in

A unifying framework for studying and managing climate-driven rates of ecological change

  • 1.

    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2, 81–98 (2015).

    Google Scholar 

  • 2.

    Steffen, W., Grinevald, J., Crutzen, P. & McNeill, J. The Anthropocene: conceptual and historical perspectives. Phil. Trans. R. Soc. A 369, 842–867 (2011).

    PubMed  Google Scholar 

  • 3.

    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

    CAS  PubMed  Google Scholar 

  • 4.

    McInerney, F. A. & Wing, S. L. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516 (2011).

    CAS  Google Scholar 

  • 5.

    Herrero, C., García-Olivares, A. & Pelegrí, J. L. Impact of anthropogenic CO2 on the next glacial cycle. Clim. Change 122, 283–298 (2014).

    CAS  Google Scholar 

  • 6.

    Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6, 360–369 (2016).

    Google Scholar 

  • 7.

    Berger, A. & Loutre, M. F. An exceptionally long interglacial ahead? Science 297, 1287–1288 (2002).

    CAS  PubMed  Google Scholar 

  • 8.

    Burke, K. D. et al. Pliocene and Eocene provide best analogues for near-future climates. Proc. Natl Acad. Sci. USA 115, 13288–13293 (2018).

    CAS  PubMed  Google Scholar 

  • 9.

    Fisichelli, N. A., Schuurman, G. W. & Hoffman, C. H. Is ‘resilience’ maladaptive? Towards an accurate lexicon for climate change adaptation. Environ. Manag. 57, 753–758 (2016).

    Google Scholar 

  • 10.

    Prober, S. M., Doerr, V. A. J., Broadhurst, L. M., Williams, K. J. & Dickson, F. Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. Ecol. Monogr. 89, e01333 (2019).

    Google Scholar 

  • 11.

    Scheffers, B. R. & Pecl, G. Persecuting, protecting or ignoring biodiversity under climate change. Nat. Clim. Change 9, 581–586 (2019).

    Google Scholar 

  • 12.

    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).

    PubMed  Google Scholar 

  • 13.

    Hughes, F. M. R., Adams, W. M. & Stroh, P. A. When is open-endedness desirable in restoration projects? Restor. Ecol. 20, 291–295 (2012).

    Google Scholar 

  • 14.

    Williams, J. W. & Burke, K. in Climate Change and Biodiversity: Transforming the Biosphere (eds Lovejoy, T & Hannah, L.) 128–141 (Yale Univ. Press, 2019).

  • 15.

    Webb, T. III. Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio 67, 75–91 (1986).

    Google Scholar 

  • 16.

    Blonder, B. et al. Predictability in community dynamics. Ecol. Lett. 20, 293–306 (2017).

    PubMed  Google Scholar 

  • 17.

    Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).

    PubMed  Google Scholar 

  • 18.

    Huntley, B. et al. Climatic disequilibrium threatens conservation priority forests. Conserv. Lett. 11, e12349 (2018).

    Google Scholar 

  • 19.

    Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Zimova, M., Mills, L. S. & Nowak, J. J. High fitness costs of climate change-induced camouflage mismatch. Ecol. Lett. 19, 299–307 (2016).

    PubMed  Google Scholar 

  • 21.

    Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).

    CAS  PubMed  Google Scholar 

  • 23.

    Ratajczak, Z. et al. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).

    PubMed  Google Scholar 

  • 24.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    CAS  PubMed  Google Scholar 

  • 25.

    Williams, J. W., Blois, J. L. & Shuman, B. N. Extrinsic and intrinsic forcing of abrupt ecological change: case studies from the late Quaternary. J. Ecol. 99, 664–677 (2011).

    Google Scholar 

  • 26.

    Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    CAS  PubMed  Google Scholar 

  • 27.

    Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

    CAS  PubMed  Google Scholar 

  • 28.

    Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. USA 109, 21384–21389 (2012).

    CAS  PubMed  Google Scholar 

  • 29.

    Boettiger, C. & Hastings, A. Tipping points: from patterns to predictions. Nature 493, 157–158 (2013).

    CAS  PubMed  Google Scholar 

  • 30.

    Boettiger, C., Ross, N. & Hastings, A. Early warning signals: the charted and uncharted territories. Theor. Ecol. 6, 255–264 (2013).

    Google Scholar 

  • 31.

    Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature 575, 593–595 (2019).

    Google Scholar 

  • 32.

    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B 275, 2743–2748 (2008).

    PubMed  Google Scholar 

  • 33.

    Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: prospects and limitations for early warnings of regime shifts. Phil. Trans. R. Soc. B 370, 20130263 (2014).

    Google Scholar 

  • 34.

    IPCC in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Summary for Policymakers (Cambridge Univ. Press, 2013).

  • 35.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    PubMed  Google Scholar 

  • 36.

    Kudo, G. & Ida, T. Y. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 94, 2311–2320 (2013).

    Google Scholar 

  • 37.

    Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462 (2010).

    PubMed  Google Scholar 

  • 38.

    Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).

    CAS  PubMed  Google Scholar 

  • 39.

    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  PubMed  Google Scholar 

  • 40.

    Lenoir, J., Gégout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th Century. Science 320, 1768–1771 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Bellemare, J. & Deeg, C. Horticultural escape and naturalization of Magnolia tripetala in western Massachusetts: biogeographic context and possible relationship to recent climate change. Rhodora 117, 371–383 (2015).

    Google Scholar 

  • 42.

    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    CAS  PubMed  Google Scholar 

  • 43.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    CAS  PubMed  Google Scholar 

  • 44.

    Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13, 1860–1872 (2007).

    Google Scholar 

  • 45.

    Albright, T. P. et al. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure. Remote Sens. Environ. 115, 245–254 (2011).

    Google Scholar 

  • 46.

    Cazelles, K. et al. Homogenization of freshwater lakes: recent compositional shifts in fish communities are explained by gamefish movement and not climate change. Glob. Change Biol. 25, 4222–4233 (2019).

    Google Scholar 

  • 47.

    Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Abatzoglou, J. T., Dobrowski, S. Z. & Parks, S. A. Multivariate climate departures have outpaced univariate changes across global lands. Sci. Rep. 10, 3891 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).

    Google Scholar 

  • 50.

    Ordonez, A., Williams, J. W. & Svenning, J. C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Change 6, 1104–1109 (2016).

    Google Scholar 

  • 51.

    Hof, C., Levinsky, I., Araújo, M. B. & Rahbek, C. Rethinking species’ ability to cope with rapid climate change. Glob. Change Biol. 17, 2987–2990 (2011).

    Google Scholar 

  • 52.

    Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat. Clim. Change 10, 244–248 (2020).

    Google Scholar 

  • 53.

    Buizert, C. et al. Greenland temperature response to climate forcing during the last deglaciation. Science 345, 1177–1180 (2014).

    CAS  PubMed  Google Scholar 

  • 54.

    Steffensen, J. P. et al. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321, 680–684 (2008).

    CAS  PubMed  Google Scholar 

  • 55.

    Jackson, S. T. & Overpeck, J. T. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26 (Suppl.), 194–220 (2000).

    Google Scholar 

  • 56.

    Prentice, I. C., Bartlein, P. J. & Webb, T. III. Vegetation and climate change in eastern North America since the last glacial maximum. Ecology 72, 2038–2056 (1991).

    Google Scholar 

  • 57.

    Giesecke, T., Brewer, S., Finsinger, W., Leydet, M. & Bradshaw, R. H. W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 44, 1441–1456 (2017).

    Google Scholar 

  • 58.

    Ordonez, A. & Williams, J. W. Climatic and biotic velocities for woody taxa distributions over the last 16 000 years in eastern North America. Ecol. Lett. 16, 773–781 (2013).

    PubMed  Google Scholar 

  • 59.

    Williams, J. W., Post, D. M., Cwynar, L. C., Lotter, A. F. & Levesque, A. J. Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30, 971–974 (2002).

    CAS  Google Scholar 

  • 60.

    Tinner, W. & Lotter, A. F. Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29, 551–554 (2001).

    Google Scholar 

  • 61.

    Juggins, S. Quantitative reconstructions in paleolimnology: new paradigm or sick science? Quat. Sci. Rev. 64, 20–32 (2013).

    Google Scholar 

  • 62.

    Ammann, B. et al. Responses to rapid warming at Termination 1a at Gerzensee (Central Europe): primary succession, albedo, soils, lake development, and ecological interactions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 111–131 (2013).

    Google Scholar 

  • 63.

    Ammann, B., von Grafenstein, U. & van Raden, U. J. Biotic responses to rapid warming about 14,685 yr BP: introduction to a case study at Gerzensee (Switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 3–12 (2013).

    Google Scholar 

  • 64.

    Cotto, O. et al. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat. Commun. 8, 15399 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 65.

    Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).

    CAS  PubMed  Google Scholar 

  • 66.

    Hui, C., Roura-Pascual, N., Brotons, L., Robinson, R. A. & Evans, K. L. Flexible dispersal strategies in native and non-native ranges: environmental quality and the ‘good–stay, bad–disperse’ rule. Ecography 35, 1024–1032 (2012).

    Google Scholar 

  • 67.

    Grubb, P. J. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52, 107–145 (1977).

    Google Scholar 

  • 68.

    Jackson, S. T., Betancourt, J. L., Booth, R. K. & Gray, S. T. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proc. Natl Acad. Sci. USA 106, 19685–19692 (2009).

    CAS  PubMed  Google Scholar 

  • 69.

    Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).

    CAS  PubMed  Google Scholar 

  • 70.

    Stevens-Rumann, C. S. et al. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243–252 (2018).

    PubMed  Google Scholar 

  • 71.

    Keeley, J. E., van Mantgem, P. & Falk, D. A. Fire, climate and changing forests. Nat. Plants 5, 774–775 (2019).

    PubMed  Google Scholar 

  • 72.

    Raffa, K. F., Powell, E. N. & Townsend, P. A. Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses. Proc. Natl Acad. Sci. USA 110, 2193–2198 (2013).

    CAS  PubMed  Google Scholar 

  • 73.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    CAS  PubMed  Google Scholar 

  • 74.

    Feeley, K. J. et al. Upslope migration of Andean trees. J. Biogeogr. 38, 783–791 (2011).

    Google Scholar 

  • 75.

    Ricklefs, R. E. & Latham, R. E. Intercontinental correlation of geographical ranges suggests stasis in ecological traits of relict genera of temperature perennial herbs. Am. Nat. 139, 1305–1321 (1992).

    Google Scholar 

  • 76.

    McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).

    Google Scholar 

  • 77.

    Pither, J., Pickles, B. J., Simard, S. W., Ordonez, A. & Williams, J. W. Below-ground biotic interactions moderated the postglacial range dynamics of trees. New Phytol. 220, 1148–1160 (2018).

    PubMed  Google Scholar 

  • 78.

    Lawler, J. J. & Olden, J. D. Reframing the debate over assisted colonization. Front. Ecol. Environ. 9, 569–574 (2011).

    Google Scholar 

  • 79.

    Schwartz, M. W. et al. Managed relocation: integrating the scientific, regulatory, and ethical challenges. BioScience 62, 732–743 (2012).

    Google Scholar 

  • 80.

    Van der Veken, S., Hermy, M., Vellend, M., Knapen, A. & Verheyen, K. Garden plants get a head start on climate change. Front. Ecol. Environ. 6, 212–216 (2008).

    Google Scholar 

  • 81.

    Svenning, J.-C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).

    Google Scholar 

  • 82.

    Sax, D. F., Early, R. & Bellemare, J. Niche syndromes, species extinction risks, and management under climate change. Trends Ecol. Evol. 28, 517–523 (2013).

    PubMed  Google Scholar 

  • 83.

    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).

    PubMed  Google Scholar 

  • 84.

    Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).

    Google Scholar 

  • 85.

    Wheeler, H. C., Høye, T. T., Schmidt, N. M., Svenning, J.-C. & Forchhammer, M. C. Phenological mismatch with abiotic conditions—implications for flowering in Arctic plants. Ecology 96, 775–787 (2015).

    PubMed  Google Scholar 

  • 86.

    Beard, K. H., Kelsey, K. C., Leffler, A. J. & Welker, J. M. The missing angle: ecosystem consequences of phenological mismatch. Trends Ecol. Evol. 34, 885–888 (2019).

    PubMed  Google Scholar 

  • 87.

    Chamberlain, C. J., Cook, B. I., de Cortazar Atauri, I. G. & Wolkovich, E. M. Rethinking false spring risk. Glob. Change Biol. 25, 2209–2220 (2019).

    Google Scholar 

  • 88.

    Wolkovich, E. M., Cook, B. I., McLauchlan, K. K. & Davies, T. J. Temporal ecology in the Anthropocene. Ecol. Lett. 17, 1365–1379 (2014).

    CAS  PubMed  Google Scholar 

  • 89.

    Pagel, J. et al. Mismatches between demographic niches and geographic distributions are strongest in poorly dispersed and highly persistent plant species. Proc. Natl Acad. Sci. USA 117, 3663–3669 (2020).

    CAS  PubMed  Google Scholar 

  • 90.

    Komatsu, K. J. et al. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proc. Natl Acad. Sci. USA 116, 17867–17873 (2019).

    CAS  PubMed  Google Scholar 

  • 91.

    Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).

    CAS  PubMed  Google Scholar 

  • 92.

    Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W. & Gravel, D. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 0182 (2017).

    Google Scholar 

  • 93.

    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).

    Google Scholar 

  • 94.

    Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 95.

    Bocsi, T. et al. Plants’ native distributions do not reflect climatic tolerance. Divers. Distrib. 22, 615–624 (2016).

    Google Scholar 

  • 96.

    Early, R. & Sax, D. F. Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob. Ecol. Biogeogr. 23, 1356–1365 (2014).

    Google Scholar 

  • 97.

    Perret, D. L., Leslie, A. B. & Sax, D. F. Naturalized distributions show that climatic disequilibrium is structured by niche size in pines (Pinus L.). Glob. Ecol. Biogeogr. 28, 429–441 (2019).

    Google Scholar 

  • 98.

    Blonder, B. et al. Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology 96, 972–985 (2015).

    PubMed  Google Scholar 

  • 99.

    Knight, C. A. et al. Community assembly and climate mismatch in Late-Quaternary eastern North American pollen assemblages. Am. Nat. 195, 166–180 (2020).

    PubMed  Google Scholar 

  • 100.

    Butterfield, B. J., Anderson, R. S., Holmgren, C. A. & Betancourt, J. L. Extinction debt and delayed colonization have had comparable but unique effects on plant community–climate lags since the Last Glacial Maximum. Glob. Ecol. Biogeogr. 28, 1067–1077 (2019).

    Google Scholar 

  • 101.

    Graham, R. W. et al. Timing and causes of a middle Holocene mammoth extinction on St. Paul Island, Alaska. Proc. Natl Acad. Sci. USA 113, 9310–9314 (2016).

    CAS  PubMed  Google Scholar 

  • 102.

    Woods, K. D. & Davis, M. B. Paleoecology of range limits: beech in the Upper Peninsula of Michigan. Ecology 70, 681–696 (1989).

    Google Scholar 

  • 103.

    Jackson, S. T. et al. Inferring local to regional changes in forest composition from Holocene macrofossils and pollen of a small lake in central Upper Michigan. Quat. Sci. Rev. 98, 60–73 (2014).

    Google Scholar 

  • 104.

    Seeley, M., Goring, S. & Williams, J. W. Testing hypotheses about environmental and dispersal controls on Fagus grandifolia distributions in the upper Midwest Great Lakes region. J. Biogeogr. 46, 405–419 (2019).

    Google Scholar 

  • 105.

    Birks, H. J. B. & Birks, H. H. Biological responses to rapid climate change at the Younger Dryas—Holocene transition at Kråkenes, western Norway. Holocene 18, 19–30 (2008).

    Google Scholar 

  • 106.

    Ammann, B. et al. Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 40–59 (2013).

    Google Scholar 

  • 107.

    Svenning, J.-C. & Skov, F. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol. Lett. 10, 453–460 (2007).

    PubMed  Google Scholar 

  • 108.

    Sandel, B. et al. The influence of late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    CAS  PubMed  Google Scholar 

  • 109.

    Feng, G. et al. Species and phylogenetic endemism in angiosperm trees across the Northern Hemisphere are jointly shaped by modern climate and glacial–interglacial climate change. Glob. Ecol. Biogeogr. 28, 1393–1402 (2019).

    Google Scholar 

  • 110.

    Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).

    Google Scholar 

  • 111.

    Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).

    Google Scholar 

  • 112.

    Hui, C. & Richardson, D. M. Invasion Dynamics (Oxford Univ. Press, 2017).

  • 113.

    Kowarik, I. in Plant Invasions. General Aspects and Special Problems (eds Pysek, P. et al.) 15–39 (SPB Academic Publishing, 1995).

  • 114.

    Bruce, K. A., Cameron, G. N. & Harcombe, P. A. Initiation of a new woodland type on the Texas Coastal Prairie by the Chinese tallow tree (Sapium sebiferum (L.) Roxb.). Bull. Torrey Bot. Club 122, 215–225 (1995).

    Google Scholar 

  • 115.

    Castro, S. A., Figueroa, J. A., Muñoz-Schick, M. & Jaksic, F. M. Minimum residence time, biogeographical origin, and life cycle as determinants of the geographical extent of naturalized plants in continental Chile. Divers. Distrib. 11, 183–191 (2005).

    Google Scholar 

  • 116.

    Hoffmann, J. H. & Moran, V. C. The invasive weed Sesbania punicea in South Africa and prospects for its biological control. S. Afr. J. Sci. 84, 740–472 (1988).

    Google Scholar 

  • 117.

    Byers, J. E. et al. Invasion expansion: time since introduction best predicts global ranges of marine invaders. Sci. Rep. 5, 12436 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 118.

    Phillips, M. L., Murray, B. R., Leishman, M. R. & Ingram, R. The naturalization to invasion transition: are there introduction-history correlates of invasiveness in exotic plants of Australia? Austral Ecol. 35, 695–703 (2010).

    Google Scholar 

  • 119.

    Scott, J. K. & Panetta, F. D. Predicting the Australian weed status of southern African plants. J. Biogeogr. 20, 87–93 (1993).

    Google Scholar 

  • 120.

    Arroyo, M. T. K., Rozzi, R., Simonetti, J. A., Marquet, P. & Sallaberry, M. in Hotspots: Earth’s Biologically Richest and Most Endangered Terrestrial Ecosystems (eds Mittermeier, R. A. et al.) 161–171 (Cemex, Conservation International, 1999).

  • 121.

    Zarnetske, P. L., Skelly, D. K. & Urban, M. C. Biotic multipliers of climate change. Science 336, 1516–1518 (2012).

    CAS  PubMed  Google Scholar 

  • 122.

    Ordonez, A. & Williams, J. W. Projected climate reshuffling based on multivariate climate-availability, climate-analog, and climate-velocity analyses: implications for community disaggregation. Clim. Change 119, 659–675 (2013).

    Google Scholar 

  • 123.

    Zohner, C. M. et al. Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proc. Natl Acad. Sci. USA 117, 12192–12200 (2020).

    CAS  PubMed  Google Scholar 

  • 124.

    Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182 (2018).

    Google Scholar 

  • 125.

    Turner, M. G. et al. Climate change, ecosystems, and abrupt change: science priorities. Phil. Trans. R. Soc. B 375, 20190105 (2020).

    PubMed  Google Scholar 

  • 126.

    Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).

    CAS  PubMed  Google Scholar 

  • 127.

    Calder, W. J. & Shuman, B. N. Extensive wildfires, climate change, and an abrupt state change in subalpine ribbon forests, Colorado. Ecology 98, 2585–2600 (2017).

    PubMed  Google Scholar 

  • 128.

    Shuman, B. N., Marsicek, J., Oswald, W. W. & Foster, D. R. Predictable hydrological and ecological responses to Holocene North Atlantic variability. Proc. Natl Acad. Sci. USA 116, 5985–5990 (2019).

    CAS  PubMed  Google Scholar 

  • 129.

    Allison, T. D., Moeller, R. E. & Davis, M. B. Pollen in laminated sediments provides evidence of mid-Holocene forest pathogen outbreak. Ecology 67, 1101–1105 (1986).

    Google Scholar 

  • 130.

    Ramiadantsoa, T., Stegner, M. A., Williams, J. W. & Ives, A. R. The potential role of intrinsic processes in generating abrupt and quasi-synchronous tree declines during the Holocene. Ecology 100, e02579 (2019).

    PubMed  Google Scholar 

  • 131.

    Seddon, A. W. R., Froyd, C. A., Witkowski, A. & Willis, K. J. A quantitative framework for analysis of regime shifts in a Galápagos coastal lagoon. Ecology 95, 3046–3055 (2014).

    Google Scholar 

  • 132.

    Gray, S. T., Betancourt, J. L., Jackson, S. J. & Eddy, R. G. Role of multidecadal climatic variability in a range extension of pinyon pine. Ecology 87, 1124–1130 (2006).

    PubMed  Google Scholar 

  • 133.

    Lyford, M. E., Jackson, S. T., Betancourt, J. L. & Gray, S. T. Influence of landscape structure and climate variability on a late Holocene plant migration. Ecol. Monogr. 73, 567–583 (2003).

    Google Scholar 

  • 134.

    Tinner, W. & Lotter, A. F. Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat. Sci. Rev. 25, 526–549 (2006).

    Google Scholar 

  • 135.

    Saltré, F. A. et al. Climate or migration: what limited European beech post-glacial colonization? Glob. Ecol. Biogeogr. 22, 1217–1227 (2013).

    Google Scholar 

  • 136.

    Ruosch, M. et al. Past and future evolution of Abies alba forests in Europe – comparison of a dynamic vegetation model with palaeo data and observations. Glob. Change Biol. 22, 727–740 (2016).

    Google Scholar 

  • 137.

    Danz, N. P., Frelich, L. E., Reich, P. B. & Niemi, G. J. Do vegetation boundaries display smooth or abrupt spatial transitions along environmental gradients? Evidence from the prairie–forest biome boundary of historic Minnesota, USA. J. Veg. Sci. 24, 1129–1140 (2013).

    Google Scholar 

  • 138.

    Grimm, E. C. Fire and other factors controlling the Big Woods vegetation of Minnesota in the mid-nineteenth century. Ecol. Monogr. 54, 291–311 (1984).

    Google Scholar 

  • 139.

    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    CAS  PubMed  Google Scholar 

  • 140.

    Thomson, J. A. et al. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Glob. Change Biol. 21, 1463–1474 (2015).

    Google Scholar 

  • 141.

    Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).

    PubMed  Google Scholar 

  • 142.

    Hansen, W. D. & Turner, M. G. Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying. Ecol. Monogr. 89, e01340 (2019).

    Google Scholar 

  • 143.

    Bestelmeyer, B. T. et al. Analysis of abrupt transitions in ecological systems. Ecosphere 2, 129 (2011).

    Google Scholar 

  • 144.

    Lenton, T. M. Early warning of climate tipping points. Nat. Clim. Change 1, 201–209 (2011).

    Google Scholar 

  • 145.

    Hastings, A. & Wysham, D. B. Regime shifts in ecological systems can occur with no warning. Ecol. Lett. 13, 464–472 (2010).

    PubMed  Google Scholar 

  • 146.

    Boettiger, C. & Hastings, A. Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9, 2527–2539 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 147.

    Millar, C. I., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).

    PubMed  Google Scholar 

  • 148.

    Choi, Y. D. Restoration ecology to the future: a call for new paradigm. Restor. Ecol. 15, 351–353 (2007).

    Google Scholar 

  • 149.

    Corlett, R. T. Restoration, reintroduction, and rewilding in a changing world. Trends Ecol. Evol. 31, 453–462 (2016).

    PubMed  Google Scholar 

  • 150.

    Sprugel, D. G. Disturbance, equilibrium, and environmental variability: what is ‘Natural’ vegetation in a changing environment? Biol. Conserv. 58, 1–18 (1991).

    Google Scholar 

  • 151.

    Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).

    CAS  PubMed  Google Scholar 

  • 152.

    Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567–569 (2009).

    CAS  PubMed  Google Scholar 

  • 153.

    Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).

    PubMed  Google Scholar 

  • 154.

    Truitt, A. M. et al. What is novel about novel ecosystems: managing change in an ever-changing world. Environ. Manag. 55, 1217–1226 (2015).

    Google Scholar 

  • 155.

    Murcia, C. et al. A critique of the ‘novel ecosystem’ concept. Trends Ecol. Evol. 29, 548–553 (2014).

    PubMed  Google Scholar 

  • 156.

    Ricciardi, A. & Simberloff, D. Assisted colonization is not a viable conservation strategy. Trends Ecol. Evol. 24, 248–253 (2009).

    PubMed  Google Scholar 

  • 157.

    Svenning, J.-C. Proactive conservation and restoration of botanical diversity in the Anthropocene’s “rambunctious garden”. Am. J. Bot. 105, 963–966 (2018).

    PubMed  Google Scholar 

  • 158.

    Jepson, P. Recoverable Earth: a twenty-first century environmental narrative. Ambio 48, 123–130 (2019).

    PubMed  Google Scholar 

  • 159.

    Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–346 (2008).

    CAS  PubMed  Google Scholar 

  • 160.

    van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).

    PubMed  Google Scholar 

  • 161.

    Willis, K. J. & MacDonald, G. M. Long-term ecological records and their relevance to climate change predictions for a warmer world. Annu. Rev. Ecol. Evol. Syst. 42, 267–287 (2011).

    Google Scholar 

  • 162.

    Farley, S. S., Dawson, A., Goring, S. J. & Williams, J. W. Situating ecology as a big data science: Current advances, challenges, and solutions. BioScience 68, 563–576 (2018).

    Google Scholar 

  • 163.

    Brown, T. B. et al. Using phenocams to monitor our changing Earth: toward a global phenocam network. Front. Ecol. Environ. 14, 84–93 (2016).

    Google Scholar 

  • 164.

    Clark, J. S. et al. Ecological forecasts: an emerging imperative. Science 293, 657–660 (2001).

    CAS  PubMed  Google Scholar 

  • 165.

    Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).

    CAS  PubMed  Google Scholar 

  • 166.

    Dietze, M. C. Ecological Forecasting (Princeton Univ. Press, 2017).

  • 167.

    Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).

    CAS  PubMed  Google Scholar 

  • 168.

    Thomas, S. M., Griffiths, S. W. & Ormerod, S. J. Adapting streams for climate change using riparian broadleaf trees and its consequences for stream salmonids. Freshw. Biol. 60, 64–77 (2015).

    Google Scholar 

  • 169.

    Greenwood, O., Mossman, H. L., Suggitt, A. J., Curtis, R. J. & Maclean, I. M. D. Using in situ management to conserve biodiversity under climate change. J. Appl. Ecol. 53, 885–894 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 170.

    Carpenter, S. R. & Turner, M. G. Hares and tortoises: interactions of fast and slow variables in ecosystems. Ecosystems 3, 495–497 (2000).

    Google Scholar 

  • 171.

    Harris, I., Jones, P., Osborn, T. & Lister, D. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

    Google Scholar 

  • 172.

    Bureau of Reclamation Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Hydrology Projections, Comparison with Preceding Information, and Summary of User Needs (US Department of the Interior, Bureau of Reclamation, Technical Services Center, 2014).

  • 173.

    Delcourt, H. R. & Delcourt, P. A. Quaternary Ecology: A Paleoecological Perspective (Chapman & Hall, 1991).

  • 174.

    IPCC in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1–32 (Cambridge Univ. Press, 2014).

  • 175.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    CAS  PubMed  Google Scholar 

  • 176.

    McDowell, P. F., Webb, T. III & Bartlein, P. J. in The Earth as Transformed by Human Action (eds Turner, B. L. II et al.) 143–162 (Cambridge Univ. Press, 1990).

  • 177.

    Delcourt, P. A. & Delcourt, H. R. Long-Term Forest Dynamics of the Temperate Zone: A Case Study of Late-Quaternary Forests in Eastern North America (Springer-Verlag, 1987).

  • 178.

    Turner, M. G., Dale, V. H. & Gardner, R. H. Predicting across scales: theory development and testing. Landsc. Ecol. 3, 245–252 (1989).

    Google Scholar 

  • 179.

    Kidwell, S. M. Biology in the Anthropocene: challenges and insights from young fossil records. Proc. Natl Acad. Sci. USA 12, 4922–4929 (2015).

    Google Scholar 

  • 180.

    National Research Council Abrupt Climate Change: Inevitable Surprises (National Academy Press, 2002).

  • 181.

    Rahmstorf, S. in Encyclopedia of Ocean Sciences (eds Steele, J. et al.) 1–6 (Academic Press, 2001).

  • 182.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS  PubMed  Google Scholar 

  • 183.

    Staver, A. C., Archibald, S. & Levin, S. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92, 1063–1072 (2011).

    PubMed  Google Scholar 

  • 184.

    Andersen, T., Carstensen, J., Hernández-Garcia, E. & Duarte, C. M. Ecological thresholds and regime shifts: approaches to identification. Trends Ecol. Evol. 24, 49–57 (2009).

    PubMed  Google Scholar 

  • 185.

    Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).

    Google Scholar 

  • 186.

    Claussen, M. Late Quaternary vegetation-climate feedbacks. Clim. Past 5, 203–216 (2009).

    Google Scholar 

  • 187.

    Liu, Z., Notaro, M. & Gallimore, R. Indirect vegetation-soil moisture feedback with application to Holocene North Africa climate. Glob. Change Biol. 16, 1733–1743 (2010).

    Google Scholar 


  • Source: Ecology - nature.com

    Mismatch of thermal optima between performance measures, life stages and species of spiny lobster

    Field geology at a distance