in

Assessment of selected heavy metals and enzyme activity in soils within the zone of influence of various tree species

  • 1.

    Binggan, W. & Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 94, 99–107. https://doi.org/10.1016/j.microc.2009.09.014 (2010).

    CAS  Article  Google Scholar 

  • 2.

    Bini, C., Wahsha, M., Fontana, S. & Maleci, L. Effects of heavy metals on morphological characteristic of Taraxacum officinale Web growing on mine soils in NE Italy. J. Geochem. Explor. 123, 101–108. https://doi.org/10.1016/j.geoxplo.2012.07.009 (2012).

    CAS  Article  Google Scholar 

  • 3.

    Hu, Y., Wang, D., Wei, L., Zhang, X. & Song, B. Bioaccumulation of heavy metals in plant leaves from Yan’an city of the Loess Plateau, China. Ecotox. Environ. Safe 110, 82–88. https://doi.org/10.1016/j.ecoenv.2014.08.021 (2014).

    CAS  Article  Google Scholar 

  • 4.

    Bartkowiak, A., Lemanowicz, J. & Breza-Borut, B. Evaluation of the content of Zn, Cu, Ni and Pb as well as the enzymatic activity of forest soils exposed to the effect of road traffic pollution. Environ. Sci. Pollut. Res. 24(30), 23893–23902. https://doi.org/10.1007/s11356-017-0013-3 (2017).

    CAS  Article  Google Scholar 

  • 5.

    Simon, E. et al. Elemental concentrations in deposited dust on leaves along an urbanization gradient. Sci. Total Environ. 490, 514–520. https://doi.org/10.1016/j.scitotenv.2014.05.028 (2014).

    CAS  PubMed  ADS  Article  Google Scholar 

  • 6.

    Braquinho, C., Serrano, H., Pinto, M. & Martins-Loução, M. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements. Environ. Pollut. 146, 437–443. https://doi.org/10.1016/j.envpol.2006.06.034 (2007).

    CAS  Article  Google Scholar 

  • 7.

    Remon, E., Bouchardon, J. L., Guédard, M. L., Bessoule, J. J. & Conord, C. Are plants useful as accumulation indicators of metal bioavailability. Environ. Pollut. 175, 1–7. https://doi.org/10.1016/j.envpol.2012.12.015 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Dębska, B., Długosz, J. & Piotrowska-Długosz, A. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration-results from a field-scale study. J. Soils Sedim. 16(10), 2335–2343. https://doi.org/10.1007/s11368-016-1430-5 (2016).

    CAS  Article  Google Scholar 

  • 9.

    Serbula, S. M., Miljkovic, D. D., Kovacevic, R. M. & Ilic, A. A. Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotox. Environ. Safe 76, 209–214. https://doi.org/10.4209/aaqr.2012.06.0153 (2012).

    CAS  Article  Google Scholar 

  • 10.

    Ugolini, F., Tognetti, R., Raschi, A. & Bacci, A. Quercus ilex L as bioaccumulator for heavy metals in urban areas: Effectiveness of leaf washing with distilled water and considerations on the trees distance from traffic. Urban For. Urban Gree. 12, 576–584. https://doi.org/10.1016/j.ufug.2013.05.007 (2013).

    Article  Google Scholar 

  • 11.

    Kandziora-Ciupa, M., Nagórska-Socha, A., Ciepał, Ł & Janowicz, I. Heavy metals content and biochemical indicators in birch leaves from polluted and clean areas. Ecol. Chem. Eng. A 22(1), 83–91. https://doi.org/10.2428/ecea.2015.22(1)08 (2015).

    CAS  Article  Google Scholar 

  • 12.

    Tzvetkova, N. & Petkova, K. Bioaccumulation of heavy metals by the leaves of Robinia pseudoacacia as a bioindicator tree in industrial zones. J. Environ. Biol. 36, 59–63 (2015).

    PubMed  Google Scholar 

  • 13.

    Nadgórska-Socha, A., Kandziora-Ciupa, M., Trzęsicki, M. & Barczyk, G. Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes. Chemosphere 183, 471–482. https://doi.org/10.1016/j.chemosphere.2017.05.128 (2017).

    CAS  PubMed  ADS  Article  Google Scholar 

  • 14.

    Baldrian, P. & Šnajdr, J. Lignocellulose-degrading enzymes in soil. In Soil Enzymology (eds Shukla, G. & Varma, A.) 167–186 (Springer, Berlin, 2011).

    Google Scholar 

  • 15.

    Orczewska, A., Piotrowska, A. & Lemanowicz, J. Soil acid phosphomonoesterase activity end phosphorus forms in ancient and post-agricultural black alder [Alnus glutonosa (L) Gaertn.] woodland. Acta Soc. Bot. Pol. 81(2), 81–86. https://doi.org/10.5586/asbp.2012.013 (2010).

    CAS  Article  Google Scholar 

  • 16.

    Lemanowicz, J. Dynamics of phosphorus content and the activity of phosphatase in forest soil in the sustained nitrogen compounds emissions zone. Environ. Sci. Pollut. Res. 25(33), 33773–33782. https://doi.org/10.1007/s11356-018-3348-5 (2018).

    CAS  Article  Google Scholar 

  • 17.

    Bach, C. E. et al. Measuring phenol oxidase and peroxidase activities with pyrogallol, L-DOPA, and ABTS: Effect of assay conditions and soil type. Soil Biol. Biochem. 67, 183–191. https://doi.org/10.1016/j.soilbio.2013.08.022 (2013).

    CAS  Article  Google Scholar 

  • 18.

    PN-ISO 10390. Chemical and Agricultural Analysis—Determining Soil pH. (Polish Standards Committee, Warszawa, 1997).

  • 19.

    Crock, J. G. & Severson, R. Four reference soil and rock samples for measuring element availability in the western energy regions. Geochem. Surv. Circ. 841, 1–16 (1980).

    Google Scholar 

  • 20.

    U.S. EPA. Clean Water Act, Sec. 503, Vol. 58, No. 32. (U.S. Environmental Protection Agency Washington, D.C., 1993).

  • 21.

    Regulation of the Minister of the Environment dated 1 September 2016 on assessment procedures for the land surface pollution (Journal of Laws, item 1359, September 5, 2016) (in Polish).

  • 22.

    Obrador, A. et al. Relationships of soil properties with Mn and Zn distribution in acidic soils and their uptake by a barley crop. Geoderma 137(3–4), 432–443. https://doi.org/10.1016/j.geoderma.2006.10.001 (2007).

    CAS  ADS  Article  Google Scholar 

  • 23.

    Kandeler, E. Enzymes involved in nitrogen metabolism. In Methods in Soil Biology (eds Schinner, F. et al.) 163–184 (Springer, Berlin, 1995).

    Google Scholar 

  • 24.

    Bartha, R. & Bordeleau, L. Cell-free peroxidases in soil. Soil Biol. Biochem. 1(2), 139–143. https://doi.org/10.1016/0038-0717(69)90004-2 (1969).

    CAS  Article  Google Scholar 

  • 25.

    USDA. Keys to Soil Taxonomy. Tenth Edition. United States Department of Agriculture, Natural Resources Conservation Service 1–332 (2006).

  • 26.

    Zehetner, F., Rosenfellner, U., Mentler, A. & Gerzabek, M. H. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a highway-forest interface. Water Air Soil Pollut. 198, 125–132. https://doi.org/10.1007/s11270-008-9831-8 (2009).

    CAS  ADS  Article  Google Scholar 

  • 27.

    Czubaszek, R. & Bartoszuk, K. Content of selected heavy metals in soils in accordance with its distance from the street and land use. Civil Environ. Eng. 2, 27–34 (2011).

    Google Scholar 

  • 28.

    Gąsiorek, M., Kowalska, J., Mazurek, R. & Pająk, M. Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the Planty Park in Krakow (Poland). Chemosphere 179, 148–158. https://doi.org/10.1016/j.chemosphere.2017.03.106 (2017).

    CAS  PubMed  ADS  Article  Google Scholar 

  • 29.

    Kabata-Pendias, A. & Pendias, P. Trace Elements in Soils and Plants, 3rd edn. (CRC Press, Florida, ISBN 0-8493-1575-1, 2001).

  • 30.

    Inal, A., Gunes, A., Zhang, F. & Cakmak, I. Peanut/maize intercropping induced change in rhizosphere and nutrient concentration in shoots. Plant Physiol. Biochem. 45, 350–356. https://doi.org/10.1016/j.plaphy.2007.03.016 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Jin, C. W., Zheng, S. J., He, Y. F., Zhou, G. D. & Zhou, Z. H. Lead contamination in tea garden soil and factors affecting its bioavailability. Chemosphere 61(5), 726–732. https://doi.org/10.1016/j.chemosphere.2005.03.053 (2005).

    CAS  PubMed  ADS  Article  Google Scholar 

  • 32.

    Ashworth, D. J. & Alloway, B. J. Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc. Environ. Pollut. 127, 137–144 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Fijałkowski, K., Kacprzak, M., Grobelak, A. & Placek, A. The influence of selected soil parameters on the mobility of heavy metals in soils. Eng. Prot. Environ. 15(1), 81–92 (2012).

    Google Scholar 

  • 34.

    Lasat, M.M. Phytoextraction of toxic metals. A review of biological mechanisms. J. Environ. Qual. 31, 109–120 (2002).

  • 35.

    Gonderek, K. & Filipek-Mazur, B. Heavy metal bonding by the soil humus in the soils liable to traffic pollution. Acta Agrophys. 2(4), 759–770 (2003).

    Google Scholar 

  • 36.

    Lemanowicz, J., Bartkowiak, A. & Breza-Boruta, B. Phosphorus, lead and nickel content and the activity of phosphomonoesterases in soil in the Bydgoska Forest affected by illegal dumping. Sylwan 160(2), 144–152 (2016).

    Google Scholar 

  • 37.

    Chojnacka, K., Chojnacki, A., Górecka, H. & Górecki, H. Bioavailability of heavy metals from polluted soils to plants. Sci. Total Environ. 337, 175–182. https://doi.org/10.1016/j.scietotenv.2004.06.009 (2005).

    CAS  PubMed  ADS  Article  Google Scholar 

  • 38.

    Pourkhabbaz, A., Rastin, N., Olbrich, A., Langenfeld-Heyser, R. & Polle, A. Influence of environmental pollution on leaf properties of urban plane trees, Platanus orientalis L. Bull. Environ. Contam. Toxicol. 85, 251–255. https://doi.org/10.1007/s00128-010-0047-4 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Piotrowska, A. & Mazurek, R. Assessment of black locust (Robinia pseudoacacia L) shelterbelt influence on enzymatic activity and some chemical parameters of eutric cambisol. Pol. J. Soil Sci. 42(1), 31–41 (2009).

    CAS  Google Scholar 

  • 40.

    Sinsabaugh, R. L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42, 391–404. https://doi.org/10.1016/j.soilbio.2009.10.014 (2010).

    CAS  Article  Google Scholar 

  • 41.

    Mohsenzadeh, F., Rad, A. C. & Akbari, M. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils. Iran. J. Environ. Health Sci. Eng. 9(26), 1–8. https://doi.org/10.1186/1735-2746-9-26 (2012).

    CAS  Article  Google Scholar 

  • 42.

    Baldrian, P. Distribution of extracellular enzymes in soils: spatial heterogeneity and determining factors at various scales. Soil Sci. Soc. Am. J. 78, 11–18. https://doi.org/10.2136/sssaj2013.04.0155dgs (2014).

    CAS  ADS  Article  Google Scholar 

  • 43.

    Kotroczo, Z. et al. Soil enzyme activity in response to long-term organic matter manipulation. Soil Biol. Biochem. 70, 237–243. https://doi.org/10.1016/j.soilbio.2013.12.028 (2014).

    CAS  Article  Google Scholar 

  • 44.

    Błońska, E. Seasonal changeability of enzymatic activity in soils of selected forest sites. Acta Sci. Pol. Silv. Colendar. Rat Ind. Lignar. 9(3–4), 5–15 (2010).

  • 45.

    Zheng, H. et al. Factors influencing soil enzyme activity in China’s forest ecosystems. Plant Ecol. 219, 31. https://doi.org/10.1007/s11258-017-0775-1 (2018).

    Article  Google Scholar 

  • 46.

    Yu, X., Liu, X., Zhao, Z., Liu, J. & Zhang, S. Effect of monospecific and mixed sea-buckthorn (Hippophae rhamnoides) plantations on the structure and activity of soil microbial communities. PLoS ONE 10, e0117505. https://doi.org/10.1371/journal.pone.0117505 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Bielińska, E. J., Kołodziej, B. & Sugier, D. Relationship between organic carbon content and the activity of selected enzymes in urban soils under different anthropogenic influence. J. Geochem. Explor. 129, 52–56. https://doi.org/10.1016/j.gexplo.2012.10.019 (2013).

    CAS  Article  Google Scholar 

  • 48.

    Bollag, J. M., Chen, Ch. M., Sarkar, J. M. & Loll, M. J. Extraction and purification of a peroxidase from soil. Soil Biol. Biochem. 19(1), 61–67. https://doi.org/10.1016/0038-0717(87)90126-X (1987).

    CAS  Article  Google Scholar 

  • 49.

    Turner, B. L. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Appl. Environ. Microb. 76, 6485–6493. https://doi.org/10.1128/AEM.00560-10 (2010).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Two projects receive funding for technologies that avoid carbon emissions

    MIT News – Energy