in

An investigation of hibernating members from the Culex pipiens complex (Diptera, Culicidae) in subterranean habitats of central Germany

  • 1.

    Vinogradova, E. B. Culex pipiens pipiens Mosquitoes. Taxonomy, Distribution, Ecology, Physiology, Genetics, Applied Importance and Control (Pensoft, Sofia, 2000).

    Google Scholar 

  • 2.

    Linnaeus, C. Systema naturae Vol. 1. No. part 1 (Laurentii-Salvii, Stockholm, 1758).

    Google Scholar 

  • 3.

    Forskål, P. Flora Ægyptiaco-Arabica sive descriptiones plantarum quas per ægytum inferiorem et arabiam felicem detexit, illustravit Petrus Forskål. Post mortem auctoris edidit Carsten Niebuhr (1775).

  • 4.

    Martini, R. Zwei bemerkenswerte Culiciden von einem eigenartigen Biotop. Int Rev Hydrobiol 12, 333–337 (1925).

    Article  Google Scholar 

  • 5.

    Say, T. Descriptions of dipterous insects of the United States. J. Acad. Nat. Sci. Philadelphia 3, 9–54 (1823).

    Google Scholar 

  • 6.

    Coquillett, D. W. Report on a collection of Japanese Diptera, presented to the U.S. national museum by the Imperial University of Tokyo. Proc. US Natl. Museum 21, 301–340 (1898).

    Article  Google Scholar 

  • 7.

    Meigen, J. W. & Wiedemann, C. R. W. Aussereuropäische Zweiflügelige Insekten / beschrieben von Christ. Rud. Wilh. Wiedemann ; als Fortsetzung des Meigenischen Werkes.; 10.5962/bhl.title.14603 (1828).

  • 8.

    Barr, A. R. Occurrence and distribution of the Culex pipiens complex. Bull. World Health Organ. 37, 293–296 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Hubálek, Z. & Halouzka, J. West Nile Fever–a reemerging mosquito-borne viral disease in Europe. Emerg. Infect. Dis. 5, 643–650. https://doi.org/10.3201/eid0505.990505 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Lundström, J. O. Mosquito-borne viruses in western Europe: a review. J. Vector Ecol. 24, 1–39 (1999).

    PubMed  Google Scholar 

  • 11.

    Hayes, C. G. West Nile virus: Uganda, 1937, to New York City, 1999. Ann. N. Y. Acad. Sci. 951, 25–37 (2001).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Hubálek, Z. Mosquito-borne viruses in Europe. Parasitol Res 103, 29–43. https://doi.org/10.1007/s00436-008-1064-7 (2008).

    Article  Google Scholar 

  • 13.

    Werblow, A., Bolius, S., Dorresteijn, A. W. C., Melaun, C. & Klimpel, S. Diversity of Culex torrentium Martini, 1925—a potential vector of arboviruses and filaria in Europe. Parasitol Res 112, 2495–2501. https://doi.org/10.1007/s00436-013-3418-z (2013).

    Article  PubMed  Google Scholar 

  • 14.

    Hesson, J. C. et al. The arbovirus vector Culex torrentium is more prevalent than Culex pipiens in northern and central Europe. Med. Vet. Entomol. 28, 179–186. https://doi.org/10.1111/mve.12024 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 15.

    Becker, N. et al. Mosquitoes and Their Control 2nd edn. (Springer, Heidelberg, 2010).

    Google Scholar 

  • 16.

    Gomes, B. et al. Feeding patterns of molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in a region of high hybridization. Parasites Vectors 6, 93. https://doi.org/10.1186/1756-3305-6-93 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 17.

    Andreadis, T. G. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America. J. Ame. Mosquito Control Assoc. 28, 137–151. https://doi.org/10.2987/8756-971X-28.4s.137 (2012).

    Article  Google Scholar 

  • 18.

    Lõhmus, M., Lindström, A. & Björklund, M. How often do they meet? Genetic similarity between European populations of a potential disease vector Culex pipiens. Infect. Ecol. Epidemiol. 2, 12001. https://doi.org/10.3402/iee.v2i0.12001 (2012).

    Article  Google Scholar 

  • 19.

    Harbach, R. E., Harrison, B. A. & Gad, A. M. Culex (Culex) molestus Forskal (Diptera: Culicidae): neotype designation, description, variation, and taxonomic status. Proc Entomol Soc Wash 86, 521–542 (1984).

    Google Scholar 

  • 20.

    Knight, K. L. A Review of the Culex pipiens complex in the Mediterranean Subregion (Diptera, Culicidae). Trans. R. Entomol. Soc. Lond. 102, 354–364. https://doi.org/10.1111/j.1365-2311.1951.tb00754.x (1951).

    Article  Google Scholar 

  • 21.

    Kamura, T. & Bekku, H. Studies on the Culex pipiens group of Japan. IV. Ecological studies on the Nagasaki molestus. Endemic Dis. Bull. Nagasaki Univ. 1(1), 51–59 (1959).

    Google Scholar 

  • 22.

    Kent, R. J., Harrington, L. C. & Norris, D. E. Genetic Differences Between Culex pipiens f. molestus and Culex pipiens pipiens (Diptera: Culicidae) in New York. J. Med. Entomol. 44, 50–59. https://doi.org/10.1603/0022-2585(2007)44[50:gdbcpf]2.0.co;2 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Amara Korba, R. et al. Ecological differentiation of members of the Culex pipiens complex, potential vectors of West Nile virus and Rift Valley fever virus in Algeria. Parasites Vectors 9, 1405. https://doi.org/10.1186/s13071-016-1725-9 (2016).

    Article  Google Scholar 

  • 24.

    Vinogradova, E. B. & Shaikevich, E. V. Morphometric, physiological and molecular characteristics of underground populations of the urban mosquito Culex pipiens Linnaeus f. molestus Forskål (Diptera: Culicidae) from several areas of Russia. Eur Mosq Bull 22, 17–24 (2007).

    Google Scholar 

  • 25.

    Sulaiman, S. & Service, M. W. Studies on hibernating populations of the mosquito Culex pipiens L. in southern and northern England. J. Nat. History 17, 849–857. https://doi.org/10.1080/00222938300770661 (1983).

    Article  Google Scholar 

  • 26.

    Huang, S. et al. Genetic Variation Associated with Mammalian Feeding in Culex pipiens from a West Nile Virus Epidemic Region in Chicago Illinois. Vector-Borne Zoonotic Dis. 9, 637–642. https://doi.org/10.1089/vbz.2008.0146 (2009).

    Article  PubMed  Google Scholar 

  • 27.

    Denlinger, D. L. & Armbruster, P. A. Mosquito diapause. Annu. Rev. Entomol. 59, 73–93. https://doi.org/10.1146/annurev-ento-011613-162023 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 28.

    Onyeka, J. O. A. & Boreham, P. F. L. Population studies, physiological state and mortality factors of overwintering adult populations of females of Culex pipiens L. (Diptera: Culicidae). BER 77, 99. https://doi.org/10.1017/S0007485300011585 (1987).

    Article  Google Scholar 

  • 29.

    Spielman, A. Studies on Autogeny in Culex pipiens Populations in Nature. I. Reproductive isolation between autogenous and anautogenous populations. Am. J. Hygiene 80, 175–183 (1964).

    CAS  Google Scholar 

  • 30.

    Harbach, R. E., Harrison, B. A. & Gad, A. M. Culex (Culex) molestus Forskal (Diptera: Culicidae): neotype designation, description, variation and taxonomic status. Proc Entomol 86, 521–542 (1984).

    Google Scholar 

  • 31.

    Harbach, R. E., Dahl, C. & White, G. B. Culex (Culex) pipiens Linnaeus (Diptera: Culicidae): Concepts, type designations, and description. Proc. Entomol. Soc. Wash. 87, 24 (1985).

    Google Scholar 

  • 32.

    Merdić, E. & Vujičić-Karlo, S. Two types of Hibernation of Culex pipiens complex (Diptera: Culicidae) in Croatia. Entomol. Croatia 9, 71–76 (2005).

    Google Scholar 

  • 33.

    Kjærandsen, J. Diptera in mines and other cave systems in southern Norway. Entomologica Fennica 4, 151–160 (1993).

    Article  Google Scholar 

  • 34.

    Badino, G. Cave temperatures and global climatic change. IJS 33, 103–113. https://doi.org/10.5038/1827-806X.33.1.10 (2004).

    Article  Google Scholar 

  • 35.

    Barr, R. A. Ocurrence and distribution of the Culex pipiens Complex. Bull. World Health Organ. 37, 293–296 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Gunn, J. (ed.) Encyclopedia of caves and karst science (Fitzroy Dearborn, New York, 2004).

    Google Scholar 

  • 37.

    Höhlen. Verborgene Welten. 1st ed. (Primus-Verl., Darmstadt, 2008).

  • 38.

    Buffington, J. D. Hibernaculum choice in Culex Pipiens. J. Med. Entomol. 9, 128–132. https://doi.org/10.1093/jmedent/9.2.128 (1972).

    CAS  Article  PubMed  Google Scholar 

  • 39.

    Thomson, R. C. M. The reactions of mosquitoes to temperature and humidity. Bull. Entomol. Res. 29, 125. https://doi.org/10.1017/S0007485300026158 (1938).

    Article  Google Scholar 

  • 40.

    Rudolf, M. et al. First nationwide surveillance of Culex pipiens complex and Culex torrentium mosquitoes demonstrated the presence of Culex pipiens biotype pipiens/molestus hybrids in Germany. PLoS ONE 8, e71832. https://doi.org/10.1371/journal.pone.0071832 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    R Core Team. R. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2013).

    Google Scholar 

  • 42.

    Yee, T. W. & Wild, C. J. Vector generalized additive models. J. R. Stat. Soc. Ser. B (Methodol.) 58, 481–493 (1996).

    MathSciNet  MATH  Google Scholar 

  • 43.

    Yee, T. W. Vector Generalized Linear and Additive Models: with an Implementation in R (Springer, Berlin, 2015).

    Google Scholar 

  • 44.

    GraphPad Software. GraphPad Prism (La Jolla California USA).

  • 45.

    Copernicus Land Monitoring Service. Corine Land Cover Data (European Environment Agency (EEA), 2019).

  • 46.

    Systems, E. ArcGIS Desktop (Redlands, CA, 2019).

    Google Scholar 

  • 47.

    Werblow, A. et al. Population structure and distribution patterns of the sibling mosquito species Culex pipiens and Culex torrentium (Diptera: Culicidae) reveal different evolutionary paths. PLoS ONE 9, e102158. https://doi.org/10.1371/journal.pone.0102158 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 48.

    Weitzel, T., Jawień, P., Rydzanicz, K., Lonc, E. & Becker, N. Culex pipiens s.l. and Culex torrentium (Culicidae) in Wrocław area (Poland): occurrence and breeding site preferences of mosquito vectors. Parasitol Res 114, 289–295. https://doi.org/10.1007/s00436-014-4193-1 (2015).

    Article  PubMed  Google Scholar 

  • 49.

    Lühken, R. et al. Physico-chemical characteristics of Culex pipiens sensu lato and Culex torrentium (Diptera: Culicidae) breeding sites in Germany. J. Med. Entomol. 52, 932–936. https://doi.org/10.1093/jme/tjv070 (2015).

    Article  PubMed  Google Scholar 

  • 50.

    Zittra, C. et al. Ecological characterization and molecular differentiation of Culex pipiens complex taxa and Culex torrentium in eastern Austria. Parasites Vectors 9, 197. https://doi.org/10.1186/s13071-016-1495-4 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Fonseca, D. M. et al. Emerging vectors in the Culex pipiens complex. Science 303, 1535–1538. https://doi.org/10.1126/science.1094247 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 52.

    Gomes, B. et al. Asymmetric introgression between sympatric molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in the Comporta region, Portugal. BMC Evol. Biol. 9, 262. https://doi.org/10.1186/1471-2148-9-262 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 53.

    Andreadis, T. G., Huang, S. & Molaei, G. Reexamination of Culex pipiens hybridization zone in the Eastern United States by Ribosomal DNA-based single nucleotide polymorphism markers. Am. J. Trop. Med. Hyg. 85, 434–441. https://doi.org/10.4269/ajtmh.2011.10-0679 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Zittra, C., Moog, O., Christian, E. & Fuehrer, H.-P. DNA-aided identification of Culex mosquitoes (Diptera: Culicidae) reveals unexpected diversity in underground cavities in Austria. Parasitol. Res. 118, 1385–1391. https://doi.org/10.1007/s00436-019-06277-y (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 55.

    Ciota, A. T., Matacchiero, A. C., Kilpatrick, A. M. & Kramer, L. D. The Effect of Temperature on Life History Traits of Culex Mosquitoes. J. Med. Entomol. 51, 55–62. https://doi.org/10.1603/ME13003 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Rosà, R. et al. Early warning of West Nile virus mosquito vector: climate and land use models successfully explain phenology and abundance of Culex pipiens mosquitoes in north-western Italy. Parasites Vectors 7, 269. https://doi.org/10.1186/1756-3305-7-269 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Zittra, C. et al. Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae). Parasites Vectors 10, 205. https://doi.org/10.1186/s13071-017-2140-6 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 58.

    Paz, S. & Albersheim, I. Influence of warming tendency on Culex pipiens population abundance and on the probability of West Nile fever outbreaks (Israeli Case Study: 2001–2005). EcoHealth 5, 40–48. https://doi.org/10.1007/s10393-007-0150-0 (2008).

    Article  PubMed  Google Scholar 

  • 59.

    Verdonschot, P. F. M. & Besse-Lototskaya, A. A. Flight distance of mosquitoes (Culicidae): A metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands. Limnologica 45, 69–79. https://doi.org/10.1016/j.limno.2013.11.002 (2014).

    Article  Google Scholar 

  • 60.

    Ciota, A. T. et al. Dispersal of Culex mosquitoes (Diptera: Culicidae) from a wastewater treatment facility. J. Med. Entomol. 49, 35–42. https://doi.org/10.1603/me11077 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Otto, H.-J. Waldökologie (E. Ulmer, Stuttgart, 1994).

    Google Scholar 

  • 62.

    Brockerhoff, E. G., Jactel, H., Parrotta, J. A., Quine, C. P. & Sayer, J. Plantation forests and biodiversity: oxymoron or opportunity?. Biodivers. Conserv. 17, 925–951. https://doi.org/10.1007/s10531-008-9380-x (2008).

    Article  Google Scholar 

  • 63.

    Ellenberg, H., Leuschner, C. & Dierschke, H. Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht 6th edn. (E. Ulmer, Stuttgart, 2010).

    Google Scholar 


  • Source: Ecology - nature.com

    Researchers find benefits of solar photovoltaics outweigh costs

    IdeaStream 2020 goes virtual