in

An agent-based algorithm resembles behaviour of tree-dwelling bats under fission–fusion dynamics

  • 1.

    Rood, J. P. Group size, survival, reproduction, and routes to breeding in dwarf mongooses. Anim. Behav. 39(3), 566–572 (1990).

    Article  Google Scholar 

  • 2.

    Kokko, H., Johnstone, R. A. & Clutton-Brock, T. H. The evolution of cooperative breeding through group augmentation. Proc. R. Soc. B 268(1463), 187–196 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Kerth, G. Causes and consequences of sociality in bats. Bioscience 58(8), 737–746 (2008).

    Article  Google Scholar 

  • 4.

    Kunz, T. H. Roosting ecology of bats in Ecology of bats (ed. Kunz, T. H.) 1–55 (University of Chicago Press, Chicago, 1982).

  • 5.

    Kunz, T. H. & Lumsden, L. F. Ecology of cavity and foliage roosting bats in Bat ecology (eds. Kunz, T. H. & Fenton M. B.) 3–89 (University of Chicago Press, Chicago. 2003).

  • 6.

    Lacki, M. J. & Baker, M. D. A prospective power analysis and review of habitat characteristics used in studies of tree-roosting bats. Acta Chiropterol. 5(2), 199–208 (2003).

    Article  Google Scholar 

  • 7.

    Naďo, L. & Kaňuch, P. Roost site selection by tree-dwelling bats across biogeographical regions: an updated meta-analysis with meta-regression. Mammal Rev. 45(4), 215–226 (2015).

    Article  Google Scholar 

  • 8.

    Barclay, R. M. R., Faure, P. A. & Farr, D. R. Roosting behaviour and roost selection by migrating silver-haired bats (Lasyonycteris noctivagans). J. Mammal. 69(4), 821–825 (1988).

    Article  Google Scholar 

  • 9.

    Lewis, S. E. Roost fidelity of bats: a review. J. Mammal. 76(2), 481–496 (1995).

    MathSciNet  Article  Google Scholar 

  • 10.

    Ruczyński, I. & Bogdanowicz, W. Roost cavity selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Białowieża Primeval Forest, eastern Poland. J. Mammal. 86(5), 921–930 (2005).

    Article  Google Scholar 

  • 11.

    Ruczyński, I. & Bogdanowicz, W. Summer roost selection by tree-dwelling bats Nyctalus noctula and N. leisleri: a multiscale analysis. J. Mammal. 89(4), 942–951 (2008).

    Article  Google Scholar 

  • 12.

    Lučan, R. K., Hanák, V. & Horáček, V. Long-term re-use of tree roosts by European forest bats. For. Ecol. Manag. 258(7), 1301–1306 (2009).

    Article  Google Scholar 

  • 13.

    Kuhnert, E., Schonbachler, C., Arlettaz, R. & Christe, P. Roost selection and switching in two forest-dwelling bats: implications for forest management. Eur. J. Wildl. Res. 62(4), 497–500 (2016).

    Article  Google Scholar 

  • 14.

    Dietz, M., Brombacher, M., Erasmy, M., Fenchuk, V. & Simon, O. Bat community and roost site selection of tree-dwelling bats in a well-preserved European lowland forest. Acta Chiropterol. 20(1), 117–127 (2018).

    Article  Google Scholar 

  • 15.

    Jensen, M. E., Moss, C. F. & Surlykke, A. Echolocating bats can use acoustic landmarks for spatial orientation. J. Exp. Biol. 208(23), 4399–4410 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Kerth, G. & Reckardt, K. Information transfer about roosts in female Bechstein’s bats: an experimental field study. Proc. R. Soc. B 270(1514), 511–515 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Kerth, G., Ebert, C. & Schmidtke, C. Group decision making in fission-fusion societies: evidence from two-field experiments in Bechstein’s bats. Proc. R. Soc. B 273(1602), 2785–2790 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Reckardt, K. & Kerth, G. Roost selection and roost switching of female Bechstein’s bats (Myotis bechsteinii) as a strategy of parasite avoidance. Oecologia 154(3), 581–588 (2007).

    PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 19.

    Metheny, J. D., Kalcounis-Rueppell, M. C., Willis, C. K. R., Kolar, K. A. & Brigham, R. M. Genetic relationship between roost-mates in a fission-fusion society of tree-roosting big brown bats (Eptesicus fuscus). Behav. Ecol. Sociobiol. 62(7), 1043–1051 (2008).

    Article  Google Scholar 

  • 20.

    Popa-Lisseanu, A. G., Bontadina, F., Mora, O. & Ibáñez, C. Highly structured fission-fusion societies in an aerial-hawking, carnivorous bat. Anim. Behav. 75(2), 471–482 (2008).

    Article  Google Scholar 

  • 21.

    Rueegger, N., Law, B. & Goldingay, R. Interspecific differences and commonalities in maternity roosting by tree cavity-roosting bats over a maternity season in a timber production landscape. PLoS ONE 13(3), e0194429 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 22.

    Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission-fusion dynamics of their groups. Proc. R. Soc. B 278(1719), 2761–2767 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Patriquin, K. J. et al. Weather as a proximate explanation for fission-fusion dynamics in female northern long-eared bats. Anim. Behav. 122, 47–57 (2016).

    Article  Google Scholar 

  • 24.

    Kerth, G., Weissmann, K. & König, B. Day roost selection in female Bechstein’s bats (Myotis bechsteinii): a field experiment to determine the influence of roost temperature. Oecologia 126(1), 1–9 (2001).

    PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 25.

    Sedgeley, J. A. Quality of cavity microclimate as a factor influencing selection of maternity roosts by a tree-dwelling bat, Chalinolobus tuberculatus, New Zealand. J. Appl. Ecol. 38(2), 425–438 (2001).

    Article  Google Scholar 

  • 26.

    Patriquin, K. J. & Ratcliffe, J. M. Should I stay or should I go? Fission-fusion dynamics in bats in Sociality in bats (ed. Ortega, J.). 65–103 (Springer, New York, 2016).

  • 27.

    Fenton, M. B. et al. Raptors and bats: threats and opportunities. Anim. Behav. 48(1), 9–18 (1994).

    Article  Google Scholar 

  • 28.

    Lučan, R. K. Relationships between the parasitic mite Spinturnix andegavinus (Acari: Spinturnicidae) and its bat host, Myotis daubentonii (Chiroptera: Vespertilionidae): seasonal, sex- and age-related variation in infestation and possible impact of the parasite on the host condition and roosting behaviour. Folia Parasitol. 53(2), 147–152 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Barataud, M. Acoustic Ecology of European Bats. Species Identification and Studies of Their Habitats and Foraging Behavior (Biotope Editions & National Museum of Natural History, Paris, 2015).

    Google Scholar 

  • 30.

    Russo, D., Cistrone, L. & Jones, G. Spatial and temporal patterns of roost use by tree-dwelling barbastelle bats Barbastella barbastellus. Ecography 28(6), 769–776 (2005).

    Article  Google Scholar 

  • 31.

    Chaverri, G., Gillam, E. H. & Vonhof, M. J. Social calls used by leaf-roosting bat to signal location. Biol. Lett. 6(4), 441–444 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Schöner, C., Schöner, M. & Kerth, G. Similar is not the same: Social calls of conspecifics are more effective in attracting wild bats to day roosts than those of other bat species. Behav. Ecol. Sociobiol. 64(12), 2053–2063 (2010).

    Article  Google Scholar 

  • 33.

    Furmankiewicz, J., Ruczyński, I., Urban, R. & Jones, G. Social calls provide tree-dwelling bats with information about the location of conspecifics at roosts. Ethology 117(6), 480–489 (2011).

    Article  Google Scholar 

  • 34.

    Gillam, E. H. & Chaverri, G. Strong individual signatures and weaker group signatures in contact calls of Spix’s disc-winged bat, Throptera tricolor. Anim. Behav. 83(1), 269–276 (2012).

    Article  Google Scholar 

  • 35.

    Naďo, L. & Kaňuch, P. Dawn swarming in tree-dwelling bats: an unexplored behaviour. Acta Chiropterol. 15(2), 387–392 (2013).

    Article  Google Scholar 

  • 36.

    Naďo, L. & Kaňuch, P. Swarming behaviour associated with group cohesion in tree-dwelling bats. Behav. Proces. 120, 80–86 (2015).

    Article  Google Scholar 

  • 37.

    Gillam, E. H., Chaverri, G., Montero, K. & Sagot, M. Social calls produced within and near the roost in two species of tent-making bats, Dermanura watsoni and Ectophylla alba. PLoS ONE 8(4), e61731 (2013).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 38.

    Ruczyński, I. & Bartoń, K. A. Modelling sensory limitation: the role of tree selection, memory and information transfer in bats’ roost searching strategies. PLoS ONE 7(9), e44897 (2012).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 39.

    Couzin, I. D., Krause, J., Franks, N. R. & Levin, S. A. Effective leadership and decision-making in animal groups on the move. Nature 433(7025), 513–516 (2005).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 40.

    Strandburg-Peshkin, A., Farine, D. R., Couzin, I. D. & Crofoot, M. C. Shared decision-making drives collective movement in wild baboons. Science 348(6241), 1358–1361 (2015).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 41.

    Egnor, S. E. R. & Branson, K. Computational analysis of behavior. Annu. Rev. Neurosci. 39, 217–236 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Ilany, A. & Akcay, E. Social inheritance can explain the structure of animal social networks. Nat. Commun. 7(1), 1–10 (2016).

    Article  CAS  Google Scholar 

  • 43.

    Paolucci, M., Conte, R. & Tosto, G. D. A model of social organization and the evolution of food sharing in vampire bats. Adapt. Behav. 14(3), 223–238 (2006).

    Article  Google Scholar 

  • 44.

    Witkowski, M. Energy sharing for swarms modeled on the common vampire bat. Adapt. Behav. 15(3), 307–328 (2007).

    Article  Google Scholar 

  • 45.

    Mavrodiev, P., Fleischmann, D., Kerth, G. & Schweitzer, F. Data-driven modeling of leading-following behavior in Bechstein’s bats. bioRxiv 1, 843938 (2019).

    Google Scholar 

  • 46.

    Ripperger, S. P. et al. Vampire bats that cooperate in the lab maintain their social networks in the wild. Curr. Biol. 29(23), 4139–4144 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Perony, N., Kerth, G. & Schweitzer, F. Data-driven modeling of group formation in the fission-fusion dynamics of Bechstein’s bats. bioRxiv 1, 862219 (2019).

    Google Scholar 

  • 48.

    Zelenka, J., Kasanický, T., Budinská, I., Naďo, L. & Kaňuch, P. SkyBat: a swarm robotic model inspired by fission-fusion behaviour of bats in advances in service and industrial robotics. RAAD 2018. Mechanisms and machine science 67 (eds. Aspragathos, N., Koustoumpardis, P. & Moulianitis, V.) 521–528 (Springer, New York, 2019).

  • 49.

    Zelenka, J., Kasanický, T. & Budinská, I. A swarm algorithm inspired by tree-dwelling bats. Experiments and evaluations in advances in service and industrial robotics. RAAD 2019. Advances in intelligent systems and computing 980 (eds. Berns, K. & Görges, D.) 527–534 (Springer, New York, 2020).

  • 50.

    Dietz, C. & Kiefer, A. Bats of Britain and Europe (Bloomsbury Publishing, London, 2016).

    Google Scholar 

  • 51.

    Kaňuch, P., Krištín, A. & Krištofík, J. Phenology, diet, and ectoparasites of Leisler’s bat (Nyctalus leisleri) in the Western Carpathians (Slovakia). Acta Chiropterol. 7(2), 249–258 (2005).

    Article  Google Scholar 

  • 52.

    Kaňuch, P. & Ceľuch, M. Bat assemblage of an old pastured oak woodland (Gavurky Protected Area, central Slovakia). Vespertilio 11, 57–64 (2007).

    Google Scholar 

  • 53.

    Naďo, L. & Kaňuch, P. Why sampling ratio matters: Logistic regression and studies of habitat use. PLoS ONE 13(7), e0200742 (2018).

    Article  CAS  Google Scholar 

  • 54.

    Naďo, L., Chromá, R. & Kaňuch, P. Structural, temporal and genetic properties of social groups in the short-lived migratory bat Nyctalus leisleri. Behaviour 154(7–8), 785–807 (2017).

    Article  Google Scholar 

  • 55.

    Schutt, W. A. Jr. et al. The dynamics of flight-initiating jumps in the common vampire bat Desmodus rotundus. J. Exp. Biol. 200(23), 3003–3012 (1997).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Shiel, C. B., Shiel, R. E. & Fairley, J. S. Seasonal changes in the foraging behaviour of Leisler’s bats (Nyctalus leisleri) in Ireland as revealed by radio-telemetry. J. Zool. 249(3), 347–358 (1999).

    Article  Google Scholar 

  • 57.

    Dechmann, D. K. N., Wikelski, M., van Noordwijk, H. J., Voigt, C. C. & Voigt-Heucke, S. L. Metabolic costs of bat echolocation in a non-foraging context support a role in communication. Front. Physiol. 4, 66 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Andresen, M. A. An area-based nonparametric spatial point pattern test: The test, its applications, and the future. Methodol. Innovat. 9, 1–11 (2016).

    Google Scholar 

  • 59.

    Steenbeek, W., Vandeviver, C. Andresen, M. A., Malleson, N. & Wheeler, A. sppt: spatial point pattern test. R package version 0.2.1. https://github.com/wsteenbeek/sppt (2018).

  • 60.

    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).

  • 61.

    Mangiafico, S. rcompanion: functions to support extension education program evaluation. R package version 2.3.25. https://cran.r-project.org/package=rcompanion(2020).

  • 62.

    Torchiano, M. effsize: efficient effect size computation. R package version 0.8.0. https://cran.r-project.org/package=effsize (2020).

  • 63.

    Cohen, J. A power primer. Psychol. Bull. 112(1), 155–159 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Hedenström, A. & Johansson, L. C. Bat flight: aerodynamics, kinematics and flight morphology. J. Exp. Biol. 218, 653–663 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Durlauf, S. & Young, P. Social Dynamics (MIT Press, Cambridge, 2001).

    Google Scholar 

  • 66.

    Yang X.-S. A new metaheuristic bat-inspired algorithm in Nature inspired cooperative strategies for optimization (NICSO 2010). Studies in computational intelligence 284 (eds. Gonzales, J. R., Pelta, D. A., Cruz, C., Terrazas, G. & Krasnogor, N.) 65–74 (Springer, New York, 2010).

  • 67.

    Gandomi, A. H. & Yang, X.-S. Chaotic bat algorithm. J. Comput. Sci. 5(2), 224–232 (2014).

    MathSciNet  Article  Google Scholar 

  • 68.

    Taha, A. M., Chen, S.-D. & Mustapha, A. Multi-swarm bat algorithm. Res. J. Appl. Sci. Eng. Tech. 10(12), 1389–1395 (2015).

    Article  Google Scholar 

  • 69.

    Jordehi, A. R. Chaotic bat swarm optimisation (CBSO). Appl. Softw. Comput. 26, 523–530 (2015).

    Article  Google Scholar 

  • 70.

    Wang, G.-G., Chang, B. & Zhang, Z. A multi-swarm bat algorithm for global optimization. Conference: IEEE Congress on Evolutionary Computation (CEC 2015). Sendai, Japan (2015).

  • 71.

    Dechmann, D. K. N., Kranstauber, B., Gibbs, D. & Wikelski, M. Group hunting: a reason for sociality in molossid bats?. PLoS ONE 5(2), e9012 (2010).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 72.

    Roeleke, M. et al. Landscape structure influences the use of social information in an insectivorous bat. Oikos 129(6), 912–923 (2020).

    Article  Google Scholar 

  • 73.

    Binitha, S. & Sathya, S. S. A survey of bio-inspired optimization algorithms. Int. J. Softw. Comput. Eng. 2(2), 137–151 (2012).

    Google Scholar 


  • Source: Ecology - nature.com

    Undergraduates ramp up research during pandemic diaspora

    Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization