in

Assessing ecological uncertainty and simulation model sensitivity to evaluate an invasive plant species’ potential impacts to the landscape

  • 1.

    Sofaer, H. R., Jarnevich, C. S. & Pearse, I. S. The relationship between invader abundance and impact. Ecosphere 9, e02415. https://doi.org/10.1002/ecs2.2415 (2018).

    Article  Google Scholar 

  • 2.

    Parker, I. M. et al. Impact: Toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1, 3–19. https://doi.org/10.1023/a:1010034312781 (1999).

    Article  Google Scholar 

  • 3.

    Fusco, E. J., Finn, J. T., Balch, J. K., Nagy, R. C. & Bradley, B. A. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc. Natl. Acad. Sci. 116, 23594–23599. https://doi.org/10.1073/pnas.1908253116 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 4.

    Hellmann, J. J., Byers, J. E., Bierwagen, B. G. & Dukes, J. S. Five potential consequences of climate change for invasive species. Conserv. Biol. 22, 534–543. https://doi.org/10.1111/j.1523-1739.2008.00951.x (2008).

    Article  PubMed  Google Scholar 

  • 5.

    Clark, J. S. et al. Ecological forecasts: An emerging imperative. Science 293, 657–660. https://doi.org/10.1126/science.293.5530.657 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Andrew, M. E. & Ustin, S. L. The role of environmental context in mapping invasive plants with hyperspectral image data. Remote Sens. Environ. 112, 4301–4317. https://doi.org/10.1016/j.rse.2008.07.016 (2008).

    ADS  Article  Google Scholar 

  • 7.

    Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253. https://doi.org/10.1007/s00442-004-1551-1 (2004).

    ADS  Article  PubMed  Google Scholar 

  • 8.

    Theoharides, K. A. & Dukes, J. S. Plant invasion across space and time: Factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176, 256–273. https://doi.org/10.1111/j.1469-8137.2007.02207.x (2007).

    Article  PubMed  Google Scholar 

  • 9.

    Daniel, C., Frid, L., Sleeter, B. & Fortin, M.-J. State-and-transition simulation models: A framework for forecasting landscape change. Methods Ecol. Evol. 7, 1413–1423. https://doi.org/10.1111/2041-210x.12597 (2016).

    Article  Google Scholar 

  • 10.

    Frid, L. & Wilmshurst, J. F. Decision analysis to evaluate control strategies for crested wheatgrass (Agropyron cristatum) in Grasslands National Park of Canada. Invasive Plant Sci. Manag. 2, 324–336 (2009).

    Article  Google Scholar 

  • 11.

    Jarnevich, C. S., Holcombe, T. R., Cullinane Thomas, C., Frid, L. & Olsson, A. Simulating long-term effectiveness and efficiency of management scenarios for an invasive grass. AIMS Environ. Sci. 2, 427–447, https://doi.org/10.3934/environsci.2015.2.427 (2015).

  • 12.

    Frid, L. et al. Using state and transition modeling to account for imperfect knowledge in invasive species management. Invasive Plant Sci. Manag. 6, 36–47 (2013).

    Article  Google Scholar 

  • 13.

    Grechi, I. et al. A decision framework for management of conflicting production and biodiversity goals for a commercially valuable invasive species. Agric. Syst. 125, 1–11. https://doi.org/10.1016/j.agsy.2013.11.005 (2014).

    Article  Google Scholar 

  • 14.

    Miller, B. W., Symstad, A. J., Frid, L., Fisichelli, N. A. & Schuurman, G. W. Co-producing simulation models to inform resource management: A case study from southwest South Dakota. Ecosphere 8, e02020, https://doi.org/10.1002/ecs2.2020 (2017).

  • 15.

    Cullinane Thomas, C., Sofaer, H. R., Cline, S. & Jarnevich, C. S. Integrating landscape simulation models with economic and decision tools for invasive species control. Manag. Biol. Invasions 10, 6–22 (2019).

  • 16.

    Marshall, V. M., Lewis, M. M. & Ostendorf, B. Buffel grass (Cenchrus ciliaris) as an invader and threat to biodiversity in arid environments: A review. J. Arid Environ. 78, 1–12. https://doi.org/10.1016/j.jaridenv.2011.11.005 (2012).

    ADS  Article  Google Scholar 

  • 17.

    Jarnevich, C. S., Young, N. E., Talbert, M. & Talbert, C. Forecasting an invasive species’ distribution with global distribution data, local data, and physiological information. Ecosphere 9, e02279. https://doi.org/10.1002/ecs2.2279 (2018).

    Article  Google Scholar 

  • 18.

    Martin, T. et al. Buffel grass and climate change: A framework for projecting invasive species distributions when data are scarce. Biol. Invasions 17, 3197–3210. https://doi.org/10.1007/s10530-015-0945-9 (2015).

    Article  Google Scholar 

  • 19.

    de Albuquerque, F. S., Macías-Rodríguez, M. Á., Búrquez, A. & Astudillo-Scalia, Y. Climate change and the potential expansion of buffelgrass (Cenchrus ciliaris L., Poaceae) in biotic communities of Southwest United States and northern Mexico. Biol. Invasions 21, 3335–3347, https://doi.org/10.1007/s10530-019-02050-5 (2019).

  • 20.

    Castellanos, A. E., Celaya-Michel, H., Rodríguez, J. C. & Wilcox, B. P. Ecohydrological changes in semiarid ecosystems transformed from shrubland to buffelgrass savanna. Ecohydrology 9, 1663–1674. https://doi.org/10.1002/eco.1756 (2016).

    Article  Google Scholar 

  • 21.

    McDonald, C. J. & McPherson, G. R. Fire behavior characteristics of buffelgrass-fueled fires and native plant community composition in invaded patches. J. Arid Environ. 75, 1147–1154. https://doi.org/10.1016/j.jaridenv.2011.04.024 (2011).

    ADS  Article  Google Scholar 

  • 22.

    McDonald, C. J. & McPherson, G. R. Creating hotter fires in the Sonoran Desert: Buffelgrass produces copious fuels and high fire temperatures. Fire Ecol. 9, 26–39 (2013).

    Article  Google Scholar 

  • 23.

    Bracamonte, J. A., Tinoco-Ojanguren, C., Sanchez Coronado, M. E. & Molina-Freaner, F. Germination requirements and the influence of buffelgrass invasion on a population of Mammillaria grahamii in the Sonoran Desert. J Arid Environ. 137, 50–59, https://doi.org/10.1016/j.jaridenv.2016.11.003 (2017).

  • 24.

    Lyons, K. G., Maldonado-Leal, B. G. & Owen, G. Community and ecosystem effects of buffelgrass (Pennisetum ciliare) and nitrogen deposition in the Sonoran Desert. Invasive Plant Sci. Manag. 6, 65–78. https://doi.org/10.1614/ipsm-d-11-00071.1 (2013).

    CAS  Article  Google Scholar 

  • 25.

    Olsson, A. D., Betancourt, J., McClaran, M. P. & Marsh, S. E. Sonoran Desert Ecosystem transformation by a C4 grass without the grass/fire cycle. Divers. Distrib. 18, 10–21. https://doi.org/10.1111/j.1472-4642.2011.00825.x (2012).

    Article  Google Scholar 

  • 26.

    Miller, G., Friedel, M., Adam, P. & Chewings, V. Ecological impacts of buffel grass (Cenchrus ciliaris L.) invasion in central Australia—Does field evidence support a fire-invasion feedback? Rangeland J. 32, 353–365, https://doi.org/10.1071/rj09076 (2010).

  • 27.

    Fensham, R. J., Wang, J. & Kilgour, C. The relative impacts of grazing, fire and invasion by buffel grass (Cenchrus ciliaris) on the floristic composition of a rangeland savanna ecosystem. Rangeland J. 37, 227–237. https://doi.org/10.1071/RJ14097 (2015).

    Article  Google Scholar 

  • 28.

    Schlesinger, C., White, S. & Muldoon, S. Spatial pattern and severity of fire in areas with and without buffel grass (Cenchrus ciliaris) and effects on native vegetation in central Australia. Austral. Ecol. 38, 831–840. https://doi.org/10.1111/aec.12039 (2013).

    Article  Google Scholar 

  • 29.

    Jarnevich, C. S. et al. Developing an expert elicited simulation model to evaluate invasive species and fire management alternatives. Ecosphere 10, e02730. https://doi.org/10.1002/ecs2.2730 (2019).

    Article  Google Scholar 

  • 30.

    Esque, T. C., Schwartz, M. W., Lissow, J. A., Haines, D. F. & Garnett, M. C. Buffelgrass fuel loads in Saguaro National Park, Arizona, increase fire danger and threaten native species. Park Sci. 24, 33–37,56 (2007).

  • 31.

    Wallace, C. S. et al. Mapping presence and predicting phenological status of invasive buffelgrass in Southern Arizona using MODIS, climate and citizen science observation data. Remote Sens. 8, 524 (2016).

    ADS  Article  Google Scholar 

  • 32.

    Martin-R, M. H., Cox, J. R. & Ibarra-F, F. Climatic effects on buffelgrass productivity in the Sonoran Desert. J. Range Manag. 48, 60–63 (1995).

    Article  Google Scholar 

  • 33.

    Stillman, S. et al. Spatiotemporal variability of summer precipitation in Southeastern Arizona. J. Hydrometeorol. 14, 1944–1951. https://doi.org/10.1175/jhm-d-13-017.1 (2013).

    ADS  Article  Google Scholar 

  • 34.

    Arias, P. A., Fu, R. & Mo, K. C. Decadal variation of rainfall seasonality in the North American monsoon region and its potential causes. J. Clim. 25, 4258–4274. https://doi.org/10.1175/jcli-d-11-00140.1 (2012).

    ADS  Article  Google Scholar 

  • 35.

    R Core Team. R: A Language and Environment for Statistical Computing. (Foundation for Statistical Computing. Vienna, https://www.R-project.org/. Version 3.4.3., 2017).

  • 36.

    Finney, M. A. FARSITE: Fire area simulator-model development and evaluation. in Research Paper RMRS-RP-4, Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. (2004).

  • 37.

    Sofaer, H. R. et al. The development and delivery of species distribution models to inform decision-making. Bioscience 69, 544–557. https://doi.org/10.1093/biosci/biz045 (2019).

    Article  Google Scholar 

  • 38.

    Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96. https://doi.org/10.1080/00031305.1991.10475776 (1991).

    Article  Google Scholar 

  • 39.

    Wickham, H. tidyverse: Easily Install and Load the ‘Tidyverse‘. R package version 1.2.1. https://CRAN.R-project.org/package=tidyverse. (2017).

  • 40.

    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 2.5-2. https://CRAN.R-project.org/package=raster. (2015).

  • 41.

    Walsh, C. & MacNally, R. hier.part: Hierarchical Partitioning. R package version 1.0-4. https://CRAN.R-project.org/package=hier.part. (2013).

  • 42.

    Jarnevich, C. J., Cullinane Thomas, C. M. & Young, N. E. State-and-Transition Simulation Models of Buffelgrass in Saguaro National Park (2014–2044) to explore ecological uncertainties: U.S. Geological Survey data release. https://doi.org/10.5066/P9IZKB25.

  • 43.

    Daniel, C. J., Ter-Mikaelian, M. T., Wotton, B. M., Rayfield, B. & Fortin, M.-J. Incorporating uncertainty into forest management planning: Timber harvest, wildfire and climate change in the boreal forest. For Ecol Manag 400, 542–554. https://doi.org/10.1016/j.foreco.2017.06.039 (2017).

    Article  Google Scholar 

  • 44.

    Ford, P. L., Reeves, M. C. & Frid, L. A tool for projecting Rangeland vegetation response to management and climate. Rangelands 41, 49–60. https://doi.org/10.1016/j.rala.2018.10.010 (2019).

    Article  Google Scholar 

  • 45.

    Olsson, A. D., Betancourt, J. L., Crimmins, M. A. & Marsh, S. E. Constancy of local spread rates for buffelgrass (Pennisetum ciliare L.) in the Arizona Upland of the Sonoran Desert. J Arid Environ 87, 136–143, https://doi.org/10.1016/j.jaridenv.2012.06.005 (2012).

  • 46.

    Weston, J. D., McClaran, M. P., Whittle, R. K., Black, C. W. & Fehmi, J. S. Satellite patches, patch expansion, and doubling time as decision metrics for invasion control: Pennisetum ciliare expansion in southwestern Arizona. Invasive Plant Sci. Manag. 12, 36–42 (2019).

    Article  Google Scholar 

  • 47.

    Cox, J. R. et al. The influence of climate and soils on the distribution of four African grasses. J Range Manag 41, 127–139. https://doi.org/10.2307/3898948 (1988).

    Article  Google Scholar 

  • 48.

    de la Barrera, E. & Castellanos, A. E. High temperature effects on gas exchange for the invasive buffel grass (Pennisetum ciliare [L.] Link). Weed Biol Manag 7, 128–131, https://doi.org/10.1111/j.1445-6664.2007.00248.x (2007).

  • 49.

    Reichmann, L. G., Sala, O. E. & Peters, D. P. C. Precipitation legacies in desert grassland primary production occur through previous-year tiller density. Ecology 94, 435–443. https://doi.org/10.1890/12-1237.1 (2013).

    Article  PubMed  Google Scholar 

  • 50.

    Colorado-Ruiz, G., Cavazos, T., Salinas, J. A., De Grau, P. & Ayala, R. Climate change projections from Coupled Model Intercomparison Project phase 5 multi-model weighted ensembles for Mexico, the North American monsoon, and the mid-summer drought region. Int. J. Climatol. 38, 5699–5716. https://doi.org/10.1002/joc.5773 (2018).

    Article  Google Scholar 

  • 51.

    Pascale, S. et al. Weakening of the North American monsoon with global warming. Nat. Clim. Change 7, 806, https://doi.org/10.1038/nclimate3412, https://www.nature.com/articles/nclimate3412#supplementary-information (2017).

  • 52.

    Pascale, S., Kapnick, S. B., Bordoni, S. & Delworth, T. L. The influence of CO2 FORCING on North American monsoon moisture surges. J. Clim. 31, 7949–7968 (2018).

    ADS  Article  Google Scholar 

  • 53.

    Pascale, S., Carvalho, L. M. V., Adams, D. K., Castro, C. L. & Cavalcanti, I. F. A. Current and future variations of the monsoons of the Americas in a warming climate. Curr. Clim. Change Rep. 5, 125–144. https://doi.org/10.1007/s40641-019-00135-w (2019).

    Article  Google Scholar 

  • 54.

    Abatzoglou, J. T. & Kolden, C. A. Climate change in Western US Deserts: Potential for increased wildfire and invasive annual grasses. Rangeland Ecol. Manag. 64, 471–478. https://doi.org/10.2111/rem-d-09-00151.1 (2011).

    Article  Google Scholar 

  • 55.

    Poulin, J., Sakai, A. K., Weller, S. G. & Nguyen, T. Phenotypic plasticity, precipitation, and invasiveness in the fire-promoting grass Pennisetum setaceum (Poaceae). Am J Bot 94, 533–541. https://doi.org/10.3732/ajb.94.4.533 (2007).

    Article  PubMed  Google Scholar 

  • 56.

    Goergen, E. & Daehler, C. C. Factors affecting seedling recruitment in an invasive grass (Pennisetum setaceum) and a native grass (Heteropogon contortus) in the Hawaiian Islands. Plant Ecol 161, 147–156. https://doi.org/10.1023/a:1020368719136 (2002).

    Article  Google Scholar 

  • 57.

    Eschtruth, A. K. & Battles, J. J. Assessing the relative importance of disturbance, herbivory, diversity, and propagule pressure in exotic plant invasion. Ecol Monogr 79, 265–280. https://doi.org/10.1890/08-0221.1 (2009).

    Article  Google Scholar 

  • 58.

    Klinger, R. & Brooks, M. Alternative pathways to landscape transformation: Invasive grasses, burn severity and fire frequency in arid ecosystems. J Ecol 105, 1521–1533. https://doi.org/10.1111/1365-2745.12863 (2017).

    Article  Google Scholar 

  • 59.

    Brooks, M. L. et al. Effects of invasive alien plants on fire regimes. Bioscience 54, 677–688 (2004).

    Article  Google Scholar 

  • 60.

    D’Antonio, C. M. & Vitousek, P. M. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23, 63–87 (1992).

    Article  Google Scholar 

  • 61.

    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52. https://doi.org/10.1038/nature11018 (2012).

    ADS  CAS  Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Transatlantic research and study partnership continues amid the pandemic

    Transcriptomic and life history responses of the mayfly Neocloeon triangulifer to chronic diel thermal challenge