in

Antarctica’s wilderness fails to capture continent’s biodiversity

  • 1.

    Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl. Acad. Sci. USA 100, 10309–10313 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Watson, J. E. M. et al. Protect the last of the wild. Nature 563, 27–30 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Chown, S. L. et al. The changing form of Antarctic biodiversity. Nature 522, 431–438 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    Rintoul, S. R. et al. Choosing the future of Antarctica. Nature 558, 233–241 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Pertierra, L. R., Hughes, K. A., Vega, G. C. & Olalla-Tárraga, M. Á. High resolution spatial mapping of human footprint across Antarctica and its implications for the strategic conservation of avifauna. PLoS One 12, e0168280 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 6.

    Hughes, K. A., Fretwell, P., Rae, J., Holmes, K. & Fleming, A. Untouched Antarctica: mapping a finite and diminishing environmental resource. Antarct. Sci. 23, 537–548 (2011).

    ADS  Google Scholar 

  • 7.

    Secretariat of the Antarctic Treaty. Protocol on Environmental Protection to the Antarctic Treaty https://www.ats.aq/e/protocol.html (Antarctic Treaty Secretariat, 1991).

  • 8.

    Coetzee, B. W. T., Convey, P. & Chown, S. L. Expanding the protected area network in Antarctica is urgent and readily achievable. Conserv. Lett. 10, 670–680 (2017).

    Google Scholar 

  • 9.

    Keys, H. Towards Additional Protection of Antarctic Wilderness Areas https://documents.ats.aq/ATCM23/ip/ATCM23_ip080_e.doc (submitted by the Government of New Zealand, Doc. IP80, ATCM XXIII, 1999).

  • 10.

    Summerson, R. & Tin, T. Twenty years of protection of wilderness values in Antarctica. Polar J. 8, 265–288 (2018).

    Google Scholar 

  • 11.

    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).

    ADS  PubMed  Google Scholar 

  • 12.

    Cole, D. N. & Landres, P. B. Threats to wilderness ecosystems: impacts and research needs. Ecol. Appl. 6, 168–184 (1996).

    Google Scholar 

  • 13.

    Watson, J. E. M. et al. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 26, 2929–2934 (2016).

    CAS  PubMed  Google Scholar 

  • 14.

    Lim, E. et al. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nat. Geosci. 12, 896–901 (2019).

    ADS  CAS  Google Scholar 

  • 15.

    Summerson, R. & Riddle, M. J. in Antarctic Ecosystems: Models for Wider Ecological Understanding (eds Davison, W. et al.) 303–307 (New Zealand Natural Sciences, Christchurch, 2000).

  • 16.

    Bastmeijer, K. & van Hengel, S. The role of the protected area concept in protecting the world’s largest natural reserve: Antarctica. Utrecht Law Rev. 5, 61–79 (2009).

    Google Scholar 

  • 17.

    Chown, S. L. et al. Antarctica and the strategic plan for biodiversity. PLoS Biol. 15, e2001656 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 18.

    Brooks, S. T., Jabour, J., van den Hoff, J. & Bergstrom, D. M. Our footprint on Antarctica competes with nature for rare ice-free land. Nat. Sustain. 2, 185–190 (2019).

    Google Scholar 

  • 19.

    Hughes, K. A. et al. Human-mediated dispersal of terrestrial species between Antarctic biogeographic regions: a preliminary risk assessment. J. Environ. Manage. 232, 73–89 (2019).

    PubMed  Google Scholar 

  • 20.

    Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 21.

    Hughes, K. A., Cowan, D. A. & Wilmotte, A. Protection of Antarctic microbial communities—‘out of sight, out of mind’. Front. Microbiol. 6, 151 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Hughes, K. A. et al. Pristine Antarctica: threats and protection. Antarct. Sci. 25, 1 (2013).

    ADS  Google Scholar 

  • 23.

    Shaw, J. D., Terauds, A., Riddle, M. J., Possingham, H. P. & Chown, S. L. Antarctica’s protected areas are inadequate, unrepresentative, and at risk. PLoS Biol. 12, e1001888 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Secretariat of the Antarctic Treaty. Antarctic Protected Areas Database https://www.ats.aq/devph/en/apa-database (2019).

  • 25.

    Committee for Environmental Protection (CEP). Understanding Concepts of Footprint and Wilderness Related to Protection of the Antarctic Environment https://documents.ats.aq/ATCM34/wp/ATCM34_wp035_e.doc (submitted by the Government of New Zealand, Doc. WP35, ATCM XXXIV, 2011).

  • 26.

    Committee for Environmental Protection (CEP). Annex V Inviolate and Reference Areas: Current Management Practices https://documents.ats.aq/ATCM35/ip/ATCM35_ip049_e.doc (submitted by ASOC, IP 49, ATCM XXXV, 2012).

  • 27.

    Committee for Environmental Protection (CEP). Report of the Twenty-second Meeting of the Committee for Environmental Protection https://documents.ats.aq/ATCM42/fr/ATCM42_fr001_e.pdf (CEP, 2019).

  • 28.

    Terauds, A. & Lee, J. R. Antarctic biogeography revisited: updating the Antarctic Conservation Biogeographic Regions. Divers. Distrib. 22, 836–840 (2016).

    Google Scholar 

  • 29.

    Council of Managers of National Antarctic Programs. Antarctic Facilities Operated by National Antarctic Programs in the Antarctic Treaty Area (South of 60° Latitude South) version 3.0.1 https://www.comnap.aq (COMNAP, accessed 8 August 2018).

  • 30.

    Tin, T., Liggett, D., Maher, P. T. & Lamers, M. (eds) Antarctic Futures: Human Engagement with the Antarctic Environment (Springer, Dordrecht, 2014).

  • 31.

    Dingwall, P. R. (ed.) Antarctica in the Environmental Era (Department of Conservation, Wellington, 1998).

  • 32.

    Summerson, R. in Protection of the Three Poles (ed. Huettmann, F.) 77–109 (Springer, Tokyo, 2012).

  • 33.

    Brooks, S. T., Tejedo, P. & O’Neill, T. A. Insights on the environmental impacts associated with visible disturbance of ice-free ground in Antarctica. Antarct. Sci. 31, 304–314 (2019).

    ADS  Google Scholar 

  • 34.

    O’Neill, T. A., Balks, M. R. & López-Martínez, J. Visual recovery of desert pavement surfaces following impacts from vehicle and foot traffic in the Ross Sea region of Antarctica. Antarct. Sci. 25, 514–530 (2013).

    ADS  Google Scholar 

  • 35.

    Convey, P. The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biol. Rev. Camb. Philos. Soc. 71, 191–225 (1996).

    Google Scholar 

  • 36.

    Ayres, E. et al. Effects of human trampling on populations of soil fauna in the McMurdo Dry Valleys, Antarctica. Conserv. Biol. 22, 1544–1551 (2008).

    PubMed  Google Scholar 

  • 37.

    Convey, P., Hughes, K. A. & Tin, T. Continental governance and environmental management mechanisms under the Antarctic Treaty System: sufficient for the biodiversity challenges of this century? Biodiversity (Nepean) 13, 234–248 (2012).

    Google Scholar 

  • 38.

    Chown, S. L. & Brooks, C. M. The state and future of Antarctic environments in a global context. Annu. Rev. Environ. Res. 44, 1–30 (2019).

    Google Scholar 

  • 39.

    Brooks, C. M. et al. Science-based management in decline in the Southern Ocean. Science 354, 185–187 (2016).

    CAS  PubMed  Google Scholar 

  • 40.

    Secretariat of the Antarctic Treaty. Revised Guidelines for Environmental Impact Assessment in Antarctica https://documents.ats.aq/recatt/Att605_e.pdf (Antarctic Treaty Secretariat, Buenos Aires, 2016).

  • 41.

    Agence Nationale Recherche. East Antarctic International Ice Sheet Traverse (DS0101) https://anr.fr/Project-ANR-16-CE01-0011 (ANR, France, 2016).

  • 42.

    Harris, C. M. et al. Important Bird Areas in Antarctica 2015 (BirdLife International and Environmental Research & Assessment Ltd., Cambridge, 2015).

  • 43.

    Cowan, D. A. et al. Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends Microbiol. 19, 540–548 (2011).

    CAS  PubMed  Google Scholar 

  • 44.

    Montross, S. et al. Debris-rich basal ice as a microbial habitat, Taylor Glacier, Antarctica. Geomicrobiol. J. 31, 76–81 (2014).

    Google Scholar 

  • 45.

    Archer, S. D. J. et al. Airborne microbial transport limitation to isolated Antarctic soil habitats. Nat. Microbiol. 4, 925–932 (2019).

    CAS  PubMed  Google Scholar 

  • 46.

    Fretwell, P. T., Convey, P., Fleming, A. H., Peat, H. J. & Hughes, K. A. Detecting and mapping vegetation distribution on the Antarctic Peninsula from remote sensing data. Polar Biol. 34, 273–281 (2011).

    Google Scholar 

  • 47.

    Schwaller, M. R., Lynch, H. J., Tarroux, A. & Prehn, B. A continent-wide search for Antarctic petrel breeding sites with satellite remote sensing. Remote Sens. Environ. 210, 444–451 (2018).

    ADS  Google Scholar 

  • 48.

    Duffy, G. A. et al. Barriers to globally invasive species are weakening across the Antarctic. Divers. Distrib. 23, 982–996 (2017).

    Google Scholar 

  • 49.

    Consultative Parties to the Antarctic Treaty. Santiago Declaration https://www.ats.aq/documents/ATCM39/ad/atcm39_ad003_e.pdf (Antarctic Treaty Secretariat, Buenos Aires, 2016).

    Google Scholar 

  • 50.

    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5, 9–13 (2005).

    Google Scholar 

  • 51.

    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2017).

  • 52.

    Environmental Systems Research Institute (ESRI). ArcGIS Desktop, release 10.6 (Environmental Systems Research Institute, Redlands, CA, 2011).

  • 53.

    Scientific Committee on Antarctic Research (SCAR). Antarctic Digital Database version 7 https://www.add.scar.org/ (2018).

  • 54.

    Headland, R. K. Chronological List of Antarctic Expeditions and Related Historical Events (Cambridge Univ. Press, Cambridge, 1989).

    Google Scholar 

  • 55.

    Scientific Committee on Antarctic Research. Composite Gazetteer of Antarctica https://data.aad.gov.au/aadc/gaz/scar/ (GCMD Metadata, 1992, updated 2014).

  • 56.

    Evans, J. S. spatialEco. R package version 0.0.1-7 https://CRAN.R-project.org/package=spatialEco (2017).

  • 57.

    Hijmans, R. J. raster: geographic data analysis and modeling. R package version 2.6-7 https://CRAN.R-project.org/package=raster (2017).

  • 58.

    Hughes, K. A. How committed are we to monitoring human impacts in Antarctica? Environ. Res. Lett. 5, 041001 (2010).

    ADS  Google Scholar 

  • 59.

    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: bindings for the ‘geospatial’ data abstraction library. R package version 1.3-4 https://CRAN.R-project.org/package=rgdal (2018).

  • 60.

    International Association of Antarctica Tour Operators (IAATO). 2017–2018 Tourism Statistics http://iaato.org/tourism-statistics (IAATO, accessed 29 October 2018).

  • 61.

    United States Antarctic Program (USAP). USAP Science Planning Summaries 2003–2016 https://www.usap.gov/sciencesupport/2179/ (USAP, 2019).

  • 62.

    Bargagli, R. Antarctic Ecosystems: Environmental Contamination, Climate Change, and Human Impact (Springer, Berlin, 2005).

  • 63.

    Hughes, K. A. & Convey, P. The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Glob. Environ. Change 20, 96–112 (2010).

    Google Scholar 

  • 64.

    Campbell, I. B., Claridge, G. G. C. & Balks, M. R. Short-and long-term impacts of human disturbances on snow-free surfaces in Antarctica. Polar Rec. (Gr. Brit.) 34, 15–24 (1998).

    Google Scholar 

  • 65.

    Tejedo, P. et al. Soil trampling in an Antarctic Specially Protected Area: tools to assess levels of human impact. Antarct. Sci. 21, 229–236 (2009).

    ADS  Google Scholar 

  • 66.

    Chown, S. L. et al. Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc. Natl. Acad. Sci. USA 109, 4938–4943 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 67.

    Duffy, G. A. & Lee, J. R. Ice-free area expansion compounds the non-native species threat to Antarctic terrestrial biodiversity. Biol. Conserv. 232, 253–257 (2019).

    Google Scholar 

  • 68.

    Antarctica New Zealand. McMurdo Dry Valleys ASMA Manual 4th edn (Christchurch, New Zealand, 2015).

  • 69.

    BirdLife International. Antarctic Important Bird Areas http://datazone.birdlife.org/home (BirdLife International, Cambridge, 2018).

  • 70.

    Terauds, A. Antarctic Terrestrial Biodiversity Database (Australian Antarctic Data Centre, 2019).

  • 71.

    Casanovas, P., Black, M., Fretwell, P. & Convey, P. Mapping lichen distribution on the Antarctic Peninsula using remote sensing, lichen spectra and photographic documentation by citizen scientists. Polar Res. 34, 25633 (2015).

    Google Scholar 

  • 72.

    Fretwell, P. T. et al. An emperor penguin population estimate: the first global, synoptic survey of a species from space. PLoS One 7, e33751 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 73.

    Wauchope, H. S., Shaw, J. D. & Terauds, A. A snapshot of biodiversity protection in Antarctica. Nat. Commun. 10, 946 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 74.

    Lynch, H. J., Naveen, R. & Fagan, W. F. Censuses of penguin, blue-eyed shag Phalacrocorax atriceps and southern giant petrel Macronectes giganteus populations on the Antarctic Peninsula, 2001-2007. Mar. Ornithol. 36, 83–97 (2008).

    Google Scholar 

  • 75.

    Burton-Johnson, A., Black, M., Fretwell, P. & Kaluza-Gilbert, J. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 10, 1665–1677 (2016).

    ADS  Google Scholar 


  • Source: Ecology - nature.com

    Public health is moot without water security

    Decarbonize and diversify