We estimated the abundance of desert bighorn sheep in a captive facility located within the Chihuahuan Desert of New Mexico (Fig. 1). The area is arid, mountainous, with steep cliffs punctuated by ravines. The entire facility is enclosed by a high fence, preventing desert bighorn sheep ingress or egress. These animals are wild, unconditioned to humans, and used by The New Mexico Game and Fish Department (NMDGF) to establish and bolster other desert bighorn sheep populations within New Mexico16.
NMDGF leads an annual spring census to enumerate desert bighorn sheep numbers within the facility. Methodologically, the census uses a ground crew of spaced individuals walking in a line perpendicular to pen fencing, within the facility (i.e., drive count or census). Each individual keeps track of neighboring individuals to space the line, and to count any desert bighorn sheep breaking past them. Most desert bighorn sheep are herded ahead of the line. Other biologists at high topographical sites use spotting-scopes and binoculars to count and age class the moving sheep. Census counts are classified by animal ages and sex. We consider young sheep any animal ≤ 1.5 years old. Adult rams and ewes consist of males and females aged > 1.5 years old, respectively. The group “adult” includes all sheep > 1.5 years old.
We established 11 motion activated camera traps (Bushnell Trophy Cam) at the centers of an 800-m grid with a random geographical start. Cameras were secured to T-posts or existing vegetation when rocky areas thwarted post establishment. Most cameras were oriented north, to minimize sun exposure in the imagery. When vegetation or rock blocked the camera view, the camera orientation was rotated eastward until a clear view was obtained. Camera heights were 0.9–1.2 m with declination perpendicular to the ground. Cameras were checked at 6 month intervals and the retrieved SD cards were never full. Cameras were motion activated and set at the shortest delay possible (10 s; meaning that the camera waits at least 10 s after recording a picture before it will record another). In practice, the fastest trigger speed that cameras recorded imagery was a mean of 14.92 s (N = 6 cameras; SD = 0.94), a value we rounded to 15 s and employed in our analyses. Cameras recorded one image per trigger. We deployed cameras by 15 May 2017 and retrieved cameras no earlier than 30 April 2018. Our analyses period began on 1 October 2017 and ended on 1 May 2018. We employed a 5 month acclimation period to avoid the cameras serving as a novel attractant for desert bighorn sheep, which would violate distance sampling assumptions. Further, we experienced 1 camera failure during this acclimation period, and relocated 2 misplaced cameras. Lastly, some desert bighorn sheep gathered in shady locations near cameras during hot months (June–September) which created extreme variation in the encounter rate. The 1 October 2017–1 May 2018 period lacked all of these issues.
Imagery of desert bighorn sheep were identified and then classified by sex and age class: rams, ewes, young, adults (an adult-sized animal with sex undiscernible), and unknown [undiscernible (e.g. picture of a hoof, or animals blocking a clear view another animal)17]. To quantify distances, an individual stood at each camera and used the printed images of desert bighorn sheep to position another person at the exact locations that an animal was imaged. Distances between individuals were measured with a laser rangefinder and metric tape (Fig. 2; the authors confirm that informed consent was obtained to publish the identifying information/images in an online open-access publication). We supplemented these measurements by recording distances between the camera and several recognizable objects in the images (e.g. rocks, plants), to ensure accurate distance delineations for the imaged sheep.
The sensitivity of a trail camera’s passive infrared sensor (PIR) will decline as radial distance from the camera increases. Other factors, like vegetation and topography, also cause animal detections to decline with distance. This situation makes distance sampling an appealing approach, as its’ foundational premise is that the probability of detecting an animal declines with distance from the observation point15. The technique relies on measured distances between animals and the observation point. Therefore, we used the distance measures of desert bighorn sheep to the respective trail camera imaging them, to estimate sheep abundances using the ‘distance’ package (version 0.9.812) in program R. We analyzed data using a fall period (1 October 2017–31 January 2018) and a spring period (1 March 2018–1 May 2018). Dates for these periods were selected by season while ensuring sufficient sample sizes.
The camera trap operates like a point count sample. The sampling angle for each camera’s field of view was 50°18. Therefore, we multiplied sampling effort by this fraction (50/360) to correctly represent the amount of sampling area.
When analyzing data within a distance sampling approach, obtaining unbiased density estimates relies on correspondence between the sampling period and the period describing when the target species are active and therefore available for detection10,15. In our situation, this means aligning the sampling period of distance measurements with the period of time that desert bighorn sheep were active and able to trigger the trail camera10. In our study, we acquired very few nocturnal images of desert bighorn sheep (Fig. 4). Therefore, we censored study effort and distance data to the period defined by 1 h before sunrise through 2 h after sunset for each month, on a daily basis. Doing so removed < 2% of all images. This outcome matches the diurnal behavioral patterns of desert bighorn sheep19. Camera traps operating at night are also likely to have different detection functions than when operating during the day, potentially requiring separate model constructs for analyses.
Histogram depicting the number of all desert bighorn images taken at the Red Rock facility (count) within hourly intervals during the study period (10/01/17–05/01/2018).
We modeled detection functions using the key function (Uniform, Half-normal and Hazard-rate) + series expansion (cosine, simple polynomial, Hermite polynomial) approach15. These models provide estimates of detection probabilities, which are combined with encounter rate and survey effort to derive an abundance estimate15. Survey effort for camera trap-based surveys is the number of camera triggers possible per trap during the survey period (i.e., total number of seconds a camera was operating divided by trigger speed). We calculated abundances for desert bighorn sheep for each age and sex category and all adult categories combined. Competing models with sufficient goodness of fit (GOF) were selected using AIC criteria. Competing models (i.e., models within 2 ΔAIC) were model averaged. All analyses operated with α = 0.1.
Lastly, we performed an analysis to identify the number of sampling sites (i.e., camera traps) required to provide a coefficient of variation (CV) spanning 10–50%. We examined data from studies spanning 2 (spring period) and 4 months (fall period), respectively.
Our study received approval by NMDGF and the United States Fish and Wildlife Service prior to conducting the work. The authors confirm that all methods and experiments were performed in accordance with the relevant guidelines and regulations of these agencies.
Source: Ecology - nature.com