in

Anemonefish facilitate bleaching recovery in a host sea anemone

  • 1.

    Muscatine, L. & Porter, J. W. Reef corals: Mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27, 454–460 (1977).

    Google Scholar 

  • 2.

    Smith, D. C. & Douglas, A. E. The Biology of Symbiosis (Edward Arnold Ltd., London, 1987).

    Google Scholar 

  • 3.

    Rao, H. Interorganizational Ecology: Haygreeva. In The Blackwell Companion to Organisations (ed. Baum, J. A.) 541–556 (Backwell, Oxford, 2017).

    Google Scholar 

  • 4.

    Martínez-García, L. B., De Deyn, G. B., Pugnaire, F. I., Kothamasi, D. & van der Heijden, M. G. Symbiotic soil fungi enhance ecosystem resilience to climate change. Glob. Chang. Biol. 23, 5228–5236 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Compant, S., Van Der Heijden, M. G. & Sessitsch, A. Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol. Ecol. 73, 197–214 (2010).

    CAS  PubMed  Google Scholar 

  • 6.

    Chase, T., Pratchett, M., Frank, G. & Hoogenboom, M. Coral-dwelling fish moderate bleaching susceptibility of coral hosts. PLoS ONE 13, e0208545 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Redman, R. S. et al. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change. PLoS ONE 6, e14823 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Stewart, H. L., Holbrook, S. J., Schmitt, R. J. & Brooks, A. J. Symbiotic crabs maintain coral health by clearing sediments. Coral Reefs 25, 609–615 (2006).

    ADS  Google Scholar 

  • 9.

    Pachauri, R. K. et al. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. (IPCC, Switzerland, 2014).

  • 10.

    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).

    Google Scholar 

  • 11.

    Mieog, J. C. et al. The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS ONE 4(7), e6364 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Davies, P. S. The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2, 181–186 (1984).

    ADS  Google Scholar 

  • 13.

    Cook, C., D’Elia, C. & Muller-Parker, G. Host feeding and nutrient sufficiency for zooxanthellae in the sea anemone Aiptasia pallida. Mar. Biol. 98, 253–262 (1988).

    CAS  Google Scholar 

  • 14.

    Roopin, M., Henry, R. P. & Chadwick, N. E. Nutrient transfer in a marine mutualism: Patterns of ammonia excretion by anemonefish and uptake by giant sea anemones. Mar. Biol. 154, 547–556 (2008).

    CAS  Google Scholar 

  • 15.

    Delia, C., Domotor, S. & Webb, K. Nutrient uptake kinetics of freshly isolated zooxanthellae. Mar. Biol. 75, 157–167 (1983).

    CAS  Google Scholar 

  • 16.

    Steen, R. G. & Muscatine, L. Low temperature evokes rapid exocytosis of symbiotic algae by a sea anemone. Biol. Bull. 172, 246–263 (1987).

    Google Scholar 

  • 17.

    Roopin, M. & Chadwick, N. E. Benefits to host sea anemones from ammonia contributions of resident anemonefish. J. Exp. Mar. Biol. Ecol. 370, 27–34 (2009).

    CAS  Google Scholar 

  • 18.

    Brown, B. E. Coral bleaching: Causes and consequences. Coral Reefs 16, 129–138 (1997).

    Google Scholar 

  • 19.

    Glynn, P. W. Widespread coral mortality and the 1982–83 El Niño warming event. Environ. Conserv. 11, 133–146 (1984).

    Google Scholar 

  • 20.

    McClanahan, T. R., Ateweberhan, M., Muhando, C. A., Maina, J. & Mohammed, M. S. Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecol. Monogr. 77, 503–525 (2007).

    Google Scholar 

  • 21.

    Vinoth, R., Gopi, M., Kumar, T. T. A., Thangaradjou, T. & Balasubramanian, T. Coral reef bleaching at Agatti Island of Lakshadweep Atolls India. J. Ocean Univ. China 11, 105–110 (2012).

    ADS  Google Scholar 

  • 22.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nat. 556, 492–496 (2018).

    ADS  CAS  Google Scholar 

  • 23.

    Death, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. 109, 17995–17999 (2012).

    ADS  CAS  Google Scholar 

  • 24.

    Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551 (1994).

    ADS  CAS  PubMed  Google Scholar 

  • 25.

    McManus, J. W. & Polsenberg, J. F. Coral–algal phase shifts on coral reefs: Ecological and environmental aspects. Prog. Oceanogr. 60, 263–279 (2004).

    ADS  Google Scholar 

  • 26.

    Hughes, T. P., Graham, N. A., Jackson, J. B., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).

    PubMed  Google Scholar 

  • 27.

    Garpe, K. C., Yahya, S. A., Lindahl, U. & Öhman, M. C. Long-term effects of the 1998 coral bleaching event on reef fish assemblages. Mar. Ecol. Prog. Ser. 315, 237–247 (2006).

    ADS  Google Scholar 

  • 28.

    Pratchett, M. S. et al. Effects of climate-induced coral bleaching on coral-reef fishes—ecological and economic consequences. Oceanogr. Mar. Biol. 46, 257–302 (2008).

    Google Scholar 

  • 29.

    Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Divers. 3, 424–452 (2011).

    Google Scholar 

  • 30.

    Dunn, D. F. The clownfish sea anemones: Stichodactylidae (Coelenterata: Actiniaria) and other sea anemones symbiotic with pomacentrid fishes. Trans. Am. Philos. Soc. 71, 3–115 (1981).

    Google Scholar 

  • 31.

    Jones, A., Gardner, S. & Sinclair, W. Losing “Nemo”: Bleaching and collection appear to reduce inshore populations of anemonefishes. J. Fish Biol. 73, 753–761 (2008).

    Google Scholar 

  • 32.

    Scott, A. & Hoey, A. S. Severe consequences for anemonefishes and their host sea anemones during the 2016 bleaching event at Lizard Island, Great Barrier Reef. Coral Reefs 36, 873–873 (2017).

    ADS  Google Scholar 

  • 33.

    Hobbs, J. P. A. et al. Taxonomic, spatial and temporal patterns of bleaching in anemones inhabited by anemonefishes. PLoS ONE 8, e70966 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Hattori, A. Small and large anemonefishes can coexist using the same patchy resources on a coral reef, before habitat destruction. J. Anim. Ecol. 71, 824–831 (2002).

    Google Scholar 

  • 35.

    Weis, V. M. Cellular mechanisms of Cnidarian bleaching: Stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).

    CAS  PubMed  Google Scholar 

  • 36.

    Saenz-Agudelo, P., Jones, G., Thorrold, S. & Planes, S. Detrimental effects of host anemone bleaching on anemonefish populations. Coral Reefs 30, 497–506 (2011).

    ADS  Google Scholar 

  • 37.

    Lönnstedt, O. M. & Frisch, A. J. Habitat bleaching disrupts threat responses and persistence in anemonefish. Mar. Ecol. Prog. Ser. 517, 265–270 (2014).

    ADS  Google Scholar 

  • 38.

    Beldade, R., Blandin, A., O’Donnell, R. & Mills, S. C. Cascading effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction. Nat. Commun. 8, 716 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Hoegh-Guldberg, O. & Smith, G. J. Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata. Mar. Ecol. Prog. Ser. 2, 173–186 (1989).

    ADS  Google Scholar 

  • 40.

    Holbrook, S. J. & Schmitt, R. J. Growth, reproduction and survival of a tropical sea anemone (Actiniaria): Benefits of hosting anemonefish. Coral Reefs 24, 67–73 (2005).

    Google Scholar 

  • 41.

    Porat, D. & Chadwick-Furman, N. Effects of anemonefish on giant sea anemones: Expansion behavior, growth, and survival. Hydrobiologia 530, 513–520 (2004).

    Google Scholar 

  • 42.

    Cleveland, A., Verde, E. A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis: Direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar. Biol. 158, 589–602 (2011).

    Google Scholar 

  • 43.

    Fautin, D. G. & Allen, G. R. Field Guide to Anemonefishes and Their Host Sea Anemones (Western Australian Museum, Perth, 1992).

    Google Scholar 

  • 44.

    Hill, R. & Scott, A. The influence of irradiance on the severity of thermal bleaching in sea anemones that host anemonefish. Coral Reefs 31, 273–284 (2012).

    ADS  Google Scholar 

  • 45.

    Roughgarden, J. Evolution of marine symbiosis—a simple cost-benefit model. Ecology 56, 1201–1208 (1975).

    Google Scholar 

  • 46.

    Hobbs, J., Neilson, J. & Gilligan, J. Distribution, abundance, habitat association and extinction risk of marine fishes endemic to the Lord Howe Island region (Report to Lord Howe Island Marine Park (James Cook University, Townsville, 2009).

    Google Scholar 

  • 47.

    Porat, D. & Chadwick-Furman, N. Effects of anemonefish on giant sea anemones: Ammonium uptake, zooxanthella content and tissue regeneration. Mar. Freshw. Behav. Physiol. 38, 43–51 (2005).

    CAS  Google Scholar 

  • 48.

    Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189 (2006).

    ADS  CAS  Google Scholar 

  • 49.

    Borell, E. M. & Bischof, K. Feeding sustains photosynthetic quantum yield of a scleractinian coral during thermal stress. Oecologia 157, 593 (2008).

    ADS  PubMed  Google Scholar 

  • 50.

    Borell, E. M., Yuliantri, A. R., Bischof, K. & Richter, C. The effect of heterotrophy on photosynthesis and tissue composition of two scleractinian corals under elevated temperature. J. Exp. Mar. Biol. Ecol. 364, 116–123 (2008).

    Google Scholar 

  • 51.

    Nakamura, T. & Van Woesik, R. Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Mar. Ecol. Prog. Ser. 212, 301–304 (2001).

    ADS  Google Scholar 

  • 52.

    Gleason, D. F. & Wellington, G. M. Ultraviolet radiation and coral bleaching. Nature 365, 836 (1993).

    ADS  Google Scholar 

  • 53.

    Zepp, R. G. et al. Spatial and temporal variability of solar ultraviolet exposure of coral assemblages in the Florida Keys: Importance of colored dissolved organic matter. Limnol. Oceanogr. 53, 1909–1922 (2008).

    ADS  CAS  Google Scholar 

  • 54.

    Minasian, L. L. Jr. The relationship of size and biomass to fission rate in a clone of the sea anemone, Haliplanella luciae (Verrill). J. Exp. Mar. Biol. Ecol. 58, 151–162 (1982).

    Google Scholar 

  • 55.

    Miyawaki, M. Temperature as a factor influencing upon the fission of the orange-striped sea-anemone, Diadumene luciae. Zool. 11, 77–80 (1952).

    Google Scholar 

  • 56.

    Atoda, K. Pedal laceration of the sea anemone, Haliplanella luciae. Pub. Seto Mar. Biol. Lab. 20, 299–313 (1973).

    Google Scholar 

  • 57.

    Minasian, L. L. Jr. & Mariscal, R. N. Characteristics and regulation of fission activity in clonal cultures of the cosmopolitan sea anemone, Haliplanella luciae (Verrill). Biol. Bull. 157, 478–493 (1979).

    PubMed  Google Scholar 

  • 58.

    Holbrook, S. J., Brooks, A. J., Schmitt, R. J. & Stewart, H. L. Effects of sheltering fish on growth of their host corals. Mar. Biol. 155, 521–530 (2008).

    Google Scholar 

  • 59.

    Johnson, L. L. & Shick, J. M. Effects of fluctuating temperature and immersion on asexual reproduction in the intertidal sea anemone Hauplanella luciae (Verrill) in laboratory culture. J. Exp. Mar. Biol. Ecol. 28, 141–149 (1977).

    Google Scholar 

  • 60.

    Hand, C. & Uhlinger, K. R. Asexual reproduction by transverse fission and some anomalies in the sea anemone Nematostella vectensis. Invertebr. Biol. 2, 9–18 (1995).

    Google Scholar 

  • 61.

    Tsuchida, C. B. & Potts, D. C. The effects of illumination, food and symbionts on growth of the sea anemone Anthopleura elegantissima (Brandt, 1835). II. Clonal growth. J. Exp. Mar. Biol. Ecol. 183, 243–258 (1994).

    Google Scholar 

  • 62.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 63.

    Holbrook, S. J., Forrester, G. E. & Schmitt, R. J. Spatial patterns in abundance of a damselfish reflect availability of suitable habitat. Oecologia 122, 109–120 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 64.

    Munday, P. L. Interactions between habitat use and patterns of abundance in coral-dwelling fishes of the genus Gobiodon. Environ. Biol. Fish. 58, 355–369 (2000).

    Google Scholar 

  • 65.

    Pontasch, S. et al. Photochemical efficiency and antioxidant capacity in relation to Symbiodinium genotype and host phenotype in a symbiotic cnidarian. Mar. Ecol. Prog. Ser. 516, 195–208 (2014).

    ADS  CAS  Google Scholar 

  • 66.

    IPCC. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspect (Cambridge University Press, Cambridge, 2014).

    Google Scholar 

  • 67.

    Siebeck, U., Marshall, N., Klüter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).

    ADS  Google Scholar 

  • 68.

    Marshall, N. J., Kleine, D. A. & Dean, A. J. CoralWatch: Education, monitoring, and sustainability through citizen science. Front Ecol Environ 10, 332–334 (2012).

    Google Scholar 

  • 69.

    Association, A. P. H. Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, 2005).

    Google Scholar 

  • 70.

    AOAC. Official Methods of Analysis of AOAC International (Association of Official Analytical Chemists, Rockville, 2000).

    Google Scholar 

  • 71.

    Jeffrey, S. T. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und physiologie der pflanzen 167, 191–194 (1974).

    Google Scholar 


  • Source: Ecology - nature.com

    Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis

    Saudi Arabia faces increased heat, humidity, precipitation extremes by mid-century