in

A globally threatened shark, Carcharias taurus, shows no population decline in South Africa

  • 1.

    Gabriel, W. & Bürger, R. Survival of small populations under demographic stochasticity. Theor. Popul. Biol. 41, 44–71 (1992).

    CAS  PubMed  MATH  Article  Google Scholar 

  • 2.

    Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).

    PubMed  Article  Google Scholar 

  • 3.

    Melbourne, B. A. & Hastings, A. Extinction risk depends strongly on factors contributing to stochasticity. Nature 454, 100–103 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 4.

    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).

    Article  Google Scholar 

  • 5.

    Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. USA 101, 15261–15264 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Wright, S. Evolution in mendelian populations. Genetics 16, 97 (1931).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Nunney, L. The influence of mating system and overlapping generations on effective population size. Evolution 47, 1329–1341 (1993).

    PubMed  Article  Google Scholar 

  • 8.

    Ardren, W. R. & Kapuscinski, A. R. Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Mol. Ecol. 12, 35–49 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Turner, T. F., Osborne, M. J., Moyer, G. R., Benavides, M. A. & Alò, D. Life history and environmental variation interact to determine effective population to census size ratio. Proc. R. Soc. B Biol. Sci. 273, 3065–3073 (2006).

    Article  Google Scholar 

  • 10.

    Luikart, G., Ryman, N., Tallmon, D. A., Schwartz, M. K. & Allendorf, F. W. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv. Gen. 11, 355–373 (2010).

    CAS  Article  Google Scholar 

  • 11.

    Palstra, F. P. & Fraser, D. J. Effective/census population size ratio estimation: a compendium and appraisal. Ecol. Evol. 2, 2357–2365 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Palstra, F. P. & Ruzzante, D. E. Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence?. Mol. Ecol. 17, 3428–3447 (2008).

    PubMed  Article  Google Scholar 

  • 13.

    Nunney, L. Measuring the ratio of effective population size to adult numbers using genetic and ecological data. Evolution 49, 389–392 (1995).

    PubMed  Article  Google Scholar 

  • 14.

    Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish. 9, 333–362 (2008).

    Article  Google Scholar 

  • 15.

    Ruggeri, P. et al. Coupling demographic and genetic variability from archived collections of European anchovy (Engraulis encrasicolus). PLoS ONE 11, e0151507 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 16.

    Waples, R. S., Grewe, P. M., Bravington, M. W., Hillary, R. & Feutry, P. Robust estimates of a high Ne/N ratio in a top marine predator, southern bluefin tuna. Sci. Adv. 4, eaar7759 (2018).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Dudgeon, C. L. & Ovenden, J. R. The relationship between abundance and genetic effective population size in elasmobranchs: an example from the globally threatened zebra shark Stegostoma fasciatum within its protected range. Conserv. Gen. 16, 1443–1454 (2015).

    Article  Google Scholar 

  • 18.

    Portnoy, D. S., McDowell, J. R., McCandless, C. T., Musick, J. A. & Graves, J. E. Effective size closely approximates the census size in the heavily exploited western Atlantic population of the sandbar shark, Carcharhinus plumbeus. Conserv. Gen. 10, 1697–1705 (2009).

    Article  Google Scholar 

  • 19.

    Waples, R. S., Luikart, G., Faulkner, J. R. & Tallmon, D. A. Simple life-history traits explain key effective population size ratios across diverse taxa. Proc. R. Soc. B Biol. Sci. 280, 20131339 (2013).

    Article  Google Scholar 

  • 20.

    Chevolot, M., Hoarau, G., Rijnsdorp, A. D., Stam, W. T. & Olsen, J. L. Phylogeography and population structure of thornback rays (Raja clavata L., Rajidae). Mol. Ecol. 15, 3693–3705 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Nunney, L. & Elam, D. R. Estimating the effective population size of conserved populations. Conserv. Biol. 8, 175–184 (1994).

    Article  Google Scholar 

  • 22.

    Grimm, A., Gruber, B., Hoehn, M., Enders, K. & Henle, K. A model-derived short-term estimation method of effective size for small populations with overlapping generations. Methods Ecol. Evol. 7, 734–743 (2016).

    Article  Google Scholar 

  • 23.

    Blower, D. C., Riginos, C. & Ovenden, J. R. neogen: a tool to predict genetic effective population size (Ne) for species with generational overlap and to assist empirical Ne study design. Mol. Ecol. Resour. 19, 260–271 (2019).

    PubMed  Article  Google Scholar 

  • 24.

    Pazmiño, D. A., Maes, G. E., Simpfendorfer, C. A., Salinas-de-León, P. & van Herwerden, L. Genome-wide SNPs reveal low effective population size within confined management units of the highly vagile Galapagos shark (Carcharhinus galapagensis). Conserv. Genet. 18, 1151–1163 (2017).

    Article  Google Scholar 

  • 25.

    Reid-Anderson, S., Bilgmann, K. & Stow, A. Effective population size of the critically endangered east Australian grey nurse shark Carcharias taurus. Mar. Ecol. Prog. Ser. 610, 137–148 (2019).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Vignaud, T. M. et al. Genetic structure of populations of whale sharks among ocean basins and evidence for their historic rise and recent decline. Mol. Ecol. 23, 2590–2601 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Bansemer, C. S. & Bennett, M. B. Retained fishing gear and associated injuries in the east Australian grey nurse sharks (Carcharias taurus): implications for population recovery. Mar. Freshw. Res. 61, 97–103 (2010).

    Article  Google Scholar 

  • 28.

    Irigoyen, A. & Trobbiani, G. Depletion of trophy large-sized sharks populations of the Argentinean coast, south-western Atlantic: insights from fishers’ knowledge. Neotrop. Ichthyol. 14, e150081 (2016).

    Article  Google Scholar 

  • 29.

    Chiaramonte, G., Domingo, A. & Soto, J. Carcharias taurus (Southwest Atlantic subpopulation). The IUCN Red List of Threatened Species. e.T63163A12625032 (2007).

  • 30.

    Pollard, D., Gordon, I., Williams, S., Flaherty, A. & McAuley, R. Carcharias taurus (East coast of Australia subpopulation). The IUCN Red List of Threatened Species. e.T44070A10854830 (2003).

  • 31.

    Walls, A. & Soldo, A. Carcharias taurus (Mediterranean subpopulation). The IUCN Red List of Threatened Species: e.T3854A48947509 (2015).

  • 32.

    Green, M., Ganassin, C. & Reid, D. Report into the NSW Shark Meshing (Bather Protection) Program. New South Wales Department of Primary Industries (2009).

  • 33.

    Reid, D. D., Robbins, W. D. & Peddemors, V. M. Decadal trends in shark catches and effort from the New South Wales, Australia, Shark Meshing Program 1950–2010. Mar. Freshw. Res. 62, 676–693 (2011).

    CAS  Article  Google Scholar 

  • 34.

    Dudley, S. F. J. & Simpfendorfer, C. A. Population status of 14 shark species caught in the protective gillnets off KwaZulu-Natal beaches, South Africa, 1978–2003. Mar. Freshw. Res. 57, 225 (2006).

    Article  Google Scholar 

  • 35.

    Dicken, M. L., Smale, M. J. & Booth, A. J. Long-term catch and effort trends in Eastern Cape Angling Week competitions. Afr. J. Mar. Sci. 34, 259–268 (2012).

    Article  Google Scholar 

  • 36.

    Dicken, M., Booth, A. J. & Smale, M. J. Estimates of juvenile and adult raggedtooth shark (Carcharias taurus) abundance along the east coast of South Africa. Can. J. Fish. Aquat. Sci. 65, 621–632 (2008).

    Article  Google Scholar 

  • 37.

    Klein, J. D., Bester-van der Merwe, A. E., Dicken, M. L., Mmonwa, K. L. & Teske, P. R. Reproductive philopatry in a coastal shark drives age-related population structure. Mar. Biol. 166, 26 (2019).

    Article  Google Scholar 

  • 38.

    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).

    Article  CAS  Google Scholar 

  • 39.

    Rousset, F. GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Res. 8, 103–106 (2008).

    Article  Google Scholar 

  • 40.

    Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188 (2001).

    MathSciNet  MATH  Article  Google Scholar 

  • 41.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing (2017).

  • 42.

    Chikhi, L., Sousa, V. C., Luisi, P., Goossens, B. & Beaumont, M. A. The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics 186, 983–995 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Leblois, R. et al. Maximum-likelihood inference of population size contractions from microsatellite data. Mol. Biol. Evol. 31, 2805–2823 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Cornuet, J. M. et al. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Goldman, K. J., Branstetter, S. & Musick, J. A. A re-examination of the age and growth of sand tiger sharks, Carcharias taurus, in the western North Atlantic: the importance of ageing protocols and use of multiple back-calculation techniques. Environ. Biol. Fish. 77, 241–252 (2006).

    Article  Google Scholar 

  • 47.

    Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Cornuet, J.-M. et al. Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24, 2713–2719 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    de Irio, M. D. & Griffiths, R. C. Importance sampling on coalescent histories. I. Adv. Appl. Prob. 36, 417–433 (2004).

    MathSciNet  MATH  Article  Google Scholar 

  • 50.

    de Iorio, M. D. & Griffiths, R. C. Importance sampling on coalescent histories. II: subdivided population models. Adv. Appl. Prob. 36, 434–454 (2004).

    MathSciNet  MATH  Article  Google Scholar 

  • 51.

    Cornuet, J. M. & Beaumont, M. A. A note on the accuracy of PAC-likelihood inference with microsatellite data. Theor. Popul. Biol. 71, 12–19 (2007).

    CAS  PubMed  MATH  Article  Google Scholar 

  • 52.

    Nance, H. A., Klimley, P., Galván-Magaña, F., Martínez-Ortíz, J. & Marko, P. B. Demographic processes underlying subtle patterns of population structure in the scalloped hammerhead shark, Sphyrna lewini. PLoS ONE 6, e21459 (2011).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Vignaud, T. M. et al. Blacktip reef sharks, Carcharhinus melanopterus, have high genetic structure and varying demographic histories in their Indo-Pacific range. Mol. Ecol. 23, 5193–5207 (2014).

    PubMed  Article  Google Scholar 

  • 54.

    Cabrera, A. A. & Palsbøll, P. J. Inferring past demographic changes from contemporary genetic data: a simulation-based evaluation of the ABC methods implemented in DIYABC. Mol. Ecol. Res. 17, e94–e110 (2017).

    CAS  Article  Google Scholar 

  • 55.

    Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–112 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 56.

    Fraser, C. I., Nikula, R., Ruzzante, D. E. & Waters, J. M. Poleward bound: biological impacts of southern hemisphere glaciation. Trends Ecol. Evol. 27, 462–471 (2012).

    PubMed  Article  Google Scholar 

  • 57.

    Provan, J. & Bennett, K. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571 (2008).

    PubMed  Article  Google Scholar 

  • 58.

    Tolley, K., Groeneveld, J., Gopal, K. & Matthee, C. Mitochondrial DNA panmixia in spiny lobster Palinurus gilchristi suggests a population expansion. Mar. Ecol. Prog. Ser. 297, 225–231 (2005).

    ADS  CAS  Article  Google Scholar 

  • 59.

    O’Brien, S. M., Gallucci, V. F. & Hauser, L. Effects of species biology on the historical demography of sharks and their implications for likely consequences of contemporary climate change. Conserv. Gen. 14, 125–144 (2013).

    Article  Google Scholar 

  • 60.

    Portnoy, D. S. et al. Contemporary population structure and post-glacial genetic demography in a migratory marine species, the blacknose shark, Carcharhinus acronotus. Mol. Ecol. 23, 5480–5495 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Domingues, R. R., Hilsdorf, A. W. S., Shivji, M. M., Hazin, F. V. H. & Gadig, O. B. F. Effects of the Pleistocene on the mitochondrial population genetic structure and demographic history of the silky shark (Carcharhinus falciformis) in the western Atlantic Ocean. Rev. Fish Biol. Fish. 28, 213–227 (2018).

    Article  Google Scholar 

  • 62.

    Portnoy, D. S. et al. Population structure, gene flow, and historical demography of a small coastal shark (Carcharhinus isodon) in US waters of the Western Atlantic Ocean. ICES J. Mar. Sci. 73, 2322–2332 (2016).

    Article  Google Scholar 

  • 63.

    Smale, M. J., Booth, A. J., Farquhar, M. R., Meÿer, M. R. & Rochat, L. Migration and habitat use of formerly captive and wild raggedtooth sharks (Carcharias taurus) on the southeast coast of South Africa. Mar. Biol. Res. 8, 115–128 (2012).

    Article  Google Scholar 

  • 64.

    Bradshaw, C. J. A., Peddemors, V. M., McAuley, R. B. & Harcourt, R. G. Population viability of eastern Australian grey nurse sharks under fishing mitigation and climate change. Final Report to the Commonwealth of Australia, Department of the Environment, Water, Heritage and the Arts (2008).

  • 65.

    Ahonen, H., & Stow, A. Population size and structure of grey nurse shark in east and west Australia. Final Report to Department of Marine and Freshwater Environment, Water, Heritage and the Arts (2009).

  • 66.

    Otway, N. M. & Burke, A. L. Mark-recapture population estimate and movements of grey nurse sharks. NSW Fisheries Final Report Series. No. 63 (2004).

  • 67.

    Belmar-Lucero, S. et al. Concurrent habitat and life history influences on effective/census population size ratios in stream-dwelling trout. Ecol. Evol. 2, 562–573 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Frankham, R. Effective population size/adult population size ratios in wildlife: a review. Genet. Res. 66, 95 (1995).

    Article  Google Scholar 

  • 69.

    Hedgecock, D. Does variance in reproductive success limit effective population sizes of marine organisms. In Genetics and Evolution of Aquatic Organisms (ed. Beaumont, A.) 122–134 (Springer, Berlin, 1994).

    Google Scholar 

  • 70.

    Gilmore, R., Putz, O. & Dodrill, J. Oophagy, intrauterine cannibalism and reproductive strategy in lamnoid sharks. In Reproductive Biology and Phylogeny of Chondrichthyes (ed. Hamlett, W.) 435–463 (Science Publishers Inc., Enfield, 2005).

    Google Scholar 

  • 71.

    Franklin, I. R. Evolutionary change in small populations. In Conservation Biology: An Evolutionary-Ecological Perspective (eds Soulé, M. E. & Wilcox, B. M.) 135–150 (Sunderland, Sinauer, 1980).

    Google Scholar 

  • 72.

    Frankham, R. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143, 1919–1927 (2010).

    Article  Google Scholar 

  • 73.

    Franklin, I. R. & Frankham, R. How large must populations be to retain evolutionary potential?. Anim. Conserv. 1, 69–70 (1998).

    Article  Google Scholar 

  • 74.

    Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 170, 56–63 (2014).

    Article  Google Scholar 

  • 75.

    Department of the Environment. Recovery plan for the grey nurse shark (Carcharias taurus) in Australia (2014).

  • 76.

    van Sittert, L. The marine fisheries of South Africa in Oxford Research Encyclopedia of African History 1–15 (2017).

  • 77.

    RSA (Republic of South Africa). Marine living resources act (act no. 18 of 1998). 1–67 (1998).


  • Source: Ecology - nature.com

    Deep learning-assisted comparative analysis of animal trajectories with DeepHL

    Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization