in

Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years

  • 1.

    Ljungqvist, F. C. A new reconstruction of temperature variability in the extra‐tropical northern hemisphere during the last two millennia. Geogr. Ann. Ser. A, Phys. Geogr. 92, 339–351 (2010).

  • 2.

    Wang, Y. et al. The holocene asian monsoon: links to solar changes and north atlantic climate. Science 80(308), 854–857 (2005).

    ADS  Article  CAS  Google Scholar 

  • 3.

    Zhang, P. et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 80(322), 940–942 (2008).

    ADS  Article  CAS  Google Scholar 

  • 4.

    Wang, X. et al. Climate, desertification, and the rise and collapse of China’s historical dynasties. Hum. Ecol. 38, 157–172 (2010).

    Article  Google Scholar 

  • 5.

    Paulsen, D. E., Li, H.-C. & Ku, T.-L. Climate variability in central China over the last 1270 years revealed by high-resolution stalagmite records. Quat. Sci. Rev. 22, 691–701 (2003).

    ADS  Article  Google Scholar 

  • 6.

    Lee, H. & Zhang, D. Space-time integration in geography and GIScience. Space-time integration in geography and giscience: research frontiers in the US and China (Springer Netherlands, 2015). https://doi.org/10.1007/978-94-017-9205-9.

  • 7.

    Jia, D., Li, Y. & Fang, X. Complexity of factors influencing the spatiotemporal distribution of archaeological settlements in northeast China over the past millennium. Quat. Res. 89, 413–424 (2018).

    Article  Google Scholar 

  • 8.

    Lee, U. The comparative historical study on the weather characteristics in the second half of the 15th century. Korean Stud. 21, 389–415 (2012).

    Google Scholar 

  • 9.

    Jo, K. et al. 1000-Year quasi-periodicity of weak monsoon events in temperate northeast Asia since the mid-Holocene. Sci. Rep. 7, 15196 (2017).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Jo, K. et al. Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years. Nature 508, 378–382 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 11.

    Lee, E. et al. Multi-proxy records of Holocene hydroclimatic and environmental changes on the southern coast of South Korea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 545, 109642 (2020).

    Article  Google Scholar 

  • 12.

    Park, J. Solar and tropical ocean forcing of late-Holocene climate change in coastal East Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 469, 74–83 (2017).

    Article  Google Scholar 

  • 13.

    Constantine, M., Kim, M. & Park, J. Mid- to late Holocene cooling events in the Korean Peninsula and their possible impact on ancient societies. Quat. Res. 92, 98–108 (2019).

    CAS  Article  Google Scholar 

  • 14.

    Lim, J. et al. Holocene coastal environmental change and ENSO-driven hydroclimatic variability in East Asia. Quat. Sci. Rev. 220, 75–86 (2019).

    ADS  Article  Google Scholar 

  • 15.

    Yum, J. G., Takemura, K., Tokuoka, T. & Yu, K. M. Holocene environmental changes of the Hwajinpo Lagoon on the eastern coast of Korea. J. Paleolimnol. 29, 155–166 (2003).

    Article  Google Scholar 

  • 16.

    Cheung, R. C. W. et al. Decadal- to centennial-scale East Asian summer monsoon variability over the past millennium: An oceanic perspective. Geophys. Res. Lett. 45, 7711–7718 (2018).

    ADS  Article  Google Scholar 

  • 17.

    Fujiki, T. & Yasuda, Y. Vegetation history during the Holocene from Lake Hyangho, northeastern Korea. Quat. Int. 123–125, 63–69 (2004).

    Article  Google Scholar 

  • 18.

    Song, B. et al. Pollen record of the mid- to late-Holocene centennial climate change on the East coast of South Korea and its influential factors. J. Asian Earth Sci. 151, 240–249 (2018).

    ADS  Article  Google Scholar 

  • 19.

    Hwang, S., Kim, J.-Y. & Kim, S. Environmental changes and embankment addition of Reservoir Gonggeomji, Sangju City between Late Silla- and Early Goryeo dynasty. J. Korean Geomorphol. Assoc. 21, 165–180 (2014).

    Google Scholar 

  • 20.

    Jhun, J. & Moon, B. Restorations and analyses of rainfall amount observed by Chukwookee. Asia-Pacific J. Atmos. Sci. 33, 691–707 (1997).

    Google Scholar 

  • 21.

    Yoo, C., Park, M., Kim, H. J. & Jun, C. Comparison of annual maximum rainfall events of modern rain gauge data (1961–2010) and Chukwooki data (1777–1910) in Seoul Korea. J. Water Clim. Chang. 9, 58–73 (2018).

    Article  Google Scholar 

  • 22.

    Lim, J., Lee, J.-Y., Hong, S.-S. & Kim, J.-Y. Late Holocene flooding records from the floodplain deposits of the Yugu River South Korea. Geomorphology 180–181, 109–119 (2013).

    ADS  Article  Google Scholar 

  • 23.

    Li, J. et al. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China. Clim. Dyn. 50, 1101–1113 (2018).

    Article  Google Scholar 

  • 24.

    Sun, J. et al. Quantitative precipitation reconstruction in the east-central monsoonal China since the late glacial period. Quat. Int. 521, 175–184 (2019).

    Article  Google Scholar 

  • 25.

    Stebich, M. et al. Holocene vegetation and climate dynamics of NE China based on the pollen record from Sihailongwan Maar Lake. Quat. Sci. Rev. 124, 275–289 (2015).

    ADS  Article  Google Scholar 

  • 26.

    Li, J. et al. East Asian summer monsoon precipitation variations in China over the last 9500 years: A comparison of pollen-based reconstructions and model simulations. The Holocene 26, 592–602 (2016).

    ADS  Article  Google Scholar 

  • 27.

    Cao, X. et al. Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation. Quat. Sci. Rev. 178, 37–53 (2017).

    ADS  Article  Google Scholar 

  • 28.

    Wu, D. et al. Decoupled early Holocene summer temperature and monsoon precipitation in southwest China. Quat. Sci. Rev. 193, 54–67 (2018).

    ADS  Article  Google Scholar 

  • 29.

    Park, J. A modern pollen–temperature calibration data set from Korea and quantitative temperature reconstructions for the Holocene. The Holocene 21, 1125–1135 (2011).

    ADS  Article  Google Scholar 

  • 30.

    Tian, F. et al. Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia. Quat. Sci. Rev. 156, 1–11 (2017).

    ADS  Article  Google Scholar 

  • 31.

    Herzschuh, U. et al. Position and orientation of the westerly jet determined Holocene rainfall patterns in China. Nat. Commun. 10, 2376 (2019).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Li, C., Wu, Y. & Hou, X. Holocene vegetation and climate in Northeast China revealed from Jingbo Lake sediment. Quat. Int. 229, 67–73 (2011).

    Article  Google Scholar 

  • 33.

    Hu, C. et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet. Sci. Lett. 266, 221–232 (2008).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Wen, R. et al. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia China. Boreas 39, 262–272 (2010).

    Article  Google Scholar 

  • 35.

    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    ADS  Article  Google Scholar 

  • 36.

    Zhao, K. et al. Contribution of ENSO variability to the East Asian summer monsoon in the late Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 449, 510–519 (2016).

    Article  Google Scholar 

  • 37.

    Giry, C. et al. Mid- to late Holocene changes in tropical Atlantic temperature seasonality and interannual to multidecadal variability documented in southern Caribbean corals. Earth Planet. Sci. Lett. 331–332, 187–200 (2012).

    ADS  Article  CAS  Google Scholar 

  • 38.

    Viles, H. Interannual, decadal and multidecadal scale climatic variability and geomorphology. Earth-Science Rev. 61, 105–131 (2003).

    ADS  Article  Google Scholar 

  • 39.

    Lim, J. & Fujiki, T. Vegetation and climate variability in East Asia driven by low-latitude oceanic forcing during the middle to late Holocene. Quat. Sci. Rev. 30, 2487–2497 (2011).

    ADS  Article  Google Scholar 

  • 40.

    Williams, J. W., Post*, D. M., Cwynar, L. C., Lotter, A. F. & Levesque, A. J. Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30, 971 (2002).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Yu, Z. Late quaternary dynamics of tundra and forest vegetation in the southern niagara escarpment Canada. New Phytol. 157, 365–390 (2003).

    Article  Google Scholar 

  • 42.

    Yu, Z. Rapid response of forested vegetation to multiple climatic oscillations during the last deglaciation in the northeastern United States. Quat. Res. 67, 297–303 (2007).

    Article  Google Scholar 

  • 43.

    Richter, H. & Kituta, S. Ecophysiology of long-distance water transport in trees. in Trees in a Changing Environment- Ecophysiology, Adaptation, and Future Survival (eds. Tausz, M. & Grulke, N.) (Springer Nature, 2014).

  • 44.

    Johnson, M. T. & Agrawal, A. A. The ecological play of predator–prey dynamics in an evolutionary theatre. Trends Ecol. Evol. 18, 549–551 (2003).

    Article  Google Scholar 

  • 45.

    Tobolski, K. & Ammann, B. Macrofossils as records of plant responses to rapid Late Glacial climatic changes at three sites in the Swiss Alps. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 251–259 (2000).

    Article  Google Scholar 

  • 46.

    Ammann, B. Biotic responses to rapid climatic changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 191–201 (2000).

    Article  Google Scholar 

  • 47.

    Walther, G. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 48.

    Lischke, H., Lotter, A. F. & Fischlin, A. Untangling a Holocene pollen record with forest model simulations and independent climate data. Ecol. Modell. 150, 1–21 (2002).

    Article  Google Scholar 

  • 49.

    Steinhilber, F., Beer, J. & Fröhlich, C. Total solar irradiance during the Holocene. Geophys. Res. Lett. 36, L19704 (2009).

    ADS  Article  Google Scholar 

  • 50.

    Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M. & Beer, J. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084–1087 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 51.

    Yi, S. & Kim, J.-Y. Pollen analysis at Paju Unjeong, South Korea: Implications of land-use changes since the late Neolithic. The Holocene 22, 227–234 (2012).

    ADS  Article  Google Scholar 

  • 52.

    Yi, S., Yang, D.-Y. & Jia, H. Pollen record of agricultural cultivation in the west–central Korean Peninsula since the Neolithic Age. Quat. Int. 254, 49–57 (2012).

    Article  Google Scholar 

  • 53.

    Yi, S., Saito, Y., Zhao, Q. & Wang, P. Vegetation and climate changes in the Changjiang (Yangtze River) Delta, China, during the past 13,000 years inferred from pollen records. Quat. Sci. Rev. 22, 1501–1519 (2003).

    ADS  Article  Google Scholar 

  • 54.

    Kim, C. & Cheong, K. Research Report of Antiquities Vol. 204: Gonggeomji. Gyeongsangbukdo Institute of Cultural Properties, 230 p (2013) (in Korean).

  • 55.

    Ammann, B. et al. Quantification of biotic responses to rapid climatic changes around the Younger Dryas- a synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 313–347 (2000).

    Article  Google Scholar 

  • 56.

    Jo, K., Woo, K. S., Hong, G. H., Kim, S. H. & Suk, B. C. Rainfall and hydrological controls on speleothem geochemistry during climatic events (droughts and typhoons): an example from Seopdong Cave, Republic of Korea. Earth Planet. Sci. Lett. 295, 441–450 (2010).

    ADS  CAS  Article  Google Scholar 

  • 57.

    Danzeglocke, U., Joris, O. & Weninger, B. CalPal-2007online. Available at: https://www.calpal-online.de.

  • 58.

    Blaauw, M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat. Geochronol. 5, 512–518 (2010).

    Article  Google Scholar 

  • 59.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS  Article  Google Scholar 

  • 60.

    Moore, P. D., Webb, J. A. & Collison, M. E. Pollen Analysis 2nd edn. (Blackwell Scientific Publications, Oxford, 1991).

    Google Scholar 

  • 61.

    Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen Spores 13, 615–621 (1971).

    Google Scholar 

  • 62.

    Grimm, E. Tilia 1.7.16 Software. Illinois State Museum, Research and Collection Center, Springfield, II. (2011).

  • 63.

    Chevalier, M., Cheddadi, R. & Chase, B. M. CREST (Climate REconstruction SofTware): a probability density function (PDF)-based quantitative climate reconstruction method. Clim. Past 10, 2081–2098 (2014).

    Article  Google Scholar 

  • 64.

    Chevalier, M. Enabling possibilities to quantify past climate from fossil assemblages at a global scale. Glob. Planet. Change 175, 27–35 (2019).

    ADS  Article  Google Scholar 

  • 65.

    Lim, J., Yi, S., Nahm, W.-H. & Kim, J.-Y. Holocene millennial-scale vegetation changes in the Yugu floodplain, Kongju area, central South Korea. Quat. Int. 254, 92–98 (2012).

    Article  Google Scholar 

  • 66.

    Jung, S.-K. & McDonald, K. Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization. BMC Bioinformatics 12, 340 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 67.

    Singal developer. Signal: Signal processing. (2013).

  • 68.

    Polanco-Martinez, Josue, M., Medina-Elizalde, Martin, A., Goni, Maria, Fernanda, S. & Mudelsee, M. BINCOR: An R package for Estimating the Correlation between Two Unevenly Spaced Time Series. R J. 11, 170 (2019).

  • 69.

    Yim, T. & Kira, T. Distribution forest vegetation and climate in the Korea Peninsula. I. Distribution of some indices of thermal climate. Japanese J. Ecol. 25, 77–88 (1975).

  • 70.

    Steinhilber, F. et al. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. 109, 5967–5971 (2012).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 71.

    Stott, L. et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 431, 56–59 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 72.

    Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Biochemical and economical effect of application biostimulants containing seaweed extracts and amino acids as an element of agroecological management of bean cultivation

    Multiscale consensus habitat modeling for landscape level conservation prioritization