in

Arctic riparian shrub expansion indicates a shift from streams gaining water to those that lose flow

  • 1.

    Sturm, M., Racine, C. & Tape, K. Climate change: Increasing shrub abundance in the Arctic. Nature 411, 546 (2001).

    CAS  Article  Google Scholar 

  • 2.

    Tape, K. D., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan‐Arctic. Global Change Biol. 12, 686–702 (2006).

    Article  Google Scholar 

  • 3.

    Forbes, B. C., Fauria, M. M. & Zetterberg, P. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Global Change Biol. 16, 1542–1554 (2010).

    Article  Google Scholar 

  • 4.

    Frost, G. V. & Epstein, H. E. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biol. 20, 1264–1277 (2014).

    Article  Google Scholar 

  • 5.

    McManus, kM. et al. Satellite‐based evidence for shrub and graminoid tundra expansion in northern Q uebec from 1986 to 2010. Global Change Biol. 18, 2313–2323 (2012).

    Article  Google Scholar 

  • 6.

    Naito, A. T. & Cairns, D. M. Relationships between Arctic shrub dynamics and topographically derived hydrologic characteristics. Environ. Res. Lett. 6, 045506 (2011).

    Article  Google Scholar 

  • 7.

    Ropars, P. & Boudreau, S. Shrub expansion at the forest–tundra ecotone: Spatial heterogeneity linked to local topography. Environ. Res. Lett. 7, 015501 (2012).

  • 8.

    Tape, K. D., Hallinger, M., Welker, J. M. & Ruess, R. W. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15, 711–724 (2012).

    CAS  Article  Google Scholar 

  • 9.

    Tape, K. D., Verbyla, D. & Welker, J. M. Twentieth century erosion in Arctic Alaska foothills: The influence of shrubs, runoff, and permafrost. J. Geophys. Res.: Biogeosci. 116, https://doi.org/10.1029/2011JG001795 (2011).

  • 10.

    Jorgenson, J. C., Raynolds, M. K., Reynolds, J. H. & Benson, A.-M. Twenty-five year record of changes in plant cover on tundra of northeastern Alaska. Arctic, Antarctic, Alpine Res. 47, 785–806, https://doi.org/10.1657/AAAR0014-097 (2015).

    Article  Google Scholar 

  • 11.

    Edlund, S. A. Reconnaissance vegetation studies on western Victoria Island, Canadian Arctic archipelago. in Current Research, Part B, Geological Survey of Canada, Paper 83-1B, 75–81 (Geological Survey of Canada, Ottawa, 1983).

  • 12.

    Edlund, S. A. & Egginton, P. A. Morphology and description of an outlier population of tree-sized willows on western Victoria Island, District of Franklin. in Current Research, Part A, Geological Survey of Canada, Paper 84-1A, 279–285 (Geological Survey of Canada, Ottawa, 1984).

  • 13.

    Maycock, P. F. & Matthews, B. An Arctic” forest” in the tundra of northern Ungava, Quebec. Arctic 19, 114–144, www.jstor.org/stable/40507312 (1966).

    Article  Google Scholar 

  • 14.

    Zalatan, R. & Gajewski, K. Dendrochronological potential of Salix alaxensis from the Kuujjua River area, western Canadian Arctic. Tree-Ring Res. 62, 75–82 (2006).

    Article  Google Scholar 

  • 15.

    Polunin, N. The birch ‘forests’ of Greenland. Nature 140, 939–940 (1937).

    Article  Google Scholar 

  • 16.

    Polunin, N. Conduction through roots in frozen soil. Nature 132, 313–314 (1933).

    Article  Google Scholar 

  • 17.

    Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).

    Article  CAS  Google Scholar 

  • 18.

    Jorgenson, M. T., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophy. Res. Lett. 33, https://doi.org/10.1029/2005GL024960 (2006).

  • 19.

    Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312 (2016).

    CAS  Article  Google Scholar 

  • 20.

    Stephani, E., Drage, J., Miller, D., Jones, B. M. & Kanevskiy, M. Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska. Permaf. Periglac. Processes 31, 239–254, https://doi.org/10.1002/ppp.2046 (2020).

    Article  Google Scholar 

  • 21.

    Smith, L. C., Pavelsky, T. M., MacDonald, G. M., Shiklomanov, A. I. & Lammers, R. B. Rising minimum daily flows in northern Eurasian rivers: A growing influence of groundwater in the high‐latitude hydrologic cycle. J. Geophys. Res.: Biogeosci. 112, https://doi.org/10.1029/2006JG000327 (2007).

  • 22.

    St. Jacques, J. M. & Sauchyn, D. J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett. 36, https://doi.org/10.1029/2008GL035822 (2009).

  • 23.

    Harms, T. K., Abbott, B. W. & Jones, J. B. Thermo-erosion gullies increase nitrogen available for hydrologic export. Biogeochemistry 117, 299–311, https://doi.org/10.1007/s10533-013-9862-0 (2014).

    CAS  Article  Google Scholar 

  • 24.

    McClelland, J. W., Stieglitz, M., Pan, F., Holmes, R. M. & Peterson, B. J. Recent changes in nitrate and dissolved organic carbon export from the upper Kuparuk River, North Slope, Alaska. J. Geophys. Res.: Biogeosci. 112, https://doi.org/10.1029/2006JG000371 (2007).

  • 25.

    Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453 (2012).

    Article  Google Scholar 

  • 26.

    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887 (2015).

    Article  Google Scholar 

  • 27.

    Ackerman, D. E. et al. Uniform shrub growth response to June temperature across the North Slope of Alaska. Environ. Res. Lett. 13, 044013, https://doi.org/10.1088/1748-9326/aab326 (2018).

    Article  Google Scholar 

  • 28.

    Lantz, T. C., Gergel, S. E. & Henry, G. H. Response of green alder (Alnus viridis subsp. fruticosa) patch dynamics and plant community composition to fire and regional temperature in north‐western Canada. J. Biogeogr. 37, 1597–1610 (2010).

    Google Scholar 

  • 29.

    Raynolds, M. K., Walker, D. A., Verbyla, D. & Munger, C. A. Patterns of change within a tundra landscape: 22-year Landsat NDVI trends in an area of the northern foothills of the Brooks Range, Alaska. Arct., Antarct., Alp. Res. 45, 249–260 (2013).

    Article  Google Scholar 

  • 30.

    Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Patterned-ground facilitates shrub expansion in Low Arctic tundra. Environ. Res. Lett. 8, 015035 (2013).

    Article  Google Scholar 

  • 31.

    Jones, B. M. et al. Identification of unrecognized tundra fire events on the north slope of Alaska. J. Geophys. Res.: Biogeosci. 118, 1334–1344 (2013).

    Article  Google Scholar 

  • 32.

    Lantz, T. C., Kokelj, S. V., Gergel, S. E. & Henry, G. H. Relative impacts of disturbance and temperature: persistent changes in microenvironment and vegetation in retrogressive thaw slumps. Global Change Biol. 15, 1664–1675 (2009).

    Article  Google Scholar 

  • 33.

    Tape, K. D., Christie, K., Carroll, G. & O’Donnell, J. A. Novel wildlife in the Arctic: the influence of changing riparian ecosystems and shrub habitat expansion on snowshoe hares. Global Change Biol. 22, 208–219 (2016).

    Article  Google Scholar 

  • 34.

    Jorgenson, M. T. & Osterkamp, T. E. Response of boreal ecosystems to varying modes of permafrost degradation. Canadian J. For. Res. 35, 2100–2111 (2005).

    Article  Google Scholar 

  • 35.

    Schuur, E. A., Crummer, K. G., Vogel, J. G. & Mack, M. C. Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosystems 10, 280–292 (2007).

    Article  Google Scholar 

  • 36.

    Swanson, D. K. Environmental limits of tall shrubs in Alaska’s Arctic National Parks. PLoS ONE 10, e0138387 (2015).

    Article  CAS  Google Scholar 

  • 37.

    Sturm, M., Douglas, T., Racine, C. & Liston, G. E. Changing snow and shrub conditions affect albedo with global implications. J.Geophys. Res.: Biogeosci. 110, https://doi.org/10.1029/2005JG000013 (2005).

  • 38.

    Buckeridge, K. M., Zufelt, E., Chu, H. & Grogan, P. Soil nitrogen cycling rates in low arctic shrub tundra are enhanced by litter feedbacks. Plant and Soil 330, 407–421 (2010).

    CAS  Article  Google Scholar 

  • 39.

    Lawrence, D. M. & Swenson, S. C. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environ. Res. Lett. 6, 045504 (2011).

    Article  Google Scholar 

  • 40.

    Weintraub, M. N. & Schimel, J. P. Nitrogen cycling and the spread of shrubs control changes in the carbon balance of Arctic tundra ecosystems. Bioscience 55, 408–415 (2005).

    Article  Google Scholar 

  • 41.

    Chapin, F. S. et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).

    CAS  Article  Google Scholar 

  • 42.

    Beringer, J., Chapin, F. S. III, Thompson, C. C. & McGuire, A. D. Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agricu. For. Meteorol. 131, 143–161 (2005).

    Article  Google Scholar 

  • 43.

    Myers‐Smith, I. H. & Hik, D. S. Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow–shrub interactions. Ecol. Evol. 3, 3683–3700 (2013).

    Article  Google Scholar 

  • 44.

    Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Seasonal and long-term changes to active-layer temperatures after tall shrubland expansion and succession in Arctic tundra. Ecosystems 21, 507–520 (2018).

    CAS  Article  Google Scholar 

  • 45.

    Liston, G. E., Mcfadden, J. P., Sturm, M. & Pielke, R. A. Modelled changes in arctic tundra snow, energy and moisture fluxes due to increased shrubs. Global Change Biol. 8, 17–32 (2002).

    Article  Google Scholar 

  • 46.

    Jafarov, E. E. et al. Modeling the role of preferential snow accumulation in through talik development and hillslope groundwater flow in a transitional permafrost landscape. Environ. Res. Lett. 13, 105006 (2018).

    Article  CAS  Google Scholar 

  • 47.

    Deslippe, J. R., Hartmann, M., Simard, S. W. & Mohn, W. W. Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiol. Ecol. 82, 303–315 (2012).

    CAS  Article  Google Scholar 

  • 48.

    Geml, J., Semenova, T. A., Morgado, L. N. & Welker, J. M. Changes in composition and abundance of functional groups of arctic fungi in response to long-term summer warming. Biol. Lett. 12, 20160503 (2016).

    Article  CAS  Google Scholar 

  • 49.

    Koyama, A., Wallenstein, M. D., Simpson, R. T. & Moore, J. C. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Front. Microbiol. 5, 516 (2014).

    Article  Google Scholar 

  • 50.

    Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).

    CAS  Article  Google Scholar 

  • 51.

    Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Change 6, 595 (2016).

    CAS  Article  Google Scholar 

  • 52.

    Yang, Z. et al. Microbial community and functional gene changes in Arctic tundra soils in a microcosm warming experiment. Front. Microbiol. 8, 1741 (2017).

    Article  Google Scholar 

  • 53.

    Yuan, M. M. et al. Microbial functional diversity covaries with permafrost thaw-induced environmental heterogeneity in tundra soil. Global Change Biol. 24, 297–307 (2017).

    Article  Google Scholar 

  • 54.

    Bever, J. D., Platt, T. G. & Morton, E. R. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Ann. Rev. Microbiol. 66, 265–283 (2012).

    CAS  Article  Google Scholar 

  • 55.

    Van Der Heijden, M. G., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).

    Article  Google Scholar 

  • 56.

    Shi, Y. et al. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities. Appl. Environ. Microbiol. 81, 492–501 (2015).

    Article  CAS  Google Scholar 

  • 57.

    Wallenstein, M. D., McMahon, S. & Schimel, J. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol. Ecol. 59, 428–435 (2007).

    CAS  Article  Google Scholar 

  • 58.

    Chu, H., Neufeld, J. D., Walker, V. K. & Grogan, P. The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low Arctic tundra landscape. Soil Sci. Soc. Am. J. 75, 1756–1765 (2011).

    CAS  Article  Google Scholar 

  • 59.

    Lipson, D. A. et al. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils. Environ. Microbiol. Rep. 7, 649–657 (2015).

    CAS  Article  Google Scholar 

  • 60.

    Schickhoff, U., Walker, M. D. & Walker, D. A. Riparian willow communities on the Arctic Slope of Alaska and their environmental relationships: a classification and ordination analysis. Phytocoenologia 32, 145–204 (2002).

    Article  Google Scholar 

  • 61.

    Chu, H. et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ. Microbiol. 12, 2998–3006 (2010).

    CAS  Article  Google Scholar 

  • 62.

    Walker, D. A. et al. Vegetation of zonal patterned-ground ecosystems along the North America Arctic bioclimate gradient. Appl. Vegetation Sci. 14, 440–463 (2011).

    Article  Google Scholar 

  • 63.

    Fujimura, K. E. & Egger, K. N. Host plant and environment influence community assembly of High Arctic root-associated fungal communities. Fungal Ecol. 5, 409–418 (2012).

    Article  Google Scholar 

  • 64.

    Timling, I., Walker, D. A., Nusbaum, C., Lennon, N. J. & Taylor, D. L. Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Mol. Ecol. 23, 3258–3272 (2014).

    CAS  Article  Google Scholar 

  • 65.

    Schütte, U. M. E. et al. Effect of permafrost thaw on plant and soil fungal community in a boreal forest: Does fungal community change mediate plant productivity response? J. Ecol. 107, 1737–1752 (2019).

    Article  CAS  Google Scholar 

  • 66.

    Natali, S. M., Schuur, E. A. G. & Rubin, R. L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J. Ecol. 100, 488–498 (2011).

  • 67.

    Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105, https://doi.org/10.1073/pnas.1901307116 (2019).

    CAS  Article  Google Scholar 

  • 68.

    Drake, T. W. et al. Increasing alkalinity export from large Russian arctic rivers. Environ. Sci. Technol. 52, 8302–8308 (2018).

    CAS  Article  Google Scholar 

  • 69.

    Peterson, B. J. et al. Increasing river discharge to the Arctic. Ocean. Sci. 298, 2171–2173 (2002).

    CAS  Google Scholar 

  • 70.

    Hamilton, T. D. Surficial Geology of the Dalton Highway (Itkillik-Sagavanirktok rivers) Area, Southern Arctic foothills, Alaska. (State of Alaska, Department of Natural Resources, Division of Geological & Geophysical Surveys, Fairbanks, AK, 2003).

  • 71.

    Hamilton, T. D. Glacial Geology of the Toolik Lake and Upper Kuparuk River Regions. Report No. 0568-8604, 30 (Institute of Arctic Biology, University of Alaska, Fairbank, AK, 2003).

  • 72.

    Osterkamp, T. & Payne, M. Estimates of permafrost thickness from well logs in northern Alaska. Cold Regions Sci. Technol. 5, 13–27 (1981).

    Article  Google Scholar 

  • 73.

    Kane, D. L. et al. Hydrology and Meteorology of the Central Alaskan Arctic: Data Collection and Analysis. Final Report 169 (Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK, 2014).

  • 74.

    Pavelsky, T. M. & Zarnetske, J. P. Rapid decline in river icings detected in Arctic Alaska: implications for a changing hydrologic cycle and river ecosystems. Geophys. Res. Lett. 44, 3228–3235 (2017).

    Article  Google Scholar 

  • 75.

    Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Vegetation Sci. 16, 267–282 (2005).

    Article  Google Scholar 

  • 76.

    Minsley, BurkeJ. et al. Airborne electromagnetic imaging of discontinuous permafrost. Geophys. Res. Lett. 39, 2 (2012).

    Article  Google Scholar 

  • 77.

    Minsley, BurkeJ. et al. Sensitivity of airborne geophysical data to sublacustrine and near-surface permafrost thaw. Cryosphere 9, 2 (2015).

    Article  Google Scholar 

  • 78.

    Kreig, R. A. & Reger, R. D. Air-Photo Analysis and Summary of Landform Soil Properties Along the Route of the Trans-Alaska Pipeline System. Vol. 149 (Division of Geological & Geophysical Surveys, 1982).

  • 79.

    Williams, J. R. Engineering-geologic Maps of Northern Alaska, Wainwright Quadrangle. Vol. 28 (US Geological Survey, Menlo Park, CA, 1983).

  • 80.

    Rawlinson, S. E. Surficial Geology and Morphology of the Alaskan Central Arctic Coastal Plain. Vol. 172 (Alaska Division of Geology and Geophysical Survey, Fairbanks, AK, 1990).

  • 81.

    Frost, G. V. Vegetation, soils, and environmental data in Arctic Riparian Shrublands, North Slope Alaska, 2016. Arctic Data Center, https://doi.org/10.18739/A2G15TB43 (2017).

  • 82.

    Timling, I. Riparian Shrub expansion: soil analysis data, microbial communities and microarray gene data from the North Slope of Alaska, 2016. Arctic Data Center, https://doi.org/10.18739/A2GB1XH26 (2017).

  • 83.

    Liljedahl, A. K. Synoptic stream discharge August 2016, Dalton Highway, Alaska. Arctic Data Center, https://doi.org/10.18739/A2WD3Q190 (2017).

  • 84.

    Daanen, R. P. Elevation and permafrost active layer observations near two creeks in the foothills of the Brooks Range, Alaska, May 2017. Arctic Data Center, https://doi.org/10.18739/A2H708100 (2017).

  • 85.

    Daanen, R. P. Ground resistivity near two creeks in the foothills of the Brooks Range, Alaska, May 2017. Arctic Data Center, https://doi.org/10.18739/A2CF9J66P (2017).

  • 86.

    Brown, J., Ferrians, O. J. J., Heginbottom, J. & Melnikov, E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions Version 2 [Permafrost] (National Snow and Ice Data Center), http://nsidc.org/data/GGD318 (2002).


  • Source: Ecology - nature.com

    Migrant birds and mammals live faster than residents

    Study identifies reasons for soaring nuclear plant cost overruns in the U.S.