Gabriel, W. & Bürger, R. Survival of small populations under demographic stochasticity. Theor. Popul. Biol. 41, 44–71 (1992).
Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).
Melbourne, B. A. & Hastings, A. Extinction risk depends strongly on factors contributing to stochasticity. Nature 454, 100–103 (2008).
Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. USA 101, 15261–15264 (2004).
Wright, S. Evolution in mendelian populations. Genetics 16, 97 (1931).
Nunney, L. The influence of mating system and overlapping generations on effective population size. Evolution 47, 1329–1341 (1993).
Ardren, W. R. & Kapuscinski, A. R. Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Mol. Ecol. 12, 35–49 (2003).
Turner, T. F., Osborne, M. J., Moyer, G. R., Benavides, M. A. & Alò, D. Life history and environmental variation interact to determine effective population to census size ratio. Proc. R. Soc. B Biol. Sci. 273, 3065–3073 (2006).
Luikart, G., Ryman, N., Tallmon, D. A., Schwartz, M. K. & Allendorf, F. W. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv. Gen. 11, 355–373 (2010).
Palstra, F. P. & Fraser, D. J. Effective/census population size ratio estimation: a compendium and appraisal. Ecol. Evol. 2, 2357–2365 (2012).
Palstra, F. P. & Ruzzante, D. E. Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence?. Mol. Ecol. 17, 3428–3447 (2008).
Nunney, L. Measuring the ratio of effective population size to adult numbers using genetic and ecological data. Evolution 49, 389–392 (1995).
Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish. 9, 333–362 (2008).
Ruggeri, P. et al. Coupling demographic and genetic variability from archived collections of European anchovy (Engraulis encrasicolus). PLoS ONE 11, e0151507 (2016).
Waples, R. S., Grewe, P. M., Bravington, M. W., Hillary, R. & Feutry, P. Robust estimates of a high Ne/N ratio in a top marine predator, southern bluefin tuna. Sci. Adv. 4, eaar7759 (2018).
Dudgeon, C. L. & Ovenden, J. R. The relationship between abundance and genetic effective population size in elasmobranchs: an example from the globally threatened zebra shark Stegostoma fasciatum within its protected range. Conserv. Gen. 16, 1443–1454 (2015).
Portnoy, D. S., McDowell, J. R., McCandless, C. T., Musick, J. A. & Graves, J. E. Effective size closely approximates the census size in the heavily exploited western Atlantic population of the sandbar shark, Carcharhinus plumbeus. Conserv. Gen. 10, 1697–1705 (2009).
Waples, R. S., Luikart, G., Faulkner, J. R. & Tallmon, D. A. Simple life-history traits explain key effective population size ratios across diverse taxa. Proc. R. Soc. B Biol. Sci. 280, 20131339 (2013).
Chevolot, M., Hoarau, G., Rijnsdorp, A. D., Stam, W. T. & Olsen, J. L. Phylogeography and population structure of thornback rays (Raja clavata L., Rajidae). Mol. Ecol. 15, 3693–3705 (2006).
Nunney, L. & Elam, D. R. Estimating the effective population size of conserved populations. Conserv. Biol. 8, 175–184 (1994).
Grimm, A., Gruber, B., Hoehn, M., Enders, K. & Henle, K. A model-derived short-term estimation method of effective size for small populations with overlapping generations. Methods Ecol. Evol. 7, 734–743 (2016).
Blower, D. C., Riginos, C. & Ovenden, J. R. neogen: a tool to predict genetic effective population size (Ne) for species with generational overlap and to assist empirical Ne study design. Mol. Ecol. Resour. 19, 260–271 (2019).
Pazmiño, D. A., Maes, G. E., Simpfendorfer, C. A., Salinas-de-León, P. & van Herwerden, L. Genome-wide SNPs reveal low effective population size within confined management units of the highly vagile Galapagos shark (Carcharhinus galapagensis). Conserv. Genet. 18, 1151–1163 (2017).
Reid-Anderson, S., Bilgmann, K. & Stow, A. Effective population size of the critically endangered east Australian grey nurse shark Carcharias taurus. Mar. Ecol. Prog. Ser. 610, 137–148 (2019).
Vignaud, T. M. et al. Genetic structure of populations of whale sharks among ocean basins and evidence for their historic rise and recent decline. Mol. Ecol. 23, 2590–2601 (2014).
Bansemer, C. S. & Bennett, M. B. Retained fishing gear and associated injuries in the east Australian grey nurse sharks (Carcharias taurus): implications for population recovery. Mar. Freshw. Res. 61, 97–103 (2010).
Irigoyen, A. & Trobbiani, G. Depletion of trophy large-sized sharks populations of the Argentinean coast, south-western Atlantic: insights from fishers’ knowledge. Neotrop. Ichthyol. 14, e150081 (2016).
Chiaramonte, G., Domingo, A. & Soto, J. Carcharias taurus (Southwest Atlantic subpopulation). The IUCN Red List of Threatened Species. e.T63163A12625032 (2007).
Pollard, D., Gordon, I., Williams, S., Flaherty, A. & McAuley, R. Carcharias taurus (East coast of Australia subpopulation). The IUCN Red List of Threatened Species. e.T44070A10854830 (2003).
Walls, A. & Soldo, A. Carcharias taurus (Mediterranean subpopulation). The IUCN Red List of Threatened Species: e.T3854A48947509 (2015).
Green, M., Ganassin, C. & Reid, D. Report into the NSW Shark Meshing (Bather Protection) Program. New South Wales Department of Primary Industries (2009).
Reid, D. D., Robbins, W. D. & Peddemors, V. M. Decadal trends in shark catches and effort from the New South Wales, Australia, Shark Meshing Program 1950–2010. Mar. Freshw. Res. 62, 676–693 (2011).
Dudley, S. F. J. & Simpfendorfer, C. A. Population status of 14 shark species caught in the protective gillnets off KwaZulu-Natal beaches, South Africa, 1978–2003. Mar. Freshw. Res. 57, 225 (2006).
Dicken, M. L., Smale, M. J. & Booth, A. J. Long-term catch and effort trends in Eastern Cape Angling Week competitions. Afr. J. Mar. Sci. 34, 259–268 (2012).
Dicken, M., Booth, A. J. & Smale, M. J. Estimates of juvenile and adult raggedtooth shark (Carcharias taurus) abundance along the east coast of South Africa. Can. J. Fish. Aquat. Sci. 65, 621–632 (2008).
Klein, J. D., Bester-van der Merwe, A. E., Dicken, M. L., Mmonwa, K. L. & Teske, P. R. Reproductive philopatry in a coastal shark drives age-related population structure. Mar. Biol. 166, 26 (2019).
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
Rousset, F. GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Res. 8, 103–106 (2008).
Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188 (2001).
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing (2017).
Chikhi, L., Sousa, V. C., Luisi, P., Goossens, B. & Beaumont, M. A. The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics 186, 983–995 (2010).
Leblois, R. et al. Maximum-likelihood inference of population size contractions from microsatellite data. Mol. Biol. Evol. 31, 2805–2823 (2014).
Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).
Cornuet, J. M. et al. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).
Goldman, K. J., Branstetter, S. & Musick, J. A. A re-examination of the age and growth of sand tiger sharks, Carcharias taurus, in the western North Atlantic: the importance of ageing protocols and use of multiple back-calculation techniques. Environ. Biol. Fish. 77, 241–252 (2006).
Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318 (2001).
Cornuet, J.-M. et al. Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24, 2713–2719 (2008).
de Irio, M. D. & Griffiths, R. C. Importance sampling on coalescent histories. I. Adv. Appl. Prob. 36, 417–433 (2004).
de Iorio, M. D. & Griffiths, R. C. Importance sampling on coalescent histories. II: subdivided population models. Adv. Appl. Prob. 36, 434–454 (2004).
Cornuet, J. M. & Beaumont, M. A. A note on the accuracy of PAC-likelihood inference with microsatellite data. Theor. Popul. Biol. 71, 12–19 (2007).
Nance, H. A., Klimley, P., Galván-Magaña, F., Martínez-Ortíz, J. & Marko, P. B. Demographic processes underlying subtle patterns of population structure in the scalloped hammerhead shark, Sphyrna lewini. PLoS ONE 6, e21459 (2011).
Vignaud, T. M. et al. Blacktip reef sharks, Carcharhinus melanopterus, have high genetic structure and varying demographic histories in their Indo-Pacific range. Mol. Ecol. 23, 5193–5207 (2014).
Cabrera, A. A. & Palsbøll, P. J. Inferring past demographic changes from contemporary genetic data: a simulation-based evaluation of the ABC methods implemented in DIYABC. Mol. Ecol. Res. 17, e94–e110 (2017).
Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–112 (2001).
Fraser, C. I., Nikula, R., Ruzzante, D. E. & Waters, J. M. Poleward bound: biological impacts of southern hemisphere glaciation. Trends Ecol. Evol. 27, 462–471 (2012).
Provan, J. & Bennett, K. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571 (2008).
Tolley, K., Groeneveld, J., Gopal, K. & Matthee, C. Mitochondrial DNA panmixia in spiny lobster Palinurus gilchristi suggests a population expansion. Mar. Ecol. Prog. Ser. 297, 225–231 (2005).
O’Brien, S. M., Gallucci, V. F. & Hauser, L. Effects of species biology on the historical demography of sharks and their implications for likely consequences of contemporary climate change. Conserv. Gen. 14, 125–144 (2013).
Portnoy, D. S. et al. Contemporary population structure and post-glacial genetic demography in a migratory marine species, the blacknose shark, Carcharhinus acronotus. Mol. Ecol. 23, 5480–5495 (2014).
Domingues, R. R., Hilsdorf, A. W. S., Shivji, M. M., Hazin, F. V. H. & Gadig, O. B. F. Effects of the Pleistocene on the mitochondrial population genetic structure and demographic history of the silky shark (Carcharhinus falciformis) in the western Atlantic Ocean. Rev. Fish Biol. Fish. 28, 213–227 (2018).
Portnoy, D. S. et al. Population structure, gene flow, and historical demography of a small coastal shark (Carcharhinus isodon) in US waters of the Western Atlantic Ocean. ICES J. Mar. Sci. 73, 2322–2332 (2016).
Smale, M. J., Booth, A. J., Farquhar, M. R., Meÿer, M. R. & Rochat, L. Migration and habitat use of formerly captive and wild raggedtooth sharks (Carcharias taurus) on the southeast coast of South Africa. Mar. Biol. Res. 8, 115–128 (2012).
Bradshaw, C. J. A., Peddemors, V. M., McAuley, R. B. & Harcourt, R. G. Population viability of eastern Australian grey nurse sharks under fishing mitigation and climate change. Final Report to the Commonwealth of Australia, Department of the Environment, Water, Heritage and the Arts (2008).
Ahonen, H., & Stow, A. Population size and structure of grey nurse shark in east and west Australia. Final Report to Department of Marine and Freshwater Environment, Water, Heritage and the Arts (2009).
Otway, N. M. & Burke, A. L. Mark-recapture population estimate and movements of grey nurse sharks. NSW Fisheries Final Report Series. No. 63 (2004).
Belmar-Lucero, S. et al. Concurrent habitat and life history influences on effective/census population size ratios in stream-dwelling trout. Ecol. Evol. 2, 562–573 (2012).
Frankham, R. Effective population size/adult population size ratios in wildlife: a review. Genet. Res. 66, 95 (1995).
Hedgecock, D. Does variance in reproductive success limit effective population sizes of marine organisms. In Genetics and Evolution of Aquatic Organisms (ed. Beaumont, A.) 122–134 (Springer, Berlin, 1994).
Gilmore, R., Putz, O. & Dodrill, J. Oophagy, intrauterine cannibalism and reproductive strategy in lamnoid sharks. In Reproductive Biology and Phylogeny of Chondrichthyes (ed. Hamlett, W.) 435–463 (Science Publishers Inc., Enfield, 2005).
Franklin, I. R. Evolutionary change in small populations. In Conservation Biology: An Evolutionary-Ecological Perspective (eds Soulé, M. E. & Wilcox, B. M.) 135–150 (Sunderland, Sinauer, 1980).
Frankham, R. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143, 1919–1927 (2010).
Franklin, I. R. & Frankham, R. How large must populations be to retain evolutionary potential?. Anim. Conserv. 1, 69–70 (1998).
Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 170, 56–63 (2014).
Department of the Environment. Recovery plan for the grey nurse shark (Carcharias taurus) in Australia (2014).
van Sittert, L. The marine fisheries of South Africa in Oxford Research Encyclopedia of African History 1–15 (2017).
RSA (Republic of South Africa). Marine living resources act (act no. 18 of 1998). 1–67 (1998).
Source: Ecology - nature.com