in

Anthropogenic dissolved organic carbon and marine microbiomes

  • 1.

    Wang Z, Walker GW, Muir DCG, Nagatani-Yoshida K. Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventorie. Environ Sci Technol. 2020;54:2575–84.

    CAS  Article  Google Scholar 

  • 2.

    Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3:e1700782.

    Article  Google Scholar 

  • 3.

    González-Gaya B, Fernández-Pinos MC, Morales L, Méjanelle L, Abad E, Piña B, et al. High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons. Nat Geosci. 2016;9:438–42.

    Article  Google Scholar 

  • 4.

    Cerro-Gálvez E, Casal P, Lundin D, Piña B, Pinhassi J, Dachs J, et al. Microbial responses to anthropogenic dissolved organic carbon in the Arctic and Antarctic coastal seawaters. Environ Microbiol. 2019;21:1466–81.

    Article  Google Scholar 

  • 5.

    Carlson CA, Hansell DA. DOM sources, sinks, reactivity, and budgets. In: Carlson CA, Hansell DA. editors. Biogeochemistry of marine dissolved organic matter. San Diego (USA): Academic press; 2015. p. 65–126

  • 6.

    Romera-Castillo C, Pinto M, Langer TM, Álvarez-Salgado XA, Herndl GJ. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat Commun. 2018;9:1430.

    Article  Google Scholar 

  • 7.

    Cerro-Gálvez E, Sala MM, Marrasé C, Gasol JM, Dachs J, Vila-Costa M. Modulation of microbial growth and enzymatic activities in the marine environment due to exposure to organic contaminants of emerging concern and hydrocarbons. Sci Total Environ. 2019;678:486–98.

    Article  Google Scholar 

  • 8.

    González-Gaya B, Martínez-Varela A, Vila-Costa M, Casal P, Cerro-Gálvez E, Berrojalbiz N, et al. Biodegradation as an important sink of aromatic hydrocarbons in the oceans. Nat Geosci. 2019;12:119–25.

    Article  Google Scholar 

  • 9.

    Vila-Costa M, Sebastián M, Pizarro M, Cerro-Gálvez E, Lundin D, Gasol JM, et al. Microbial consumption of organophosphate esters in seawater under phosphorus limited conditions. Sci Rep. 2019;9:1–11.

    CAS  Article  Google Scholar 

  • 10.

    Cerro-Galvez E, Roscales JL, Jiménez B, Sala MM, Dachs J, Vila-Costa M. Microbial responses to perfluoroalkyl substances and perfluorooctanesulfonate (PFOS) desulfurization in the Antarctic marine environment. Water Res. 2020;171:115434. 

    CAS  Article  Google Scholar 

  • 11.

    Fernández-Pinos MC, Vila-Costa M, Arrieta JM, Morales L, González-Gaya B, Piña B, et al. Dysregulation of photosynthetic genes in oceanic Prochlorococcus populations exposed to organic pollutants. Sci Rep. 2017;7:8029.

    Article  Google Scholar 

  • 12.

    Tetu SG, Sarker I, Schrameyer V, Pickford R, Elbourne LD, Moore LR, et al. Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Commun Biol. 2019;2:1–9.

    Article  Google Scholar 

  • 13.

    Buttigieg PL, Fadeev E, Bienhold C, Hehemann L, Offre P, Boetius A. Marine microbes in 4D – using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr Opin Microbiol. 2018;43:169–85.

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history

    A new approach to carbon capture