in

An early Pangaean vicariance model for synapsid evolution

  • 1.

    Futuyma, D. J. Evolutionary Biology (Sinauer Associates, Sunderland, 1986).

    Google Scholar 

  • 2.

    Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, Sunderland, 2004).

    Google Scholar 

  • 3.

    Lieberman, B. S. Paleobiogeography: Using Fossil to Study Global Change, Plate Tectonics, and Evolution (Kluwer Academic/Plenum Publishers, New York, 2000).

    Google Scholar 

  • 4.

    Abe, F. R. & Lieberman, B. S. The nature of evolutionary radiations: A case study involving Devonian trilobites. Evol. Biol. 36, 225–234 (2009).

    Google Scholar 

  • 5.

    Nelson, G. & Platnick, N. Systematics and Biogeography (Columbia University Press, New York, 1981).

    Google Scholar 

  • 6.

    Torsvik, T. H. & Cocks, R. M. Earth History and Palaeogeography (Cambridge University Press, Cambridge, 2017).

    Google Scholar 

  • 7.

    Golonka, J. Phanerozoic paleoenvironment and paleolithofacies maps. Late Paleozoic. Geologia 33, 145–209 (2007).

    Google Scholar 

  • 8.

    Torsvik, T. H. et al. Phanerozoic polar wander, palaeogeography and dynamics. Earth Sci. Rev. 114, 325–368 (2012).

    ADS  Google Scholar 

  • 9.

    Davydov, V. I. & Cózar, P. The formation of the Alleghenian Isthmus triggered the Bashkirian glaciation: Constraints from warm-water benthic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 531B, 108403 (2019).

    ADS  Google Scholar 

  • 10.

    Grachev, A. F. & Nikolaev, V. A. East European platform development in the Late Precambrian and Paleozoic: Structure and sedimentation. Russ. J. Earth Sci. 8, ES4001 (2006).

    Google Scholar 

  • 11.

    Davydov, V. I. Precaspian Isthmus emergence triggered the Early Sakmarian glaciation: Evidence from the Lower Permian of the Urals, Russia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 511, 403–418 (2018).

    Google Scholar 

  • 12.

    Global paleogeography and tectonics in Deep Time Series; https://deeptimemaps.com/ (2019).

  • 13.

    Golonka, J. Phanerozoic palaeoenvironment and palaeolithofacies maps of the Arctic region. Geol. Soc. Lond. Mem. 35, 79–129 (2011).

    Google Scholar 

  • 14.

    Ziegler, A. M., Hulver, M. L. & Rowley, D. B. Permian world topography and climate. In Late Glacial and Postglacial Environmental Changes: Quaternary, Carboniferous-Permian and Proterozoic (ed. Martini, I. P.) 111–146 (Oxford University Press, Oxford, 1997).

    Google Scholar 

  • 15.

    Molostovsky, E. A., Molostovskaya, I. I. & Crasquin-Soleau, S. Depositional conditions in the southern Cis-Urals basin during Late Permian (biostratigraphic, lithofacies and petromagnetic data). Geodiversitas 19, 261–278 (1997).

    Google Scholar 

  • 16.

    Haq, B. U. & Schutter, S. R. A chronology of Paleozoic sea-level changes. Science 322, 64–68 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 17.

    Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. The ICS international chronostratigraphic chart. Episodes 36, 199–204 (2013).

    Google Scholar 

  • 18.

    Ogg, J. G., Ogg, G. M. & Gradstein, F. M. A Concise Geologic Time Scale 2016. Permian (Elsevier, Amsterdam, 2016).

    Google Scholar 

  • 19.

    Beauchamp, B. & Grasby, S. E. Permian lysocline shoaling and ocean acidification along NW Pangea led to carbonate eradication and chert expansion. Palaeogeogr. Palaeoclimatol. Palaeoecol. 350–352, 73–90 (2012).

    Google Scholar 

  • 20.

    Metcalfe, I., Crowley, J. L., Nicoll, R. S. & Schmitz, M. High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Res. 28, 61–81 (2015).

    ADS  CAS  Google Scholar 

  • 21.

    Davydov, V. I., Biakov, A. S., Schmitz, M. D. & Silantiev, V. V. Radioisotopic calibration of the Guadalupian (middle Permian) series: Review and updates. Earth Sci. Rev. 176, 222–240 (2018).

    ADS  CAS  Google Scholar 

  • 22.

    Davydov, V. I. et al. Middle Permian U-Pb zircon ages of the “glacial” deposits of the Atkan Formation, Ayan-Yuryakh anticlinorium, Magadan province, NE Russia: Their significance for global climatic interpretations. Gondwana Res. 38, 74–85 (2016).

    ADS  CAS  Google Scholar 

  • 23.

    Kossovaya, O. L. Artinskian-Wordian antitropical rugose coral associations: A palaeogeographical approach. Palaeoworld 18, 136–151 (2009).

    Google Scholar 

  • 24.

    Haig, D. W. et al. Late Artinskian-Early Kungurian (Early Permian) warming and maximum marine flooding in the East Gondwana interior rift, Timor and Western Australia, and comparisons across East Gondwana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 88–121 (2017).

    Google Scholar 

  • 25.

    Henderson, C. M. Permian conodont biostratigraphy. Geol. Soc. Lond. Spec. Publ. 450, 119–142 (2018).

    ADS  Google Scholar 

  • 26.

    Kukhtinov, D. A. & Crasquin-Soleau, S. Upper Permian and Triassic of the Precaspian Depression: Stratigraphy and palaeogeography. Geodiversitas 21, 325–346 (1999).

    Google Scholar 

  • 27.

    Zhuravlev, A. V., Kotlyar, G. V. & Shishlov, S. B. Paleobiogeoraphical and biostratigraphical analysis of the Kazanian (Middle Permian) conodonts of the east Russian Platform—Preliminary results. Permophiles 48, 15–20 (2006).

    Google Scholar 

  • 28.

    Dercourt, J. et al. Atlas Peri-Tethys, Palaeogeographical Maps (CCGM/CGMW, 2000).

  • 29.

    Gorsky, V. P., Gusseva, E. A., Crasquin-Soleau, S. & Broutin, J. Stratigraphic data of the Middle–Late Permian on Russian platform. Geobios 36, 533–558 (2003).

    Google Scholar 

  • 30.

    Molostovskaya, I. I. Stratigraphic correlation of the Upper Permian deposits from the south of the Cis-Ural marginal Trough and the adjacent areas of the Russian Plate. Geodiversitas 19, 247–259 (1997).

    Google Scholar 

  • 31.

    Forel, M.-B. Heterochronic growth of ostracods (Crustacea) from microbial deposits in the aftermath of the end-Permian extinction. J. Syst. Palaeontol. 13, 315–349 (2015).

    Google Scholar 

  • 32.

    Golonka, J. et al. Paleogeographic reconstructions and basins development of the Arctic. Mar. Petrol. Geol. 20, 211–248 (2003).

    Google Scholar 

  • 33.

    Legler, B. & Schneider, J. W. Marine ingressions into the Middle/Late Permian saline lake of the Southern Permian Basin (Rotliegend, Northern Germany) possibly linked to sea level highstands in the Arctic rift system. Palaeogeogr. Palaeoclimatol. Palaeoecol. 267, 102–114 (2008).

    Google Scholar 

  • 34.

    Chen, B. et al. Permian ice volume and palaeoclimate history; oxygen isotope proxies revisited. Gondwana Res. 24, 77–89 (2013).

    ADS  CAS  Google Scholar 

  • 35.

    Peryt, T. M. & Peryt, D. Zechstein foraminifera from the Fore-Sudetic monocline area (West Poland) and their paleoecology. Rocznik Polskiego Towarzystwa Geologicznego (Annales de la Societe Geologique de Pologne) 47, 301–326 (1977) ((In Polish with English summary)).

    Google Scholar 

  • 36.

    Paleobiology Database 1. Search for Bakevellia ceratophaga. https://paleobiodb.org/classic/basicTaxonInfo?taxon_no=131181. Accessed 10 May 2020.

  • 37.

    Hounslow, M. W. & Balabanov, Y. P. A. A geomagnetic polarity timescale for the Permian, calibrated to stage boundaries. Geol. Soc. Lond. Spec. Publ. 450, 61–103 (2017).

    Google Scholar 

  • 38.

    Chen, Z. Q., Jin, Y. G. & Shi, G. R. Permian transgression–regression sequences and sea-level changes of South China. Proc. R. Soc. Victoria 110, 345–367 (1998).

    Google Scholar 

  • 39.

    Wignall, P. B. et al. Facies analysis and sea-level change at the Guadalupian-Lopingian global stratotype (Laibin, South China), and its bearing on the end-Guadalupian mass extinction. J. Geol. Soc. Lond. 166, 655–666 (2009).

    Google Scholar 

  • 40.

    Kofukuda, D., Isozaki, Y. & Igo, H. A remarkable sea-level drop and relevant biotic responses across the Guadalupian-Lopingian (Permian) boundary in low-latitude mid-Panthalassa: Irreversible changes recorded in accreted paleo-atoll limestones in Akasaka and Ishiyama, Japan. J. Asian Earth Sci. 82, 47–65 (2014).

    ADS  Google Scholar 

  • 41.

    Stemmerik, L. Sequence stratigraphy of a low productivity carbonate platform succession: The Upper Permian Wegener Halvù Formation, Karstryggen Area, East Greenland. Sedimentology 48, 79–97 (2001).

    ADS  Google Scholar 

  • 42.

    Brikiatis, L. Arido-eustasy: A new example of non-glacial eustatic sea level change. Gondwana Res. 70, 25–35 (2019).

    ADS  Google Scholar 

  • 43.

    Arefiev, M. P. et al. Type and Reference Sections of The Permian–Triassic Continental Sequences of the East European Platform: Main Isotope, Magnetic, and Biotic Events (PIN RAS, 2015).

  • 44.

    Kotlyar, G. V., Golubev, V. K. & Silantiev, V. V. General stratigraphic scale of the Permian marine-continental and continental formations of the East European Platform. In Carboniferous and Permian Earth Systems, Stratigraphic Events, Biotic Evolution, Sedimentary Basins and Resources (ed. Nurgaliev, D. K.) (Kazan Federal University, Kazan, 2014).

    Google Scholar 

  • 45.

    Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. The Geologic Time Scale 2012 (Elsevier, Amsterdam, 2012).

    Google Scholar 

  • 46.

    Menning, M. et al. Global time scale and regional stratigraphic reference scales of Central and West Europe, East Europe, Tethys, South China, and North America as used in the Devonian–Carboniferous–Permian Correlation Chart 2003 (DCP 2003). Palaeogeogr. Palaeoclimatolol. Palaeoecol. 240, 318–372 (2006).

    ADS  Google Scholar 

  • 47.

    van der Walt, M., Day, M., Rubidge, B., Cooper, A. K. & Netterberg, I. A new GIS-based biozone map of the Beaufort Group (Karoo Supergroup), South Africa. Palaeontologia Africana 45, 1–5 (2010).

    Google Scholar 

  • 48.

    Rubidge, B. S. et al. Advances in nonmarine Karoo biostratigraphy: Significance for understanding basin development. In Origin and Evolution of the Cape Mountains and Karoo Basin (eds Linol, B. & de Wit, M. J.) 141–149 (Springer, Berlin, 2016).

    Google Scholar 

  • 49.

    Barbolini, N., Rubidge, B. & Bamford, M. K. A new approach to biostratigraphy in the Karoo retroarc foreland system: Utilising restricted-range palynomorphs and their first appearance datums for correlation. J. Afr. Earth Sci. 140, 114–133 (2018).

    ADS  Google Scholar 

  • 50.

    Day, M. O. Middle Permian continental biodiversity changes as reflected in the Beaufort Group of South Africa: a bio-and lithostratigraphic review of the Eodicynodon, Tapinocephalus, and Pristerognathus assemblage zones (Unpublished PhD Thesis, University of the Witwatersrand, South Africa, 2013); https://hdl.handle.net10539/14014

  • 51.

    Day, M. O. et al. When and how did the terrestrial mid-Permian mass extinction occur? Evidence from the tetrapod record of the Karoo Basin, South Africa. Proc. R. Soc. Lond. Ser. B 282, 20150834 (2015).

    Google Scholar 

  • 52.

    Rubidge, B. S., Erwin, D. H., Ramezani, J., Bowring, S. A. & de Klerk, W. J. High-precision temporal calibration of Late Permian vertebrate biostratigraphy: U-Pb zircon constraints from the Karoo Supergroup, South Africa. Geology 41, 363–366 (2013).

    ADS  CAS  Google Scholar 

  • 53.

    Viglietti, P. A. et al. The Daptocephalus Assemblage Zone (Lopingian), South Africa: A proposed biostratigraphy based on a new compilation of stratigraphic ranges. J. Afr. Earth Sci. 113, 153–164 (2016).

    ADS  Google Scholar 

  • 54.

    Lucas, S. G. Permian tetrapod biochronology, correlation and evolutionary events. Geol. Soc. Lond. Spec. Publ. 450, 405–444 (2017).

    Google Scholar 

  • 55.

    Sennikov, A. G. & Golubev, V. K. Sequence of Permian tetrapod faunas of Eastern Europe and the Permian-Triassic ecological crisis. Paleontolog J. 51, 600–611 (2017).

    Google Scholar 

  • 56.

    Golubev, V. K. Permian tetrapod stratigraphy. New Mexico Mus. Nat. Hist. Sci. Bull. 30, 95–99 (2005).

    Google Scholar 

  • 57.

    Opluštil, S., Schmitz, M., Cleal, C. J. & Martínek, K. A review of the Middle-Late Pennsylvanian west European regional substages and floral biozones, and their correlation to the Geological Time Scale based on new U-Pb ages. Earth Sci. Rev. 154, 301–335 (2016).

    ADS  Google Scholar 

  • 58.

    Davydov, V. I., Korn, D. & Schmitz, M. D. The Carboniferous Period in The Geologic Time Scale 2012 (eds. Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) 603–651 (Elsevier, Amsterdam, 2012).

  • 59.

    Lucas, S. G. Defining North American Pennsylvanian stages. Newsl. Carbonif. Stratigr. 32, 42–46 (2016).

    Google Scholar 

  • 60.

    Zhang, Y.-C. & Wang, Y. Permian fusuline biostratigraphy. Geol. Soc. Lond. Spec. Publ. 450, 253–288 (2017).

    Google Scholar 

  • 61.

    Fritsch, A. Fauna der Gaskohle und der Kalksteine der Permformation Böhmens 1/4 (Selbstverlag, 1883).

  • 62.

    Stamberg, S. & Zajic, J. Carboniferous and Permian Faunas and their Occurrence in the Limnic Basins of the Czech Republic (Museum of Eastern Bohemia, 2008).

  • 63.

    Opluštil, S., Martínek, K. & Tasáryová, Z. Facies and architectural analysis of fluvial deposits of the Nýřany Member and the Týnec Formation (Westphalian D–Barruelian) in the Kladno-Rakovník and Pilsen basins. Bull. Geosci. 80, 45–66 (2005).

    Google Scholar 

  • 64.

    Falcon-Lang, H. J. A history of research at the Joggins Fossil Cliffs of Nova Scotia, Canada, the world’s finest Pennsylvanian section. Proc. Geol. Assoc. 117, 377–392 (2006).

    Google Scholar 

  • 65.

    Gray, M. & Finkel, Z. V. The Joggins Fossil Cliffs UNESCO World Heritage site: A review of recent research. Atlantic Geol. 47, 185–200 (2011).

    Google Scholar 

  • 66.

    Falcon-Lang, H. J. Late Carboniferous tropical dryland vegetation in an alluvial-plain setting, Joggins, Nova Scotia, Canada. Palaios 18, 197–211 (2003).

    ADS  Google Scholar 

  • 67.

    Davies, S. J., Gibling, M. R., Rygel, M. C., Calder, J. H. & Skilliter, D. M. The Pennsylvanian Joggins Formation of Nova Scotia: Sedimentological log and stratigraphic framework of the historic fossil cliffs. Atlantic Geol. 41, 115–142 (2005).

    Google Scholar 

  • 68.

    Gibling, M. R., Culshaw, N., Rygel, M. C. & Pascucci, V. The Maritimes Basin of Atlantic Canada: Basin creation and destruction in the collisional zone of Pangea. In Sedimentary Basins of the World, Vol .5 (ed. Miall, A. D.) 211–244 (Elsevier, Amsterdam, 2008).

    Google Scholar 

  • 69.

    Baird, D. New records of Paleozoic diplopod Myriapoda. J. Paleontol. 32, 239–241 (1958).

    Google Scholar 

  • 70.

    Carroll, R. L. A limnoscelid reptile from the Middle Pennsylvanian. J. Paleontol. 41, 1256–1261 (1967).

    Google Scholar 

  • 71.

    Gibling, M. R., Saunders, K. I., Tibert, N. E. & White, J. A. Sequence sets, high-accommodation events, and the coal window in the Carboniferous Sydney coalfield, Atlantic Canada. AAPG Stud. Geol. 51, 169–197 (2004).

    Google Scholar 

  • 72.

    Paleobiology Database 2. Search for Danville Locality. https://paleobiodb.org/classic/displayCollResults?collection_no=80714. Accessed 10 May 2020.

  • 73.

    Jacobson, R. A summary of references with changes in Pennsylvanian stratigraphic nomenclature at the ISGS since Bulletin 95 (2002). http://www.isgs.illinois.edu/sites/isgs/files/files/coal-maps/Penn_Strat_column_ISGS.pdf. Accessed 10 May 2020.

  • 74.

    McDowell, R. C. The Geology of Kentucky—A text to accompany the geologic map of Kentucky. U.S. Geological Survey Paper 1151-H (US Government Printing Office, 1986).

  • 75.

    Cunningham, C. R. et al. The Upper Carboniferous Hamilton Fossil-Lagerstatte in Kansas: A valley-till, tidally influenced deposit. Lethaia 26, 225–236 (1993).

    Google Scholar 

  • 76.

    Gentile, R. J., Thompson, T. L. & Mulvany, P. S. The Pennsylvanian System of Missouri (A comparison of former and present classifications) (Missouri Department of Natural Resources, Division of Geology and Land Survey, 2004).

  • 77.

    Modesto, S. P. et al. The oldest parareptile and the early diversification of reptiles. Proc. R. Soc. Lond. Ser. B 282, 20141912 (2015).

    Google Scholar 

  • 78.

    Sahney, S., Benton, M. J. & Falcon-Lang, H.-J. Rainforest collapse triggered Carboniferous tetrapod diversification in Euramerica. Geology 38, 1079–1082 (2010).

    ADS  Google Scholar 

  • 79.

    Reisz, R. R., Heaton, M. J. & Pynn, B. R. Vertebrate fauna of Late Pennsylvanian Rock Lake Shale near Garnett, Kansas: Pelycosauria. J. Paleontol. 56, 741–750 (1982).

    Google Scholar 

  • 80.

    Feldman, H. R. et al. Stratigraphic architecture of the Tonganoxie Paleovalley Fill (Lower Virgilian) in Northeastern Kansas. AAPG Bull. 79, 1019–1043 (1995).

    Google Scholar 

  • 81.

    Olson, E. C. Early Permian Vertebrates of Oklahoma. Oklahoma Geol. Surv. Circ. 74, 1–111 (1967).

    Google Scholar 

  • 82.

    Heran, W. D., Green, G. N. & Stoeser, D. B. A Digital Geologic Map Database for the State of Oklahoma (Geological Survey Open-File Report 03-247, 2003).

  • 83.

    Olmsted, R. W. Geochemical Studies of Uranium in South-Central Oklahoma (Master Thesis, Oklahoma State University, 1975); https://hdl.handle.net/11244/20105

  • 84.

    Bunn, J. R. Jefferson County, in Oil and Gas in Oklahoma (Oklahoma Geological Survey Bulletin, 40-PP., 1930).

  • 85.

    Lucas, S. G., Spielmann, J. A. & Krainer, K. Summary of geology of Cañon Del Cobre, Rio Arriba County, New Mexico. New Mexico Mus. Nat. Hist. Sci. Bull. 49, 15–24 (2010).

    Google Scholar 

  • 86.

    Tanner, L. H. & Lucas, S. G. Pedogenic record of climate change across the Pennsylvanian-Permian boundary in red-bed strata of the Cutler Group, northern New Mexico, USA. Sediment. Geol. 373, 98–110 (2018).

    ADS  CAS  Google Scholar 

  • 87.

    Eberth, D. A. & Miall, A. D. Stratigraphy, sedimentology and evolution of a vertebrate-bearing, braided to anastomosed fluvial system, Cutler Formation (Permian-Pennsylvanian), north-central New Mexico. Sediment. Geol. 72, 225–252 (1991).

    ADS  Google Scholar 

  • 88.

    Lucas, S. G., Harris, S. K., Spielmann, J. A., Berman, D. S. & Henrici, A. C. Vertebrate biostratigraphy and biochronology of the Pennsylvanian-Permian Cutler Group, El Cobre Canyon, Northern New Mexico. New Mexico Mus. Nat. Hist. Sci. Bull. 31, 128–139 (2005).

    Google Scholar 

  • 89.

    Huffman, A. C. & Condon, S. M. Stratigraphy, Structure, and Paleogeography of Pennsylvanian and Permian rocks, San Juan Basin and Adjacent Areas, Utah, Colorado, Arizona, and New Mexico (U.S. Geological Survey, Bulletin 1808, 1993).

  • 90.

    Catuneanu, O. Principles of Sequence Stratigraphy (Elsevier, Amsterdam, 2006).

    Google Scholar 

  • 91.

    Gibling, M. R., Nanson, G. C. & Maroulis, J. C. Anastomosing river sedimentation in the Channel Country of central Australia. Sedimentology 45, 595–619 (1998).

    ADS  CAS  Google Scholar 

  • 92.

    Sames, B., Wagreich, M., Conrad, C. P. & Iqbal, S. Aquifer-eustasy as the main driver of short-term sea-level fluctuations during Cretaceous hothouse climate phases. Geol. Soc. Lond. Spec. Publ. 498, 9–38 (2020).

    ADS  Google Scholar 

  • 93.

    Wendler, J. E., Wendler, I., Vogt, C. & Kuss, J. Link between cyclic eustatic sea-level change and continental weathering: Evidence for aquifer-eustasy in the Cretaceous. Palaeogeogr. Palaeoclimatolol. Palaeoecol. 441, 430–437 (2016).

    ADS  Google Scholar 

  • 94.

    Giles, J. M., Soreghan, M. J., Benison, K. C., Soreghan, G. S. & Hasiotis, S. T. Lakes, loess, and paleosols in the Permian Wellington Formation of Oklahoma, U.S.A.: Implications for paleoclimate and paleogeography of the midcontinent. J. Sediment. Res. 83, 825–846 (2013).

    ADS  CAS  Google Scholar 

  • 95.

    Berman, D. S., Eberth, D. A. & Brinkman, D. B. Stegotretus agyrus a new genus and species of microsaur (amphibian) from the Permo-Pennsylvanian of New Mexico. Ann. Carnegie Mus. 57, 293–323 (1988).

    Google Scholar 

  • 96.

    Harris, S. K., Lucas, S. G., Berman, D. S. & Henrici, A. C. Vertebrate fossil assemblage from the Upper Pennsylvanian Red Tanks Member of the Bursum Formation, Lucero Uplift, Central New Mexico. New Mexico Mus. Nat. Hist. Sci. Bull. 25, 267–284 (2004).

    Google Scholar 

  • 97.

    Lucas, S. G., Barrick, J. E., Krainer, K. & Schneider, J. W. The Carboniferous-Permian boundary at Carrizo Arroyo, Central New Mexico, USA. Stratigraphy 10, 153–170 (2013).

    Google Scholar 

  • 98.

    Lucas, S. G. & Krainer, K. The Red Tanks Member of the Bursum Formation in the Lucero Uplift and regional stratigraphy of the Bursum Formation in New Mexico. New Mexico Mus. Nat. Hist. Sci. Bull. 25, 43–51 (2004).

    Google Scholar 

  • 99.

    Hodnett, J.-P.M. & Lucas, S. G. Paleoichthyological assemblages of the Upper Carboniferous-Lower Permian of Socorro County, New Mexico. New Mexico Mus. Nat. Hist. Sci. Bull. 77, 133–138 (2017).

    Google Scholar 

  • 100.

    Krainer, K. & Lucas, S. G. The Pennsylvanian-Permian Bursum Formation in Central New Mexico. New Mexico Mus. Nat. Hist. Sci. Bull. 59, 143–160 (2013).

    Google Scholar 

  • 101.

    Lucas, S. G. et al. Progress report on correlation of nonmarine and marine Lower Permian strata, New Mexico, USA. Permophiles 61, 10–17 (2015).

    Google Scholar 

  • 102.

    Hentz, T. F., Ambrose, W. A. & Hamlin, H. S. Upper Pennsylvanian and Lower Permian Shelf-to-Basin Facies Architecture and Trends, Eastern Shelf of the Southern Midland Basin, West Texas (University of Texas at Austin, Bureau of Economic Geology, Report of Investigations 282, 2017).

  • 103.

    Hentz, T. F. & Brown, L. F. Jr. Geologic Atlas of Texas, Wichita Falls-Lawton Sheet, map scale 1:250,000 (University of Texas at Austin, Bureau of Economic Geology, 1987).

    Google Scholar 

  • 104.

    Sander, P. M. Early Permian depositional environments and pond bonebeds in central archer County, Texas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 69, 1–21 (1989).

    Google Scholar 

  • 105.

    Holterhoff, P. F., Walsh, T. R. & Barrick, J. A. Artinskian (Early Permian) conodonts from the Elm Creek Limestone, a heterozoan carbonate sequence on the eastern shelf of the Midland Basin, West Texas, U.S.A. New Mexico Mus. Nat. Hist. Sci. Bull. 60, 109–119 (2013).

    Google Scholar 

  • 106.

    Lucas, S. G. A global hiatus in the Middle Permian tetrapod fossil record. Stratigraphy 1, 47–64 (2004).

    Google Scholar 

  • 107.

    Johnson, K. S. Gypsum caves of North Texas and Western Oklahoma in Hypogene Karst of Texas (eds. Stafford, K. W. & Veni, G.) 111–122 (Texas Speleological Survey, TSS Monograph 3, 2018).

  • 108.

    Olson, E. C. Late Permian Terrestrial Vertebrates, U.S.A. and U.S.S.R. Vol. 52, no. 2 (Transactions of the American Philosophical Society, New Series, 1962).

  • 109.

    Olson, E. C. New Permian Vertebrates from the Chickasha Formation in Oklahoma. Oklahoma Geol. Sur. Circ. 70, 1–70 (1965).

    Google Scholar 

  • 110.

    Silantiev, V. V., Kotlyar, G. V., Zorina, S. O., Golubev, V. K. & Liberman, V. B. The geological setting and Permian stratigraphy of the Volga and Kama River regions. In Type and Reference Sections of the Middle and Upper Permian of the Volga and Kama River Regions (eds Nurgaliev, D. K. et al.) 10–23 (Kazan University Press, Kazan, 2015).

    Google Scholar 

  • 111.

    Lozovsky, V. R. Olson’s gap or Olson’s bridge, that is the question. New Mexico Mus. Nat. Hist. Sci. Bull. 30, 179–184 (2005).

    Google Scholar 

  • 112.

    Mullakaev, A. & Khasanov, R. Aeolian factor in the formation of the Sheshmian Horizon sands and sandstones in the Permian of the South-Tatar Arch. In Kazan Golovkinsky Stratigraphic Meeting, 2017 (eds. Barclay, M., Nikolaeva, S. & Silantiev, V.) 381–385 (Filodiritto International Proceedings, 2018).

  • 113.

    Güven, S., Rubidge, B. S. & Abdala, F. Taxonomy of tapinocephalid Dinocephalia from the South African Karoo Basin. Research abstract in the 16th Biennial Conference of the Palaeontological Association of Southern Africa, Cape Town. Palaeontologia Africana 47, 29–59 (2012).

    Google Scholar 

  • 114.

    Falcon-Lang, H. J. Latest Mid-Pennsylvanian tree-fern forests in retrograding coastal plain deposits, Sydney Mines Formation, Nova Scotia, Canada. J. Geol. Soc. Lond. 163, 81–93 (2006).

    Google Scholar 

  • 115.

    Cascales-Miñana, B. & Cleal, C. J. The plant fossil record reflects just two great extinction events. Terra Nova 26, 195–200 (2013).

    ADS  Google Scholar 

  • 116.

    Lynch-Stieglitz, J., Stocker, T. F., Broecker, W. S. & Fairbanks, R. G. The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modelling. Glob. Biogeochem. Cycles 9, 653–665 (1995).

    ADS  CAS  Google Scholar 

  • 117.

    Bond, D. P. G. et al. An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification. GSA Bull. 127, 1411–1421 (2015).

    CAS  Google Scholar 

  • 118.

    Cao, W., Flament, N., Zahirovic, S., Williams, S. & Müller, R. D. The interplay of dynamic topography and eustasy on continental flooding in the late Paleozoic. Tectonophysics 761, 108–121 (2019).

    ADS  Google Scholar 

  • 119.

    Davydov, V. Warmwater benthic foraminifera document the Pennsylvanian-Permian warming and cooling events—The record from the Western Pangea tropical shelve. Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 284–295 (2014).

    Google Scholar 

  • 120.

    Laurin, M. & de Buffrénil, V. Microstructural features of the femur in early ophiacodontids: A reappraisal of ancestral habitat use and lifestyle of amniotes. C. R. Palevol. 15, 115–127 (2015).

    Google Scholar 

  • 121.

    Ruta, M., Coates, M. I. & Quicke, D. L. J. Early tetrapod relationships revisited. Biol. Rev. 78, 251–345 (2003).

    PubMed  Google Scholar 

  • 122.

    Haubold, H. et al. Interpretation of the tetrapod footprints from the Early Pennsylvanian of Alabama in Pennsylvanian Footprints in the Black Warrior Basin of Alabama (eds. Buta, R. J., Rindsberg, A. K. & Kopaska-Merkel, D. C.) 75–112 (Alabama Paleontological Society Monograph 1, 2005).

  • 123.

    Brocklehurst, N. & Fröbisch, J. The definition of bioregions in palaeontological studies of diversity and biogeography affects interpretations: Palaeozoic tetrapods as a case study. Front. Earth Sci. 6, 200 (2018).

    ADS  Google Scholar 

  • 124.

    Dunne, E. M. et al. Diversity change during the rise of tetrapods and the impact of the ‘Carboniferous rainforest collapse’. Proc. R. Soc. Lond. B Biol. Sci. 285, 20172730 (2018).

    Google Scholar 

  • 125.

    Brocklehurst, N., Dunne, E. M., Cashmore, D. D. & Frӧbisch, J. Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea. Nat. Commun. 9, 5216. https://doi.org/10.1038/s41467-018-07623-x (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 126.

    de Queiroz, A. The resurrection of oceanic dispersal in historical biogeography. Trends Ecol. Evol. 20, 68–73 (2005).

    PubMed  Google Scholar 

  • 127.

    Gardner, J. D., Surya, K. & Organ, C. L. Early tetrapodomorph biogeography: Controlling for fossil record bias in macroevolutionary analyses. C. R. Palevol. 18, 699–709 (2019).

    Google Scholar 

  • 128.

    Lucas, S. G., Lozovsky, V. R. & Shishkin, M. A. Tetrapod footprints from Early Permian redbeds of the Northern Caucasus, Russia. Ichnos 6, 277–281 (1999).

    Google Scholar 

  • 129.

    Lucas, S. G. Chinese Fossil Vertebrates (Columbia University Press, New York, 2001).

    Google Scholar 

  • 130.

    Pardo, J. D., Small, B. J., Milner, A. R. & Huttenlocker, A. K. Carboniferous-Permian climate change constrained early land vertebrate radiations. Nat. Ecol. Evol. 3, 200–206 (2019).

    PubMed  Google Scholar 

  • 131.

    Benson, R. B. J. Interrelationships of basal synapsids: Cranial and postcranial morphological partitions suggest different topologies. J. Syst. Paleontol. 10, 601–624 (2012).

    Google Scholar 

  • 132.

    Spindler, F. et al. First arboreal ’pelycosaurs’ (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny. PalZ 92, 315–364 (2018).

    Google Scholar 

  • 133.

    Romer, A. S. A large ophiacodont pelycosaur from the Pennsylvanian of the Pittsburgh region. Breviora 144, 1–7 (1961).

    Google Scholar 

  • 134.

    Reisz, R. R. Pelycosaurian reptiles from the middle Pennsylvanian of North America. Bull. Mus. Comp. Zool. 144, 27–61 (1972).

    Google Scholar 

  • 135.

    Lucas, S. G. & Golubev, V. K. Age and duration of Olson’s Gap, a global hiatus in the Permian tetrapod fossil record. Permophiles 67, 20–23 (2019).

    Google Scholar 

  • 136.

    Lantink, M. L., Davies, J. H. F. L., Mason, P. R. D., Schaltegger, U. & Hilgen, F. J. Climate control on banded iron formations linked to orbital eccentricity. Nat. Geosci. 12, 369–374 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 137.

    Bond, D. P. G. et al. The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 292, 282–294 (2010).

    Google Scholar 

  • 138.

    Rey, K. et al. Stable isotope record implicates aridification without warming during the late Capitanian mass extinction. Gondwana Res. 59, 1–8 (2018).

    ADS  CAS  Google Scholar 

  • 139.

    Stevens, L. G., Hilton, J., Bond, D. P., Glasspool, I. J. & Jardine, P. E. Radiation and extinction patterns in Permian floras from North China as indicators for environmental and climate change. J. Geol. Soc. Lond. 168, 607–619 (2011).

    Google Scholar 

  • 140.

    Tierney, K. E. Carbon and strontium isotope stratigraphy of the Permian from Nevada and China: Implications from an icehouse to greenhouse transition (PhD Thesis, Ohio University, 2010); https://rave.ohiolink.edu/etdc/view?acc_num=osu1269625662


  • Source: Ecology - nature.com

    Author Correction: Political dynamics and governance of World Heritage ecosystems

    Special issue: Biofunctional gels