in

Acceleration predicts energy expenditure in a fat, flightless, diving bird

  • 1.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  • 2.

    Tomlinson, S. et al. Applications and implications of ecological energetics. Trends Ecol. Evol. 29, 280–290 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies; a reappraisal. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13040 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Stearns, S. C. The Evolution of Life Histories (OUP Oxford, Oxford, 1992).

    Google Scholar 

  • 5.

    Green, J. A., Boyd, I. L., Woakes, A. J., Warren, N. L. & Butler, P. J. Evaluating the prudence of parents: Daily energy expenditure throughout the annual cycle of a free-ranging bird, the macaroni penguin Eudyptes chrysolophus. J. Avian Biol. 40, 529–538 (2009).

    Article  Google Scholar 

  • 6.

    Halsey, L. G. et al. Flexibility, variability and constraint in energy management patterns across vertebrate taxa revealed by long-term heart rate measurements. Funct. Ecol. 33, 260–272 (2019).

    Article  Google Scholar 

  • 7.

    Butler, P. J., Green, J. A., Boyd, I. L. & Speakman, J. R. Measuring metabolic rate in the field: The pros and cons of the doubly labelled water and heart rate methods. Funct. Ecol. 18, 168–183 (2004).

    Article  Google Scholar 

  • 8.

    Green, J. A. The heart rate method for estimating metabolic rate: Review and recommendations. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 158, 287–304 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 9.

    Green, J. A., Halsey, L. G., Wilson, R. P. & Frappell, P. B. Estimating energy expenditure of animals using the accelerometry technique: Activity, inactivity and comparison with the heart-rate technique. J. Exp. Biol. 212, 471–482 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Speakman, J. R. Doubly Labelled Water: Theory and Practice (Chapman and Hall, London, 1997).

    Google Scholar 

  • 11.

    Yoda, K. et al. A new technique for monitoring the behaviour of free-ranging Adélie penguins. J. Exp. Biol. 204, 685–690 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Wilson, R. P. et al. Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: The case of the cormorant. J. Anim. Ecol. 75, 1081–1090 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Gleiss, A. C., Wilson, R. P. & Shepard, E. L. C. Making overall dynamic body acceleration work: On the theory of acceleration as a proxy for energy expenditure. Methods Ecol. Evol. 2, 23–33 (2011).

    Article  Google Scholar 

  • 14.

    Ropert-Coudert, Y. & Wilson, R. P. Trends and perspectives in animal-attached remote sensing. Front. Ecol. Environ. 3, 437–444 (2005).

    Article  Google Scholar 

  • 15.

    Gatt, M. C., Quetting, M., Cheng, Y. & Wikelski, M. Dynamic body acceleration increases by 20% during flight ontogeny of Greylag Geese (Anser anser). J. Avian Biol. 1, 2235 (2019).

    Google Scholar 

  • 16.

    Van Walsum, T. A. et al. Exploring the relationship between flapping behaviour and accelerometer signal during ascending flight, and a new approach to calibration. Ibis (Lond. 1859) 162, 13–26 (2020).

    Article  Google Scholar 

  • 17.

    Elliott, K. H. Measurement of flying and diving metabolic rate in wild animals: Review and recommendations. Comparat. Biochem. Physiol. Part A Mol. Integr. Physiol. 202, 63–77 (2016).

    CAS  Article  Google Scholar 

  • 18.

    Fahlman, A., Svärd, C., Rosen, D. S., Jones, D. R. & Trites, A. W. Metabolic costs of foraging and the management of O2 and CO2 stores in Steller sea lions. J. Exp. Biol. 211, 3573–3580 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Payne, N. L. et al. Accelerometry estimates field metabolic rate in giant Australian cuttlefish Sepia apama during breeding. J. Anim. Ecol. 80, 422–430 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Wright, S., Metcalfe, J. D., Hetherington, S. & Wilson, R. P. Estimating activity-specific energy expenditure in a teleost fish, using accelerometer loggers. Mar. Ecol. Prog. Ser. 496, 19–32 (2014).

    ADS  Article  Google Scholar 

  • 21.

    Bidder, O. R. et al. Does the treadmill support valid energetics estimates of field locomotion?. Integr. Comp. Biol. 57, 301–319 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Pagano, A. M. & Williams, T. M. Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: A validation with doubly labeled water. Ecol. Evol. 00, 1–10 (2019).

    Google Scholar 

  • 23.

    Jeanniard-du-Dot, T., Trites, A. W., Arnould, J. P. Y., Speakman, J. R. & Guinet, C. Activity-specific metabolic rates for diving, transiting, and resting at sea can be estimated from time–activity budgets in free-ranging marine mammals. Ecol. Evol. 7, 2969–2976 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Hicks, O. et al. Validating accelerometry estimates of energy expenditure across behaviours using heart rate data in a free-living seabird. J. Exp. Biol. 220, 1875–1881 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Elliott, K. H., Le Vaillant, M., Kato, A., Speakman, J. R. & Ropert-Coudert, Y. Accelerometry predicts daily energy expenditure in a bird with high activity levels. Biol. Lett. 9, 1–4 (2013).

    Article  Google Scholar 

  • 26.

    Bishop, C. M. et al. The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations. Science 147, 250–254 (2015).

    ADS  Article  CAS  Google Scholar 

  • 27.

    Stothart, M. R., Elliott, K. H., Wood, T., Hatch, S. A. & Speakman, J. R. Counting calories in cormorants: Dynamic body acceleration predicts daily energy expenditure measured in pelagic cormorants. J. Exp. Biol. 219, 2192–2200 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Karasov, W. H. Daily energy expenditure and the cost of activity in mammals. Integr. Comp. Biol. 32, 238–248 (1992).

    Google Scholar 

  • 29.

    Lovvorn, J. R. Thermal substitution and aerobic efficiency: Measuring and predicting effects of heat balance on endotherm diving energetics. Philos. Trans. R. Soc. B Biol. Sci. 362, 2079–2093 (2007).

    CAS  Article  Google Scholar 

  • 30.

    Lewden, A., Enstipp, M. R., Picard, B., Van Walsum, T. & Handrich, Y. High peripheral temperatures in king penguins while resting at sea: Thermoregulation versus fat deposition. J. Exp. Biol. 220, 3084–3094 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Halsey, L. G., Shepard, E. L. C. & Wilson, R. P. Assessing the development and application of the accelerometry technique for estimating energy expenditure. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 158, 305–314 (2011).

    Article  CAS  Google Scholar 

  • 32.

    Elliott, K. H. Measurement of flying and diving metabolic rate in wild animals: Review and recommendations. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 202, 63–77 (2016).

    CAS  Article  Google Scholar 

  • 33.

    Wilson, R. P. & Culik, B. M. The cost of a hot meal: Facultative specific dynamic action may ensure temperature homeostasis in post-ingestive endotherms. Comp. Biochem. Physiol. Part A Physiol. 100, 151–154 (1991).

    CAS  Article  Google Scholar 

  • 34.

    Halsey, L. G. et al. Assessing the validity of the accelerometry technique for estimating the energy expenditure of diving double-crested cormorants Phalacrocorax auritus. Physiol. Biochem. Zool. 84, 230–237 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Ladds, M. A., Rosen, D. A. S., Slip, D. J. & Harcourt, R. G. Proxies of energy expenditure for marine mammals: An experimental test of ‘the time trap’. Sci. Rep. 7, 1–10 (2017).

    CAS  Article  Google Scholar 

  • 36.

    Qasem, L. et al. Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector?. PLoS ONE 7, e31187 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Sparling, C. E., Thompson, D., Fedak, M. A., Gallon, S. L. & Speakman, J. R. Estimating field metabolic rates of pinnipeds: Doubly labelled water gets the seal of approval. Funct. Ecol. 22, 245–254 (2008).

    Article  Google Scholar 

  • 38.

    Ropert-Coudert, Y. et al. Two recent massive breeding failures in an adélie penguin colony call for the creation of a Marine Protected area in D’Urville Sea/Mertz. Front. Mar. Sci. 5, 1–7 (2018).

    Article  Google Scholar 

  • 39.

    Chappell, M. A., Shoemaker, V. H., Janes, D. N., Maloney, S. K. & Bucher, T. L. Energetics of foraging in breeding Adélie penguins. Ecology 74, 2450–2461 (1993).

    Article  Google Scholar 

  • 40.

    Nagy, K. A. & Obst, B. S. Food and energy requirements of Adelie penguins (Pygoscelis adeliae) on the Antarctic Peninsula. Physiol. Zool. 65, 1271–1284 (1992).

    Article  Google Scholar 

  • 41.

    Culik, B. Y. B. & Wilson, R. P. Swimming energetics and performance of instrumented Adélie penguins (Pygoscelis Adeliae). J. Exp. Biol. 158, 355–368 (1991).

    Google Scholar 

  • 42.

    Kooyman, G. L., Gentry, R. L., Bergman, W. P. & Hammel, H. T. Heat loss in penguins during immersion and compression. Comp. Biochem. Physiol. Part A Physiol. 54, 75–80 (1976).

    CAS  Article  Google Scholar 

  • 43.

    Fahlman, A., Wilson, R., Svärd, C., Rosen, D. A. S. & Trites, A. W. Activity and diving metabolism correlate in Steller sea lion Eumetopias jubatus. Aquat. Biol. 2, 75–84 (2008).

    Article  Google Scholar 

  • 44.

    Gleiss, A. C., Dale, J. J., Holland, K. N. & Wilson, R. P. Accelerating estimates of activity-specific metabolic rate in fishes: Testing the applicability of acceleration data-loggers. J. Exp. Mar. Bio. Ecol. 385, 85–91 (2010).

    Article  Google Scholar 

  • 45.

    Halsey, L. G., Jones, T. T., Jones, D. R., Liebsch, N. & Booth, D. T. Measuring energy expenditure in sub-adult and hatchling sea turtles via accelerometry. PLoS ONE 6, 2 (2011).

    Article  CAS  Google Scholar 

  • 46.

    Halsey, L. G. et al. The relationship between oxygen consumption and body acceleration in a range of species. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 152, 197–202 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Halsey, L. G. et al. Acceleration versus heart rate for estimating energy expenditure and speed during locomotion in animals: Tests with an easy model species, Homo sapiens. Zoology. https://doi.org/10.1016/j.zool.2007.07.011 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • 48.

    Gleiss, A. C., Gruber, S. H. & Wilson, R. P. Multi-channel data-logging: Towards determination of behaviour and metabolic rate in free-swimming sharks. Tag. Track. Mar. Anim. Electron. Dev. 9, 211–228 (2009).

    Google Scholar 

  • 49.

    Gómez-Laich, A., Wilson, R. P., Quintana, F. & Shepard, E. Identification of imperial cormorant Phalacrocorax atriceps behaviour using accelerometers. Endanger. Species Res. 10, 29–37 (2008).

    Article  Google Scholar 

  • 50.

    Jeanniard-du-Dot, T., Guinet, C., Arnould, J. P. Y., Speakman, J. R. & Trites, A. W. Accelerometers can measure total and activity-specific energy expenditures in free-ranging marine mammals only if linked to time-activity budgets. Funct. Ecol. 31, 377–386 (2016).

    Article  Google Scholar 

  • 51.

    Gómez-Laich, A., Wilson, R. P., Gleiss, A. C., Shepard, E. L. C. & Quintana, F. Use of overall dynamic body acceleration for estimating energy expenditure in cormorants. J. Exp. Mar. Bio. Ecol. 399, 151–155 (2011).

    Article  Google Scholar 

  • 52.

    Fahlman, A., Schmidt, A., Handrich, Y., Woakes, A. J. & Butler, P. J. Metabolism and thermoregulation during fasting in king penguins, Aptenodytes patagonicus, in air and water. Am. J. Physiol. Integr. Comp. Physiol. 289, R670–R679 (2005).

    CAS  Article  Google Scholar 

  • 53.

    Ciancio, J. E., Quintana, F., Sala, J. E. & Wilson, R. P. Cold birds under pressure: Can thermal substitution ease heat loss in diving penguins?. Mar. Biol. 163, 1–15 (2016).

    Article  CAS  Google Scholar 

  • 54.

    Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13040 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 55.

    Lifson, N. & McClintock, R. Theory of use of the turnover rates of body water for measuring energy and material balance. J. Theor. Biol. 12, 46–74 (1966).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Speakman, J. R. & Król, E. Comparison of different approaches for the calculation of energy expenditure using doubly labeled water in a small mammal. Physiol. Biochem. Zool. 78, 650–667 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Beaulieu, M. et al. Sex-specific parental strategies according to the sex of offspring in the Adélie penguin. Behav. Ecol. 20, 878–883 (2009).

    Article  Google Scholar 

  • 58.

    Berman, E. S. F. et al. Direct analysis of δ2H and δ18O in natural and enriched human urine using laser-based, off-axis integrated cavity output spectroscopy. Anal. Chem. 84, 9768–9773 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Nagy, K. A. Doubly labeled water method (3 HH 18 O): A guide to its use. Oecologia 59, 1–45 (1983).

    Article  Google Scholar 

  • 60.

    Speakman, J. R. How should we calculate CO2 production in DLW studies of mammals. Funct. Ecol. 7, 746–750 (1993).

    Google Scholar 

  • 61.

    Visser, G. H. & Schekkerman, H. Validation of the doubly labeled water method in growing precocial birds: The importance of assumptions concerning evaporative water loss. Physiol. Biochem. Zool. 72, 740–749 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Van Trigt, R. et al. Validation of the DLW method in Japanese quail at different water fluxes using laser and IRMS. J. Appl. Physiol. 93, 2147–2154 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Culik, B. et al. Energy requirements of Adélie penguin (Pygoscelis adeliae) chicks. J. Comp. Physiol. B 160, 61–70 (1990).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Wilson, R. P. et al. Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildl. Soc. Bull. 25, 101–105 (1997).

    Google Scholar 

  • 65.

    Collins, P. M. et al. Interpreting behaviors from accelerometry: A method combining simplicity and objectivity. Ecol. Evol. 5, 4642–4654 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Patterson, A., Gilchrist, H. G., Chivers, L., Hatch, S. & Elliott, K. A comparison of techniques for classifying behavior from accelerometers for two species of seabird. Ecol. Evol. https://doi.org/10.1002/ece3.4740 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 67.

    R Core Team. R: A language and environment for statistical computing. (2019).


  • Source: Ecology - nature.com

    MIT labs win top recognition for sustainable practices in cold storage management

    Amanda Hubbard honored with Secretary of Energy’s Appreciation Award