlton, M. Geographically weighted regression. J. R. Stat. Soc., Ser. D Stat. 47, 431–443 (1998).

    Article  Google Scholar 

  • 57.

    QGIS Development Team. QGIS geographic information system, version 3.12.0. Open Source Geospatial Foundation, https://www.qgis.org (2020).

  • 58.

    R Core Team. R: A language and environment for statistical computing, version 3.6.1. Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org (2019).

  • 59.

    Python Core Team. Python: A dynamic, open source programming language, version 2.7.17. Python Software Foundation, https://www.python.org (2019).

  • 60.

    OGC – Open Geospatial Consortium. Web map service interface standard (WMS), https://www.ogc.org/standards/wms (2020).

  • 61.

    GNU general public license, version 3. Free Software Foundation, https://www.gnu.org/licenses/gpl-3.0.en.html (2019).

  • 62.

    GDAL/OGR contributors. GDAL/OGR geospatial data abstraction software library, version 2.4.2. Open Source Geospatial Foundation, https://gdal.org (2019).

  • 63.

    Chang, W., Cheng, J., Allaire, J., Xie, Y. & McPherson, J. Shiny: Web Application Framework for R, version 1.3.2, https://CRAN.R-project.org/package=shiny (2019)

  • 64.

    The PostgreSQL Global Development Group. PostgreSQl: an open source object-relational database system, version 11.6, https://www.postgresql.org/ (2019).

  • 65.

    PostGIS Team. PostGIS: a spatial database extender for PostgreSQL object relational database, version 2.5.4. Open Source Geospatial Foundation, https://postgis.net (2019).


  • Source: Ecology - nature.com

    Pesticide dosing must be guided by ecological principles

    Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter