in

A green wave of saltmarsh productivity predicts the timing of the annual cycle in a long-distance migratory shorebird

  • 1.

    Helm, B. et al. Annual rhythms that underlie phenology: Biological time-keeping meets environmental change. Proc. R. Soc. B 280, 20130016 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    McNamara, J. M., Barta, Z., Klaassen, M. & Bauer, S. Cues and the optimal timing of activities under environmental changes. Ecol. Lett. 14, 1183–1190 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Diez, J. M. et al. Forecasting phenology: From species variability to community patterns. Ecol. Lett. 15, 545–553 (2012).

    PubMed  Article  Google Scholar 

  • 5.

    Post, E., Pedersen, C., Wilmers, C. C. & Forchhammer, M. C. Warming, plant phenology and the spatial dimension of trophic mismatch for large herbivores. Proc. R. Soc. Lond. B Biol. Sci. 275, 2005–2013 (2008).

    Google Scholar 

  • 6.

    Primack, R. B. et al. Spatial and interspecific variability in phenological responses to warming temperatures. Biol. Conserv. 142, 2569–2577 (2009).

    Article  Google Scholar 

  • 7.

    Fryxell, J. M. & Sinclair, A. R. E. Causes and consequences of migration by large herbivores. Trends Ecol. Evol. 3, 237–241 (1988).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Levey, D. J. & Stiles, F. G. Evolutionary precursors of long-distance migration: Resource availability and movement patterns in neotropical landbirds. Am. Nat. 140, 447–476 (1992).

    Article  Google Scholar 

  • 9.

    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: Evolution and determinants. Oikos 103, 247–260 (2003).

    Article  Google Scholar 

  • 10.

    Dawson, A. Control of the annual cycle in birds: Endocrine constraints and plasticity in response to ecological variability. Philos. Trans. R. Soc. B Biol. Sci. 363, 1621–1633 (2008).

    Article  Google Scholar 

  • 11.

    Buehler, D. & Piersma, T. Travelling on a budget: Predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants. Philos. Trans. R. Soc. B-Biol. Sci. 363, 247–266 (2008).

    Article  Google Scholar 

  • 12.

    Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 68, 940–950 (1999).

    Article  Google Scholar 

  • 13.

    Moller, A. P. Heritability of arrival date in a migratory bird. Proc. R. Soc. Lond. B Biol. Sci. 268, 203–206 (2001).

    CAS  Article  Google Scholar 

  • 14.

    Saino, N. et al. Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol. Lett. 7, 21–25 (2004).

    Article  Google Scholar 

  • 15.

    Studds, C. E. & Marra, P. P. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc. R. Soc. B Biol. Sci. 278, 3437–3443 (2011).

    Article  Google Scholar 

  • 16.

    Conklin, J. R., Battley, P. F., Potter, M. A. & Fox, J. W. Breeding latitude drives individual schedules in a trans-hemispheric migrant bird. Nat. Commun. 1, 67 (2010).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 17.

    Holmes, R. T. Latitudinal differences in the breeding and molt schedules of Alaskan Red-backed Sandpipers (Calidris alpina). Condor 73, 93–99 (1971).

    Article  Google Scholar 

  • 18.

    Briedis, M., Hahn, S. & Adamík, P. Cold spell en route delays spring arrival and decreases apparent survival in a long-distance migratory songbird. BMC Ecol. 17, 11 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Sandercock, B. K., Lank, D. B. & Cooke, F. Seasonal declines in the fecundity of arctic-breeding sandpipers: Different tactics in two species with an invariant clutch size. J. Avian Biol. 30, 460–468 (1999).

    Article  Google Scholar 

  • 20.

    Langin, K. M. & P. P. M. ,. Breeding latitude and timing of spring migration in songbirds crossing the Gulf of Mexico. J. Avian Biol. 40, 309–316 (2009).

    Article  Google Scholar 

  • 21.

    Lappalainen, J. & Tarkan, A. S. Latitudinal gradients in onset date, onset temperature and duration of spawning of roach. J. Fish Biol. 70, 441–450 (2007).

    Article  Google Scholar 

  • 22.

    Ben-David, M. Timing of reproduction in wild mink: The influence of spawning Pacific salmon. Can. J. Zool. 75, 376–382 (1997).

    Article  Google Scholar 

  • 23.

    Burr, Z. M. et al. Later at higher latitudes: Large-scale variability in seabird breeding timing and synchronicity. Ecosphere 7, e01283 (2016).

    Article  Google Scholar 

  • 24.

    Briedis, M. et al. Breeding latitude leads to different temporal but not spatial organization of the annual cycle in a long-distance migrant. J. Avian Biol. 47, 743–748 (2016).

    Article  Google Scholar 

  • 25.

    Lourenço, P. M. et al. Repeatable timing of northward departure, arrival and breeding in Black-tailed Godwits Limosa l. limosa, but no domino effects. J. Ornithol. 152, 1023–1032 (2011).

    Article  Google Scholar 

  • 26.

    Armstrong, J. B., Takimoto, G., Schindler, D. E., Hayes, M. M. & Kauffman, M. J. Resource waves: Phenological diversity enhances foraging opportunities for mobile consumers. Ecology 97, 1099–1112 (2016).

    PubMed  Article  Google Scholar 

  • 27.

    Renfrew, R. B. et al. Phenological matching across hemispheres in a long-distance migratory bird. Divers. Distrib. 19, 1008–1019 (2013).

    Article  Google Scholar 

  • 28.

    Visser, M. E., te Marvelde, L. & Lof, M. E. Adaptive phenological mismatches of birds and their food in a warming world. J. Ornithol. 153, 75–84 (2012).

    Article  Google Scholar 

  • 29.

    Bertness, M. D. & Ellison, A. M. Determinants of pattern in a New England salt marsh plant community. Ecol. Monogr. 57, 129–147 (1987).

    Article  Google Scholar 

  • 30.

    Hoekstra, J. M., Molnar, J. L., Jennings, M., Revenga, C. & Spalding, M. D. The Atlas of Global Conservation, Vol. 67 (University of California Press, California, 2010).

    Google Scholar 

  • 31.

    Kirwan, M. L., Guntenspergen, G. R. & Morris, J. T. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Glob. Change Biol. 15, 1982–1989 (2009).

    ADS  Article  Google Scholar 

  • 32.

    Lowther, P. E., Douglas, H. D. III. & Gratto-Trevor, C. L. Willet (Tringa semipalmata). Birds N. Am. Online https://doi.org/10.2173/bna.579 (2001).

    Article  Google Scholar 

  • 33.

    Tomkins, I. R. the summer schedule of the Eastern Willet in Georgia. Wilson Bull. 27, 291–296 (1955).

    Google Scholar 

  • 34.

    Howe, M. A. Social organization in a nesting population of eastern Willets (Catoptrophorus semipalmatus). Auk 99, 88–102 (1982).

    Article  Google Scholar 

  • 35.

    Gratto-Trevor, C. L. The North American Bander’s Manual for Banding Shorebirds (North Am. Band. Counc. Publ. Comm, Point Reyes CA, 2004).

    Google Scholar 

  • 36.

    Minton, C. et al. Initial results from light level geolocator trials on Ruddy Turnstone Arenaria interpres reveal unexpected migration route. Wader Study Group Bull. 117, 9–14 (2010).

    Google Scholar 

  • 37.

    Gosler, A. G. Birds in the hand. In Bird Ecology and Conservation: A Handbook of Techniques (eds Sutherland, W. J. et al.) 85–118 (Oxford University Press, Oxford, 2004).

    Google Scholar 

  • 38.

    Sumner, M. D., Wotherspoon, S. J. & Hindell, M. A. Bayesian estimation of animal movement from archival and satellite tags. PLoS ONE 4, e7324 (2009).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 39.

    R Core Team. R: A Language and Environment for Statistical Computing (The R Foundation, Vienna, 2020).

    Google Scholar 

  • 40.

    Lisovski, S. et al. Light-level geolocator analyses: A user’s guide. J. Anim. Ecol. 89, 221–236 (2020).

    PubMed  Article  Google Scholar 

  • 41.

    Lisovski, S., Bauer, S., Emmenegger, T. & Lisovski, M. S. Package ‘GeoLight’ (2012).

  • 42.

    Wotherspoon, S., Sumner, M. & Lisovski, S. TwGeos: Basic data processing for light-level geolocation archival tags. Version 00-1 (2016).

  • 43.

    Tonra, C. M. et al. Concentration of a widespread breeding population in a few critically important nonbreeding areas: Migratory connectivity in the Prothonotary Warbler. Condor 121, duz019 (2019).

    Article  Google Scholar 

  • 44.

    Porter, R. & Smith, P. A. Techniques to improve the accuracy of location estimation using light-level geolocation to track shorebirds. Wader Study Group Bull. 120, 147–158 (2014).

    Google Scholar 

  • 45.

    Battley, P. F. & Conklin, J. R. Geolocator wetness data accurately detect periods of migratory flight in two species of shorebird. Wader Study 124, 112–119 (2017).

    Article  Google Scholar 

  • 46.

    Burger, J. et al. Migration and over-wintering of Red Knots (Calidris canutus rufa) along the Atlantic Coast of the United States. Condor 114, 302–313 (2012).

    Article  Google Scholar 

  • 47.

    Cooper, N. W., Hallworth, M. T. & Marra, P. P. Light-level geolocation reveals wintering distribution, migration routes, and primary stopover locations of an endangered long-distance migratory songbird. J. Avian Biol. 48, 209–219 (2017).

    Article  Google Scholar 

  • 48.

    Lisovski, S. et al. Geolocation by light: Accuracy and precision affected by environmental factors. Methods Ecol. Evol. 3, 603–612 (2012).

    Article  Google Scholar 

  • 49.

    Burger, J., Niles, L. J., Porter, R. R. & Dey, A. D. Using geolocator data to reveal incubation periods and breeding biology in Red Knots Calidris canutus rufa. Wader Study Group Bull. 119, 26–36 (2012).

    Google Scholar 

  • 50.

    Bulla, M. et al. Unexpected diversity in socially synchronized rhythms of shorebirds. Nature 540, 109–113 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 51.

    Bates, D. et al. Package ‘lme4’. Version 1, 17 (2018).

    Google Scholar 

  • 52.

    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).

    Google Scholar 

  • 53.

    Sullivan, B. L. et al. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282–2292 (2009).

    Article  Google Scholar 

  • 54.

    Spano, D., Cesaraccio, C., Duce, P. & Snyder, R. L. Phenological stages of natural species and their use as climate indicators. Int. J. Biometeorol. 42, 124–133 (1999).

    ADS  Article  Google Scholar 

  • 55.

    Oregon State University Integrated Plant Protection Center. http://pnwpest.org/US/ (2015).

  • 56.

    Baskerville, G. L. & Emin, P. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50, 514–517 (1969).

    Article  Google Scholar 

  • 57.

    van Wijk, R. E. et al. Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos 121, 655–664 (2012).

    Article  Google Scholar 

  • 58.

    Kölzsch, A. et al. Forecasting spring from afar? Timing of migration and predictability of phenology along different migration routes of an avian herbivore. J. Anim. Ecol. 84, 272–283 (2015).

    PubMed  Article  Google Scholar 

  • 59.

    Fitzjarrald, D. R., Acevedo, O. C. & Moore, K. E. Climatic consequences of leaf presence in the eastern United States. J. Clim. 14, 598–614 (2001).

    ADS  Article  Google Scholar 

  • 60.

    Burger, J. & Shisler, J. Nest-site selection of Willets in a New Jersey salt marsh. Wilson Bull. 90, 599–607 (1978).

    Google Scholar 

  • 61.

    Turner, R. E. Geographic Variations in Salt Marsh Macrophyte Production: A Review http://agris.fao.org/agris-search/search/display.do?f=2012/OV/OV201207875007875.xml;US19770198479 (1976).

  • 62.

    Pezeshki, S. R. & DeLaune, R. D. A comparative study of above-ground productivity of dominant U.S. Gulf Coast marsh species. J. Veg. Sci. 2, 331–338 (1991).

    Article  Google Scholar 

  • 63.

    Morris, J., Sundberg, K. & Hopkinson, C. Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography 26, 78–84 (2013).

    Article  Google Scholar 

  • 64.

    Dai, T. & Wiegert, R. G. Ramet population dynamics and net aerial primary productivity of Spartina alterniflora. Ecology 77, 276–288 (1996).

    Article  Google Scholar 

  • 65.

    Gallagher, J. L., Reimold, R. J., Linthurst, R. A. & Pfeiffer, W. J. Aerial production, mortality, and mineral accumulation-export dynamics in Spartina alterniflora and Juncus roemerianus plant stands in a Georgia Salt Marsh. Ecology 61, 303–312 (1980).

    Article  Google Scholar 

  • 66.

    Stroud, L. M. & Cooper, A. W. Color-Infrared Aerial Photographic Interpretation and Net Primary Productivity of a Regularly-Flooded North Carolina Salt Marsh http://repository.lib.ncsu.edu/dr/handle/1840.4/1681 (1969).

  • 67.

    Reidenbaugh, T. G. Productivity of cordgrass, Spartina alterniflora, estimated from live standing crops, mortality, and leaf shedding in a Virginia salt marsh. Estuaries 6, 57–65 (1983).

    Article  Google Scholar 

  • 68.

    Squiers, E. R. & Good, R. E. Seasonal changes in the productivity, caloric content, and chemical composition of a population of salt-marsh cord-grass (Spartina alterniflora). Chesap. Sci. 15, 63–71 (1974).

    Article  Google Scholar 

  • 69.

    Morris, J. & Sundberg, K. Aboveground biomass data from control sites in a Spartina alterniflora-dominated salt marsh at Law’s Point, Rowley River, Plum Island Ecosystem, MA (2012).

  • 70.

    Cranford, P. J., Gordon, D. C. & Jarvis, C. M. Measurement of cordgrass, Spartina alterniflora, production in a macrotidal estuary, Bay of Fundy. Estuaries 12, 27–34 (1989).

    Article  Google Scholar 

  • 71.

    Hatcher, B. G. & Mann, K. H. Above-ground production of marsh cordgrass (Spartina alterniflora) near the northern end of its range. J. Fish. Board Can. 32, 83–87 (1975).

    Article  Google Scholar 

  • 72.

    Rohatgi, A. Web Plot Digitizer, V 3.9 http://arohatgi.info/WebPlotDigitizer/ (2015).

  • 73.

    Morris, J. T. & Haskin, B. A 5-yr record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology 71, 2209–2217 (1990).

    Article  Google Scholar 

  • 74.

    Curtin, F. Meta-analysis combining parallel and crossover trials using generalised estimating equation method. Res. Synth. Methods 8, 312–320 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 75.

    Müller, J. & Hothorn, T. Maximally selected two-sample statistics as a new tool for the identification and assessment of habitat factors with an application to breeding-bird communities in oak forests. Eur. J. For. Res. 123, 219–228 (2004).

    Article  Google Scholar 

  • 76.

    Tomkins, I. R. The Willets of Georgia and South Carolina. Wilson Bull. 77, 151–167 (1965).

    Google Scholar 

  • 77.

    Morrison, R. I. G. & Ross, R. K. Atlas of Nearctic Shorebirds on the Coast of South America (Canadian Wildlife Service, Ottawa, 1989).

    Google Scholar 

  • 78.

    Merchant, D. et al. Shorebird Conservation in Brazil and Delaware Bay. In North American Migratory Bird Conservation Act Annual Report 2016–2017 (2017).

  • 79.

    Alerstam, T. & Hedenström, A. The development of bird migration theory. J. Avian Biol. 29, 343–369 (1998).

    Article  Google Scholar 

  • 80.

    Meltofte, H., Piersma, T., Boyd, H., Mccaffery, B. J. & Tulp, I. Y. M. Effects of climate variation on the breeding ecology of Artic shorebirds. Meddelelser Om Groenl. Biosci. 59, 45 (2007).

    Google Scholar 

  • 81.

    Willson, M. F. & Womble, J. N. Vertebrate exploitation of pulsed marine prey: A review and the example of spawning herring. Rev. Fish Biol. Fish. 16, 183–200 (2006).

    Article  Google Scholar 

  • 82.

    Mizrahi, D. S. & Peters, K. A. Relationships between sandpipers and horseshoe crab in Delaware Bay: A synthesis. In Biology and Conservation of Horseshoe Crabs (eds Tanacredi, J. et al.) 65–87 (Springer, Berlin, 2009).

    Google Scholar 

  • 83.

    Johansson, J. & Jonzén, N. Effects of territory competition and climate change on timing of arrival to breeding grounds: A game-theory approach. Am. Nat. 179, 463–474 (2012).

    PubMed  Article  Google Scholar 

  • 84.

    Verhulst, S. & Nilsson, J. -Å. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B Biol. Sci. 363, 399–410 (2008).

    Article  Google Scholar 

  • 85.

    Hatchwell, B. J. An Experimental study of the effects of timing of breeding on the reproductive success of common guillemots (Uria aalge). J. Anim. Ecol. 60, 721–736 (1991).

    Article  Google Scholar 

  • 86.

    McKinnon, L. et al. Lower predation risk for migratory birds at high latitudes. Science 327, 326–327 (2010).

  • 87.

    Ruskin, K. J. et al. Demographic analysis demonstrates systematic but independent spatial variation in abiotic and biotic stressors across 59 percent of a global species range. The Auk 134, 903–916 (2017).

  • 88.

    Karagicheva, J. et al. Seasonal time keeping in a long-distance migrating shorebird. J. Biol. Rhythms 5, 509–521 (2016).

    Article  Google Scholar 

  • 89.

    Daan, S., Dijkstra, C., Drent, R. & Meijer, T. Food supply and the annual timing of avian reproduction. In Proceedings of the International Ornithological Congress vol. 19 392–407 (University of Ottawa Press, Ottawa, 1988).

  • 90.

    Krebs, C. T. & Burns, K. A. Long-term effects of an oil spill on populations of the salt-marsh crab Uca pugnax. Science 197, 484–487 (1977).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 91.

    Williams, R. B. & Murdoch, M. B. Potential Importance of Spartina alterniflora in Conveying Zinc, Manganese, and Iron into Estuarine Food Chains in Conveying Zinc, Manganese, and Iron into Estuarine Food Chains (Radiobiological Lab, Bureau of Commercial Fisheries, Beaufort, NC, 1969).

    Google Scholar 

  • 92.

    Anthes, N. Long-distance migration timing of Tringa sandpipers adjusted to recent climate change: Capsule evidence for earlier spring migration of Tringa sandpipers after warmer winters, but no clear pattern concerning autumn migration timing. Bird Study 51, 203–211 (2004).

    Article  Google Scholar 

  • 93.

    Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not?. Proc. R. Soc. B Biol. Sci. 281, 20132161 (2014).

    Article  Google Scholar 

  • 94.

    Cotton, P. A. Avian migration phenology and global climate change. Proc. Natl. Acad. Sci. 100, 12219–12222 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 95.

    Crozier, L. G. et al. Potential responses to climate change in organisms with complex life histories: Evolution and plasticity in Pacific salmon. Evol. Appl. 1, 252–270 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Interactions between coral propagules in aquarium and field conditions

    Population viability in a host-parasitoid system is mediated by interactions between population stage structure and life stage differential susceptibility to toxicants