in

Artificial eyespots on cattle reduce predation by large carnivores

  • 1.

    Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry (Oxford University Press, 2004).

  • 2.

    Blest, A. D. The function of eyespot patterns in the Lepidoptera. Behaviour11, 209–256 (1957).

    Google Scholar 

  • 3.

    Poulton, E. B. The Colours of Animals: Their Meaning and Use Especially Considered In the Case of Insects. The Scientific Series (Appleton and Co., 1890).

  • 4.

    Cott, H. B. Adaptive Coloration in Animals (Methuen & Co. Ltd., 1940).

  • 5.

    Tinbergen, N. Curious Naturalists (Penguin Education Books., 1974).

  • 6.

    Duellman, W. E. & Trueb, L. Biology of Amphibians (The Johns Hopkins University Press).

  • 7.

    Stevens, M. The role of eyespots as anti-predator mechanisms, principally demonstrated in the Lepidoptera. Biol. Rev. Camb. Philos. Soc.80, 573–588 (2005).

    PubMed  Google Scholar 

  • 8.

    Kjernsmo, K. & Merilaita, S. Resemblance to the enemy’s eyes underlies the intimidating effect of eyespots. Am. Nat.190, 594–600 (2017).

    PubMed  Google Scholar 

  • 9.

    Kodandaramaiah, U. The evolutionary significance of butterfly eyespots. Behav. Ecol.22, 1264–1271 (2011).

    Google Scholar 

  • 10.

    Stevens, M. & Ruxton, G. D. Do animal eyespots really mimic eyes? Curr. Zool.60, 26–36 (2014).

    Google Scholar 

  • 11.

    Stevens, M. Anti-predator coloration and behaviour: a longstanding topic with many outstanding questions. Curr. Zool.61, 702–707 (2015).

    Google Scholar 

  • 12.

    Lyytinen, A., Brakefield, P. M., Lindström, L. & Mappes, J. Does predation maintain eyespot plasticity in Bicyclus anynana? Proc. R. Soc. B Biol. Sci.271, 279–283 (2004).

    Google Scholar 

  • 13.

    Hill, R. I. & Vaca, J. F. Differential wing strength in Pierella butterflies (Nymphalidae, Satyrinae) supports the deflection hypothesis1. Biotropica36, 362 (2004).

    CAS  Google Scholar 

  • 14.

    Olofsson, M., Vallin, A., Jakobsson, S. & Wiklund, C. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths. PLoS ONE5, e10798 (2010).

  • 15.

    Vallin, A., Dimitrova, M., Kodandaramaiah, U. & Merilaita, S. Deflective effect and the effect of prey detectability on anti-predator function of eyespots. Behav. Ecol. Sociobiol.65, 1629–1636 (2011).

    Google Scholar 

  • 16.

    Deppe, C. et al. Effect of northern pygmy-owl (Glaucidium gnoma) eyespots on avian mobbing. Auk120, 765–771 (2012).

    Google Scholar 

  • 17.

    Pinheiro, C. E. G., Antezana, M. A. & Machado, L. P. Evidence for the deflective function of eyespots in wild junonia evarete cramer (Lepidoptera, Nymphalidae). Neotrop. Entomol.43, 39–47 (2014).

    CAS  PubMed  Google Scholar 

  • 18.

    Prudic, K. L., Stoehr, A. M., Wasik, B. R. & Monteiro, A. Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity. Proc. R. Soc. B https://doi.org/10.1098/rspb.2014.1531 (2015).

  • 19.

    Vallin, A., Jakobsson, S. & Wiklund, C. ‘An eye for an eye?’—on the generality of the intimidating quality of eyespots in a butterfly and a hawkmoth. Behav. Ecol. Sociobiol.61, 1419–1424 (2007).

    Google Scholar 

  • 20.

    Merilaita, S. et al. Number of eyespots and their intimidating effect on naïve predators in the peacock butterfly. Behav. Ecol.22, 1326–1331 (2011).

    Google Scholar 

  • 21.

    Hossie, T. J. & Sherratt, T. N. Defensive posture and eyespots deter avian predators from attacking caterpillar models. Anim. Behav.86, 383–389 (2013).

    Google Scholar 

  • 22.

    Skelhorn, J., Dorrington, G., Hossie, T. J. & Sherratt, T. N. The position of eyespots and thickened segments influence their protective value to caterpillars. Behav. Ecol.25, 1417–1422 (2014).

    Google Scholar 

  • 23.

    De Bona, S., Valkonen, J. K., López-Sepulcre, A. & Mappes, J. Predator mimicry, not conspicuousness, explains the efficacy of butterfly eyespots. Proc. Biol. Sci.282, 20150202 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Stevens, M. et al. Field experiments on the effectiveness of ‘eyespots’ as predator deterrents. Anim. Behav.74, 1215–1227 (2007).

    Google Scholar 

  • 25.

    Stevens, M., Hardman, C. J. & Stubbins, C. L. Conspicuousness, not eye mimicry, makes ‘eyespots’ effective antipredator signals. Behav. Ecol.19, 525–531 (2008).

    Google Scholar 

  • 26.

    Stevens, M. & Winney, I. The function of animal’ eyespots’: conspicuousness but not eye mimicry is key. Curr. Zool.55, 319–326 (2009).

    Google Scholar 

  • 27.

    Yorzinski, J. L., Platt, M. L. & Adams, G. K. Eye-spots in Lepidoptera attract attention in humans. R. Soc. Open Sci.2, https://doi.org/10.1098/rsos.150155 (2015).

  • 28.

    Young, B. A. & Kardong, K. V. The functional morphology of hooding in cobras. J. Exp. Biol.213, 1521–1528 (2010).

    PubMed  Google Scholar 

  • 29.

    Mukherjee, R. & Kodandaramaiah, U. What makes eyespots intimidating-the importance of pairedness Evolutionary ecology and behaviour. BMC Evol. Biol.15, 28–31 (2015).

    Google Scholar 

  • 30.

    Scaife, M. The response to eye-like shapes by birds II. The importance of staring, pairedness and shape. Anim. Behav.24, 200–206 (1976).

    Google Scholar 

  • 31.

    Jones, R. B. Reactions of male domestic chicks to two-dimensional eye-like shapes. Anim. Behav.28, 212–218 (1980).

    Google Scholar 

  • 32.

    Balgooyen, T. G. Another possible function of the American kestrel’s deflection face. Jack-Pine Warbler 53, 115–116 (1975).

  • 33.

    Negro, J. J., Bortolotti, G. R. & Sarasola, J. H. Deceptive plumage signals in birds: Manipulation of predators or prey? Biol. J. Linn. Soc.90, 467–477 (2007).

    Google Scholar 

  • 34.

    Hasson, O. Pursuit-deterrent signals: communication between prey and predator. Trends Ecol. Evol.6, 325–329 (1991).

    CAS  PubMed  Google Scholar 

  • 35.

    Caro, T. M. Pursuit-deterrence revisited. Trends Ecol. Evol.10, 500–503 (1995).

    CAS  PubMed  Google Scholar 

  • 36.

    Powell, K. L., Roberts, G. & Nettle, D. Eye images increase charitable donations: evidence from an opportunistic field experiment in a supermarket. Ethology118, 1096–1101 (2012).

    Google Scholar 

  • 37.

    Nettle, D., Nott, K. & Bateson, M. ‘Cycle thieves, we are watching you’: impact of a simple signage intervention against bicycle theft. PLoS ONE7, 8–12 (2012).

    Google Scholar 

  • 38.

    Bateson, M. et al. Watching eyes on potential litter can reduce littering: evidence fromtwo field experiments. PeerJ2015, 1–15 (2015).

    Google Scholar 

  • 39.

    Miklosi, A. et al. A simple reason for a big difference: wolves do not look back at humans, but dogs do. Curr. Biol.13, 763–766 (2003).

    CAS  PubMed  Google Scholar 

  • 40.

    Wallis, L. J. et al. Training for eye contact modulates gaze following in dogs. Anim. Behav.106, 27–35 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Johnston, A. M., Turrin, C., Watson, L., Arre, A. M. & Santos, L. R. Uncovering the origins of dog–human eye contact: dingoes establish eye contact more than wolves, but less than dogs. Anim. Behav.133, 123–129 (2017).

    Google Scholar 

  • 42.

    Pongrácz, P., Szapu, J. S. & Faragó, T. Cats (Felis silvestris catus) read human gaze for referential information. Intelligence https://doi.org/10.1016/j.intell.2018.11.001 (2019)

  • 43.

    Simons, M. Face Masks Fool the Bengal Tigers (The New York Times, 1989).

  • 44.

    van Eeden, L. M. et al. Managing conflict between large carnivores and livestock. Conservation Biology. 32, 26–34 (2018).

    PubMed  Google Scholar 

  • 45.

    Paddle, R. The Last Tasmanian Tiger: The History and Extinction of the Thylacine (Cambridge University Press, 2000). https://doi.org/10.2307/4127234.

  • 46.

    Breitenmoser, U. Large predators in the Alps: the fall and rise of man’s competitors. Biol. Conserv.83, 279–289 (1998).

    Google Scholar 

  • 47.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science343, 1241484 (2014).

    PubMed  Google Scholar 

  • 48.

    Treves, A., Krofel, M. & McManus, J. Predator control should not be a shot in the dark. Front. Ecol. Environ.14, 380–388 (2016).

    Google Scholar 

  • 49.

    Weise, F. J. et al. Size, shape and maintenance matter: a critical appraisal of a global carnivore conflict mitigation strategy—livestock protection kraals in northern Botswana. Biol. Conserv.225, 88–97 (2018).

    Google Scholar 

  • 50.

    Holland, K. K., Larson, L. R. & Powell, R. B. Characterizing conflict between humans and big cats Panthera spp: A systematic review of research trends and management opportunities. PLoS ONE13, 1–19 (2018).

    Google Scholar 

  • 51.

    McNutt, J. W., Stein, A. B., McNutt, L. B. & Jordan, N. R. Living on the edge: Characteristics of human-wildlife conflict in a traditional livestock community in Botswana. Wildl. Res.44, 546–557 (2017).

    Google Scholar 

  • 52.

    Johnson, W. E., Eizirik, E. & Lento, G. M. in Carnivore Conservation (eds MacDonald, D. W. & Wayne, R. K.) 196–220 (Cambridge University Press, 2001).

  • 53.

    Holley, A. J. F. Do Brown Hares signal to foxes? Ethology94, 21–30 (1993).

    Google Scholar 

  • 54.

    Godin, J. G. J. & Davis, S. A. Who dares, benefits: predator approach behaviour in the guppy (Poecilia reticulata) deters predator pursuit. Proc. R. Soc. B Biol. Sci.259, 193–200 (1995).

    Google Scholar 

  • 55.

    Hunter, L. Cats of Africa: Behaviour, Ecology, and Conservation (Struik Publishers, 2005).

  • 56.

    Schaller, G. B. The Serengeti Lion: A Study of Predator-prey Relations (The University of Chicago Press, 1972).

  • 57.

    Stander, P. E. Cooperative hunting in lions: the role of the individual. Behav. Ecol. Sociobiol.29, 445–454 (1992).

    Google Scholar 

  • 58.

    McNamara, K., O’Kiely, P., Whelan, J., Forristal, P. D. & Lenehan, J. Preventing bird damage to wrapped baled silage during short- and long-term storage. Wildl. Soc. Bull.30, 809–815 (2002).

    Google Scholar 

  • 59.

    Gittleman, J. L. & Harvey, P. H. Why are distasteful prey not cryptic? Nature286, 149–150 (1980).

    Google Scholar 

  • 60.

    Roper, T. J. & Redston, S. Conspicuousness of distasteful prey affects the strength and durability of one-trial avoidance learning. Anim. Behav.35, 739–747 (1987).

    Google Scholar 

  • 61.

    Watson, F. G. R., Becker, M. S., Milanzi, J. & Nyirenda, M. Human encroachment into protected area networks in Zambia: implications for large carnivore conservation. Reg. Environ. Chang.15, 415–429 (2014).

    Google Scholar 

  • 62.

    Di Minin, E. et al. Global priorities for national carnivore conservation under land use change. Sci. Rep.6, 23814 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 63.

    Gusset, M., Swarner, M. J., Mponwane, L., Keletile, K. & McNutt, J. W. Human–wildlife conflict in northern Botswana: livestock predation by Endangered African wild dog. Oryx43, 67–72 (2009).

    Google Scholar 

  • 64.

    Mosser, A. & Packer, C. Group territoriality and the benefits of sociality in the African lion, Panthera leo. Anim. Behav.78, 359–370 (2009).

    Google Scholar 

  • 65.

    Cozzi, G., Broekhuis, F., McNutt, J. W. & Schmid, B. Density and habitat use of lions and spotted hyenas in northern Botswana and the influence of survey and ecological variables on call-in survey estimation. Biodivers. Conserv.22, 2937–2956 (2013).

    Google Scholar 

  • 66.

    Joron, M., Carde, R. T. & Resh, V. H. in Encyclopedia of Insects 39–45 (New York Academic Press, 2003).

  • 67.

    Sunquist, M. & Sunquist, F. Wild Cats of the World (The University of Chicago Press, 2002).

  • 68.

    Therneau, T. M. coxme: Mixed effects cox models in R. R package version 3.2-3 (2020).

  • 69.

    Therneau, T. M. A Package for Survival Analysis in R. R package version 3.2-3. https://CRAN.R-project.org/package=survival (2020).

  • 70.

    Tang, Y., Horikoshi, M. & Li, W. ggfortify: Unified interface to visualise statistical result of popular R packages. R. J.8.2, 478–489 (2016).

    Google Scholar 

  • 71.

    Horikoshi, M. & Tang, Y. ggfortify: Data Visualization Tools for Statistical Analysis Results. https://CRAN.R-project.org/package=ggfortify.

  • 72.

    Heinze, G. & Schemper, M. A solution to the problem of separation in logistic regression. Stat. Med.21, 2409–2419 (2002).

    PubMed  Google Scholar 

  • 73.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B57, 289–300 (2017).

    Google Scholar 

  • 74.

    Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw.40, 1–25 (2011).

    Google Scholar 

  • 75.

    Wickham, H., Francois, R., Henry, L. & Muller, K. dplyr: A grammar of data manipulation. R package version 0.4 3 (2015).

  • 76.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

  • 77.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models using lme4. https://doi.org/10.18637/jss.v067.i01 (2014).

  • 78.

    Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.1.6 (2017).

  • 79.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).

  • 80.

    Jordan, N. R., Radford, C., Rogers, T., Maslen, B. & McNutt, J. W. (2020). Data & Code: Artificial eyespots on cattle reduce predation by large carnivores [Data set]. Zenodo. https://doi.org/10.5281/zenodo.3877999 (2020).


  • Source: Ecology - nature.com

    When the chemical industry met modern architecture

    MIT Energy Conference goes virtual