in

A sciaenid swim bladder with long skinny fingers produces sound with an unusual frequency spectrum

  • 1.

    Froese, R. & Pauley, D. (2020) FishBase. World Wide Web electronic publication. https://www.fishbase.org, version (02/2012).

  • 2.

    Connaughton, M. A. & Taylor, M. H. Seasonal and daily cycles in sound production associated with spawning in the weakfish, Cynoscion regalis. Environ. Biol. Fish 42, 233–240 (1995).

    Article  Google Scholar 

  • 3.

    Ueng, J. P., Huang, B. Q. & Mok, H. K. Sexual differences in spawning sounds of the Japanese croaker Argyrosomus japonicus (Sciaenidae). Zool. Stud. 46, 103–110 (2007).

    Google Scholar 

  • 4.

    Parmentier, E., Tock, J., Falguière, J. C. & Beauchaud, M. Sound production in Sciaenops ocellatus: preliminary study for the development of acoustic cues in aquaculture. Aquaculture 432, 204–211 (2014).

    Article  Google Scholar 

  • 5.

    Parsons, M. J. G., McCauley, R. D. & Mackie, M. C. Characterisation of mulloway Argyrosomus japonicus advertisement sounds. Acoustics Aust. 41, 196–201 (2013).

    Google Scholar 

  • 6.

    Bolgan, M. et al. Calling activity and calls’ temporal features inform about fish reproductive condition and spawning in three cultured Sciaenidae species. Aquaculture 524, 1–14 (2020).

    Article  CAS  Google Scholar 

  • 7.

    Tower, R. W. The production of sound in the drumfishes, the sea-robin and the toadfish. Ann. N. Y. Acad. Sci. 18, 149–180 (1908).

    ADS  Article  Google Scholar 

  • 8.

    Connaughton, M. A., Taylor, M. H. & Fine, M. L. Effects of fish size and temperature on weakfish disturbance calls: implications for the mechanism of sound generation. J. Exp. Biol. 203, 1503–1512 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Ladich, F. & Fine, M. L. Sound-generating mechanisms in fishes: a unique diversity in vertebrates. In Communication in Fishes (eds Ladich, F. et al.) 3–43 (Science Publishers, Enfield, 2006).

    Google Scholar 

  • 10.

    Chao, L. N. A basis for classifying Western Atlantic Sciaenidae (Teleostei: Perciformes). NOAA Technical Report, Circular 415 (National Oceanic and Atmospheric Administration, Washington, 1978).

    Google Scholar 

  • 11.

    Ono, R. D. & Poss, S. G. Structure and innervation of the swimbladder musculature in the weakfish, Cynoscionregalis. Can. J. Zool. 60, 1955–1967 (1982).

    Article  Google Scholar 

  • 12.

    Hill, G. L., Fine, M. L. & Musick, J. A. Ontogeny of the sexually dimorphic sonic muscle in three sciaenid species. Copeia 1987, 708–713 (1987).

    Article  Google Scholar 

  • 13.

    Sasaki, K. Phylogeny of the family Sciaenidae, with notes on its zoogeography (Teleostei, Perciformes). Mem. Fac. Fish. Hokkaido Univ. 36, 1–137 (1989).

    Google Scholar 

  • 14.

    Mok, H. K. et al. An intermediate in the evolution of superfast sonic muscles. Front. Zool. 8, 1–8 (2011).

    Article  Google Scholar 

  • 15.

    Lin, Y. C., Mok, H. K. & Huang, B. Q. Sound characteristics of big-snout croaker, Johnius macrorhynus (Sciaenidae). J. Acoust. Soc. Am er. 121, 586–593 (2007).

    ADS  Article  Google Scholar 

  • 16.

    Griffiths, M. H. & Hecht, T. Age and growth of South African dusky kob Argyrosomus japonicus (Sciaenidae) based on otoliths. S. Afr. J. Mar. Sci. 16, 119–128 (1995).

    Article  Google Scholar 

  • 17.

    Lo P. C. Sound characteristics of the large yellow croaker, Larimichthys crocea and phylogeny of the Western Pacific sciaenid genera inferred by molecular evidence. Master’s Thesis. National Sun Yat-sen University, Taiwan (2011).

  • 18.

    Tellechea, J. S., Martinzez, C., Fine, M. L. & Norbis, W. Sound production in the whitemouth croaker and relationship between fish size and call characteristics. Environ. Biol. Fish. 89, 163–172 (2010).

    Article  Google Scholar 

  • 19.

    Tellechea, J. S., Norbis, W., Olsson, D. & Fine, M. L. Calls of the black drum (Pogonius chromis: Sciaenidae): Geographical differences in sound production between Northern and Southern Hemisphere populations. J. Exp. Zool. 313A, 1–8 (2010).

    Article  CAS  Google Scholar 

  • 20.

    Pereira, B. P. et al. Sound production in the Meagre, Argyrosomus regius (Asso, 1801): intraspecific variability associated with size, sex and context. PeerJ 8, e8559 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Wongratana, T. Boesemania microlepis (Bleeker), a common but misidentified riverine drumfish (Pisces: Sciaenidae) from Thailand and Mekong River. In Proceedings of the 23rd Kasetsart University Conference Fisheries Section, Kasetsart University, Bangkok (Thailand), Vol. 23, 3–20 (1985).

  • 22.

    Baird, I. G., Phylavanh, B., Vongsenesouk, B. & Xaiyamanivoni, K. The ecology and conservation of the smallscale croaker Boesemania microlepis (Bleeker 1858–59) in the mainstream Mekong River, southern Laos. Nat. Hist. Bull. Siam Soc. 49, 161–176 (2001).

    Google Scholar 

  • 23.

    Feldberg, E., Porto, J. I. R., Santos, E. B. P. & Vlantim, F. C. S. Cytogenetic studies of two freshwater sciaenids of the genus Plagioscion (Perciformes, Sciaenidae) from the central Amazon. Gen. Mol. Biol. 22, 351–356 (2020).

    Article  Google Scholar 

  • 24.

    Boeger, W. A. & Kritsky, D. Parasites, fossils and geologic history: Historical biogeography of the South America freshwater croakers, Plagioscion spp. (Teleostei, Sciaenidae). Zool. Scr. 32, 3–11 (2002).

    Article  Google Scholar 

  • 25.

    Chao, N. L. A synopsis on zoogeography of Sciaenidae. In Indo Pacific Fish Biology. Proceedings of the Second International Conference on Indo-Pacific Fishes (eds Uyeano, T. et al.) (Ichthyological Society of Japan, Tokyo, 1986).

    Google Scholar 

  • 26.

    Sasaki, K. Comparative anatomy and phylogenetic relationships of the family Sciaenidae (Teleostei, Perciformes) (MS Hokkaido University, Sapporo, 1985).

    Google Scholar 

  • 27.

    Montie, E. W., Kehrer, C., Yost, J. & Brenkert, K. Long-term monitoring of captive red drum Sciaenops ocellatus reveals that calling incidence and structure correlate with egg deposition. J. Fish Biol. 88, 1776–1795 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Locascio, J. V. & Mann, D. A. Diel periodicity of fish sound production in Charlotte Harbor, Florida. Trans. Am. Fish. Soc. 137, 606–615 (2008).

    Article  Google Scholar 

  • 29.

    Monczak, A., Berry, A., Kehrer, C. & Montie, E. W. Long-term acoustic monitoring of fish calling provides baseline estimates of reproductive timelines in the May River estuary, southeastern USA. Mar. Ecol. Prog. Ser. 581, 1–19 (2017).

    ADS  Article  Google Scholar 

  • 30.

    Lagardere, J. P. & Mariani, A. Spawning sounds in meagre Argyrosomus regius recorded in the Gironde estuary, France. J. Fish Biol. 69, 1697–1708 (2006).

    Article  Google Scholar 

  • 31.

    Skoglund, C. R. Functional analysis of swimbladder muscles engaged in sound productivity of the toadfish. J. Biophys. Biochem. Cytol. 10(Suppl), 187–200 (1961).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Fine, M. L., Malloy, K. L., King, C. B., Mitchell, S. L. & Cameron, T. M. Movement and sound generation by the toadfish swimbladder. J. Comp. Physiol. 187A, 371–379 (2001).

    Article  Google Scholar 

  • 33.

    Fine, M. L. & Lenhardt, M. L. Shallow-water propagation of the toadfish mating call. Comp. Biochem. Physiol. 76A, 225–231 (1983).

    Article  Google Scholar 

  • 34.

    Thorson, R. F. & Fine, M. L. Crepuscular changes in emission rate and parameters of the boatwhistle advertisement call of the gulf toadfish, Opsanus beta. Environ. Biol. Fish. 63, 321–331 (2002).

    Article  Google Scholar 

  • 35.

    Urick, R. J. Principles of Underwater Sound (McGraw-Hill, New York, 1975).

    Google Scholar 

  • 36.

    Lugli, M. & Fine, M. L. Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams. J. Acoust. Soc. Am. 114, 512–521 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 37.

    Mann, D. A. Propagation of fish sounds. In Communication in Fishes Vol. 1 (eds Ladich, F. et al.) 107–120 (Science Publishers, Enfield, 2006).

    Google Scholar 

  • 38.

    Ghahramani, Z. N., Mohajer, Y. J. & Fine, M. L. Developmental variation in sound production in water and air in the blue catfish Ictalurus furcatus. J. Exp. Biol. 217, 4244–4251 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Akamatsu, T., Okumura, T., Novarini, N. & Yan, H. Y. Empirical refinements applicable to the recording of fish sounds in small tanks. J. Acoust. Soc. Am. 112, 3073–3082 (2002).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Smith, M. E., Weller, K. K., Kynard, B., Sato, Y. & Godinho, A. L. Mating calls of three prochilodontid fish species from Brazil. Environ. Biol. Fish 101, 327–339 (2018).

    Article  Google Scholar 

  • 41.

    Minnaert, F. On musical air bubbles and the sounds of running water. Philos. Mag. 16, 235–248 (1933).

    Article  Google Scholar 

  • 42.

    Weston, D. E. Sound propagation in the presence of bladder fish. In Underwater Acoustics Vol. 2 (ed. Albers, V. M.) 55–88 (Plenum Press, New York, 1967).

    Google Scholar 

  • 43.

    Batzler, W. E. & Pickwell, G. V. Resonant acoustic scattering from gas-bladder fishes. In Proceedings of an International Symposium on Biological Sound Scattering in the Ocean (ed. Farquhar, G. B.) 168–179 (U.S. Government Printing Office, Washington, 1970).

    Google Scholar 

  • 44.

    McCartney, B. S. & Stubbs, A. R. Measurement of the target strength of fish in dorsal aspect, including swimbladder resonance. In Proceedings of an International Symposium on Biological Sound Scattering in the Ocean (ed. Farquhar, G. B.) 180–211 (U.S. Government Printing Office, Washington, 1970).

    Google Scholar 

  • 45.

    Fine, M. L. Seasonal and geographic variation of the mating call of the oyster toadfish Opsanus tau. Oecologia 36, 45–57 (1978).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Fine, M. L., King, T. L., Ali, H., Sidker, N. & Cameron, T. M. Wall structure and material properties cause viscous damping of swimbladder sounds in the oyster toadfish Opsanus tau. Proc. R. Soc. Lond. B 283, 1–9 (2016).

    Google Scholar 

  • 47.

    Parmentier, E., Lagardère, J. P., Braquegnier, J. B., Vandewalle, P. & Fine, M. L. Sound production mechanism in carapid fish: first example with a slow sonic muscle. J. Exp. Biol. 209, 2952–2960 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Parmentier, E., Fine, M. L. & Mok, H. K. Sound production by a recoiling system in the Pempheridae and Terapontidae. J. Morphol. 277, 717–724 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Parmentier, E. & Fine, M. L. Fish sound production: insights. In Vertebrate Sound Production and Acoustic Communication (eds Suthers, R. A. & Fitch, T.) 19–49 (Springer, New York, 2016).

    Google Scholar 

  • 50.

    Ramcharitar, J. U., Deng, X., Ketten, D. & Popper, A. N. Form and function in the unique inner ear of a teleost: the silver perch (Bairdiella chrysoura). J. Comp. Neurol. 475, 531–539 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Robertson, G. N., McGee, C. A. S., Dunbarton, T. C., Croll, R. P. & Smith, F. M. Development of the swimbladder and Its innervation in the zebrafish, Danio rerio. J. Morphol. 268, 967–985 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Birindelli, J. L. O., Sousa, L. M. & Sabaj Perez, M. H. Morphology of the gas bladder in thorny catfishes (Siluriformes: Doradidae). Proc. Acad. Nat. Sci. Philadelphia 158, 261–296 (2009).

    Article  Google Scholar 

  • 53.

    Borie, A. et al. Disturbance calls of five migratory Characiformes species and advertisement choruses in Amazon spawning sites. J. Fish Biol. 95, 820–832 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    King, T. L. The Relationship Between Collagen Fibers and Material Properties of Swim Bladders in Sonic Teleosts. MS Virginia Commonwealth University (2005).

  • 55.

    Connaughton, M. A., Fine, M. L. & Taylor, M. H. Weakfish sonic muscle: influence of size, temperature and season. J. Exp. Biol. 205, 2183–2188 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Locascio, J. V. & Mann, D. A. Localization and source level estimates of black drum (Pogonias chromis) calls. J. Acoust. Soc. Am. 130, 1868–1879 (2011).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Bradbury, J. W. & Vehrencamp, S. L. Principles of Animal Communication (Sinauer, Massachusetts, 1998).

    Google Scholar 

  • 58.

    Ramcharitar, J. U., Higgs, D. M. & Popper, A. N. Audition in sciaenid fishes with different swim bladder-inner ear configurations. J. Acoust. Soc. Am. 119, 439–443 (2006).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Salas, A. K., Wilson, P. S. & Fuiman, L. A. Ontogenetic change in predicted acoustic pressure sensitivity in larval red drum (Sciaenops ocellatus). J. Exp. Biol. 222, 1–12 (2019).

    Article  Google Scholar 

  • 60.

    Rice, A. N., Soldevilla, M. S. & Quinlan, J. A. Nocturnal patterns in fish chorusing off the coasts of Georgia and eastern Florida. Bull. Mar. Sci. 93, 455–474 (2017).

    Article  Google Scholar 

  • 61.

    Sprague, M. W. The single sonic muscle twitch model for the sound-production mechanism in the weakfish, Cynoscion regalis. J. Acoust. Soc. Am. 108, 2430–2437 (2000).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Picculin, M. et al. Diagnostics of nocturnal calls of Sciaenaumbra (L., fam. Sciaenidae) in a nearshore Mediterranean marine reserve. Bioacoustics 12, 292–294 (2012).

    Google Scholar 

  • 63.

    Tellechea, J. S. & Norbis, W. Sexual dimorphism in sound production and call characteristics in the striped weakfish Cynoscion guatucupa. Zool. Stud. 51, 946–955 (2012).

    Google Scholar 

  • 64.

    Rountree, R. A. & Juanes, F. Potential of passive acoustic recording for monitoring invasive species: freshwater drum invasion of the Hudson River via the New York canal system. Biol. Invasions 19, 2075–2088 (2017).

    Article  Google Scholar 

  • 65.

    Tellechea, J. S., Fine, M. L. & Norbis, W. Passive acoustic monitoring, development of disturbance calls and differentiation of disturbance and advertisement calls in the Argentine croaker Umbrina canosai (Sciaenidae). J. Fish Biol. 90, 1631–1643 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Tang, S. K. On Helmholtz resonators with tapered necks. J. Acoust. Soc. Am. 279, 1085–1096 (2005).

    Google Scholar 

  • 67.

    Pillaia, M. A. & Da, E. Improved acoustic energy harvester using tapered neck Helmholtz resonator and piezoelectric cantilever undergoing concurrent bending and twisting. Procedia Eng. 144, 674–681 (2016).

    Article  Google Scholar 

  • 68.

    Yoshida, T. et al. (eds) Fishes of Northern Gulf of Thailand (National Museum of Nature and Science, Tuskuba, 2013).

    Google Scholar 


  • Source: Ecology - nature.com

    Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis

    Saudi Arabia faces increased heat, humidity, precipitation extremes by mid-century