in

A policy-driven framework for conserving the best of Earth’s remaining moist tropical forests

  • 1.

    Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).

    Google Scholar 

  • 2.

    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    PubMed  Google Scholar 

  • 3.

    COP 11 Decision X/2. Strategic Plan for Biodiversity 2011–2020 (Convention on Biological Diversity, 2010).

  • 4.

    Transforming Our World: The 2030 Agenda For Sustainable Development A/RES/70/1 Resolution adopted by the United Nations General Assembly (United Nations, 2015).

  • 5.

    Adoption of the Paris Agreement. Proposal by the President Draft Decision -/CP.21 (UNFCCC, 2015).

  • 6.

    Parks Canada Guide to Management Planning (Parks Canada Agency, 2008).

  • 7.

    Parrish, J. D., Braun, D. P. & Unnasch, R. S. Are we conserving what we say we are? Measuring ecological integrity within protected areas. BioScience 53, 851–860 (2003).

    Google Scholar 

  • 8.

    Anderson, J. E. A conceptual framework for evaluating and quantifying naturalness. Conserv. Biol. 5, 347–352 (1991).

    Google Scholar 

  • 9.

    Tierney, G. L., Faber-Langendoen, D., Mitchell, B. R., Shriver, W. G. & Gibbs, J. P. Monitoring and evaluating the ecological integrity of forest ecosystems. Front. Ecol. Environ. 7, 308–316 (2009).

    Google Scholar 

  • 10.

    Kricher, J. Tropical Ecology (Princeton Univ. Press, 2011).

  • 11.

    Lindenmayer, D. B. & Franklin, J. F. Conserving Forest Biodiversity: A Comprehensive Multiscaled Approach (Island Press, 2002).

  • 12.

    Rozendaal, D. M. A. et al. Biodiversity recovery of neotropical secondary forests. Sci. Adv. 5, eaau3114 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 13.

    Cortés-Gómez, A. M., Castro-Herrera, F. & Urbina-Cardona, J. N. Small changes in vegetation structure create great changes in amphibian ensembles in the Colombian Pacific rainforest. Trop. Conserv. Sci. 6, 749–769 (2013).

    Google Scholar 

  • 14.

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    CAS  PubMed  Google Scholar 

  • 15.

    Poorter, L. et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314–1328 (2015).

    Google Scholar 

  • 16.

    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. BioScience 54, 547–560 (2004).

    Google Scholar 

  • 17.

    Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359, eaam8328 (2018).

    PubMed  Google Scholar 

  • 18.

    Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E. & Carrasco, L. R. Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nat. Commun. 9, 4052 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Lindenmayer, D. B., Laurance, W. F. & Franklin, J. F. Global decline in large old trees. Science 338, 1305–1306 (2012).

    CAS  PubMed  Google Scholar 

  • 20.

    Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).

    CAS  PubMed  Google Scholar 

  • 22.

    Hansen, A. et al. Global humid tropics forest structural condition and forest structural integrity maps. Sci. Data 6, 232 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  PubMed  Google Scholar 

  • 25.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    The World Database on Protected Areas (WDPA) (IUCN and UNEP-WCMC, 2019).

  • 27.

    Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinction risk. Nat. Commun. 9, 4621 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Armenteras, D., Espelta, J. M., Rodríguez, N. & Retana, J. Deforestation dynamics and drivers in different forest types in Latin America: three decades of studies (1980–2010). Glob. Environ. Change 46, 139–147 (2017).

    Google Scholar 

  • 29.

    Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).

    CAS  PubMed  Google Scholar 

  • 30.

    Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–232 (2014).

    CAS  PubMed  Google Scholar 

  • 32.

    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    CAS  PubMed  Google Scholar 

  • 33.

    Golden Kroner, R. E. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019).

    CAS  PubMed  Google Scholar 

  • 34.

    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. USA 116, 23209–23215 (2019).

    CAS  PubMed  Google Scholar 

  • 35.

    DeFries, R., Karanth, K. K. & Pareeth, S. Interactions between protected areas and their surroundings in human-dominated tropical landscapes. Biol. Conserv. 143, 2870–2880 (2010).

    Google Scholar 

  • 36.

    Polak, T. et al. Efficient expansion of global protected areas requires simultaneous planning for species and ecosystems. R. Soc. Open Sci. 2, 150107 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 37.

    Garnett, S. T. et al. A spatial overview of the global importance of indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).

    Google Scholar 

  • 38.

    Jonas, H. D., Barbuto, V., Jonas, H. C., Kothari, A. & Nelson, F. New steps of change: looking beyond protected areas to consider other effective area-based conservation measures. Parks 20, 111–127 (2014).

    Google Scholar 

  • 39.

    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Chazdon, R. L. et al. Rates of change in tree communities of secondary neotropical forests following major disturbances. Philos. Trans. R. Soc. Lond. B 362, 273–289 (2007).

    Google Scholar 

  • 41.

    Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).

    CAS  PubMed  Google Scholar 

  • 42.

    Venter, O. et al. Harnessing carbon payments to protect biodiversity. Science 326, 1368–1369 (2009).

    CAS  PubMed  Google Scholar 

  • 43.

    Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).

    CAS  PubMed  Google Scholar 

  • 44.

    Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Philos. Trans. R. Soc. B 375, 20190126 (2020).

    Google Scholar 

  • 45.

    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    CAS  PubMed  Google Scholar 

  • 46.

    Olson, D. M. & Dinerstein, E. The Global 200: priority ecoregions for global conservation. Ann. Missouri Bot. Gard. 89, 199–224 (2002).

    Google Scholar 

  • 47.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  PubMed  Google Scholar 

  • 48.

    Prevedello, J. A., Winck, G. R., Weber, M. M., Nichols, E. & Sinervo, B. Impacts of forestation and deforestation on local temperature across the globe. PLoS ONE 14, e0213368 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Google Scholar 

  • 50.

    Šavrič, B., Patterson, T. & Jenny, B. The Equal Earth map projection. Int. J. Geogr. Inf. Sci. 33, 454–465 (2019).

    Google Scholar 

  • 51.

    Tyukavina, A. et al. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environ. Res. Lett. 10, 074002 (2015).

    Google Scholar 

  • 52.

    Goetz, S. & Dubayah, R. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Manag. 2, 231–244 (2011).

    Google Scholar 

  • 53.

    Hansen, A. J., Phillips, L. B., Dubayah, R., Goetz, S. & Hofton, M. Regional-scale application of lidar: variation in forest canopy structure across the southeastern US. For. Ecol. Manag. 329, 214–226 (2014).

    Google Scholar 

  • 54.

    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Sanderson, E. W. et al. The human footprint and the last of the wild. BioScience 52, 891–904 (2002).

    Google Scholar 

  • 56.

    Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    CAS  PubMed  Google Scholar 

  • 57.

    Dudley, N. (ed.) Guidelines for Applying Protected Area Management Categories (IUCN, 2008).

  • 58.

    Dubayah, R. et al. The Global Ecosystem Dynamics Investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).

    Google Scholar 


  • Source: Ecology - nature.com

    Ecosystem-level carbon storage and its links to diversity, structural and environmental drivers in tropical forests of Western Ghats, India

    Southern Ocean carbon export efficiency in relation to temperature and primary productivity