in

Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years

  • 1.

    Ljungqvist, F. C. A new reconstruction of temperature variability in the extra‐tropical northern hemisphere during the last two millennia. Geogr. Ann. Ser. A, Phys. Geogr. 92, 339–351 (2010).

  • 2.

    Wang, Y. et al. The holocene asian monsoon: links to solar changes and north atlantic climate. Science 80(308), 854–857 (2005).

    ADS  Article  CAS  Google Scholar 

  • 3.

    Zhang, P. et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 80(322), 940–942 (2008).

    ADS  Article  CAS  Google Scholar 

  • 4.

    Wang, X. et al. Climate, desertification, and the rise and collapse of China’s historical dynasties. Hum. Ecol. 38, 157–172 (2010).

    Article  Google Scholar 

  • 5.

    Paulsen, D. E., Li, H.-C. & Ku, T.-L. Climate variability in central China over the last 1270 years revealed by high-resolution stalagmite records. Quat. Sci. Rev. 22, 691–701 (2003).

    ADS  Article  Google Scholar 

  • 6.

    Lee, H. & Zhang, D. Space-time integration in geography and GIScience. Space-time integration in geography and giscience: research frontiers in the US and China (Springer Netherlands, 2015). https://doi.org/10.1007/978-94-017-9205-9.

  • 7.

    Jia, D., Li, Y. & Fang, X. Complexity of factors influencing the spatiotemporal distribution of archaeological settlements in northeast China over the past millennium. Quat. Res. 89, 413–424 (2018).

    Article  Google Scholar 

  • 8.

    Lee, U. The comparative historical study on the weather characteristics in the second half of the 15th century. Korean Stud. 21, 389–415 (2012).

    Google Scholar 

  • 9.

    Jo, K. et al. 1000-Year quasi-periodicity of weak monsoon events in temperate northeast Asia since the mid-Holocene. Sci. Rep. 7, 15196 (2017).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Jo, K. et al. Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years. Nature 508, 378–382 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 11.

    Lee, E. et al. Multi-proxy records of Holocene hydroclimatic and environmental changes on the southern coast of South Korea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 545, 109642 (2020).

    Article  Google Scholar 

  • 12.

    Park, J. Solar and tropical ocean forcing of late-Holocene climate change in coastal East Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 469, 74–83 (2017).

    Article  Google Scholar 

  • 13.

    Constantine, M., Kim, M. & Park, J. Mid- to late Holocene cooling events in the Korean Peninsula and their possible impact on ancient societies. Quat. Res. 92, 98–108 (2019).

    CAS  Article  Google Scholar 

  • 14.

    Lim, J. et al. Holocene coastal environmental change and ENSO-driven hydroclimatic variability in East Asia. Quat. Sci. Rev. 220, 75–86 (2019).

    ADS  Article  Google Scholar 

  • 15.

    Yum, J. G., Takemura, K., Tokuoka, T. & Yu, K. M. Holocene environmental changes of the Hwajinpo Lagoon on the eastern coast of Korea. J. Paleolimnol. 29, 155–166 (2003).

    Article  Google Scholar 

  • 16.

    Cheung, R. C. W. et al. Decadal- to centennial-scale East Asian summer monsoon variability over the past millennium: An oceanic perspective. Geophys. Res. Lett. 45, 7711–7718 (2018).

    ADS  Article  Google Scholar 

  • 17.

    Fujiki, T. & Yasuda, Y. Vegetation history during the Holocene from Lake Hyangho, northeastern Korea. Quat. Int. 123–125, 63–69 (2004).

    Article  Google Scholar 

  • 18.

    Song, B. et al. Pollen record of the mid- to late-Holocene centennial climate change on the East coast of South Korea and its influential factors. J. Asian Earth Sci. 151, 240–249 (2018).

    ADS  Article  Google Scholar 

  • 19.

    Hwang, S., Kim, J.-Y. & Kim, S. Environmental changes and embankment addition of Reservoir Gonggeomji, Sangju City between Late Silla- and Early Goryeo dynasty. J. Korean Geomorphol. Assoc. 21, 165–180 (2014).

    Google Scholar 

  • 20.

    Jhun, J. & Moon, B. Restorations and analyses of rainfall amount observed by Chukwookee. Asia-Pacific J. Atmos. Sci. 33, 691–707 (1997).

    Google Scholar 

  • 21.

    Yoo, C., Park, M., Kim, H. J. & Jun, C. Comparison of annual maximum rainfall events of modern rain gauge data (1961–2010) and Chukwooki data (1777–1910) in Seoul Korea. J. Water Clim. Chang. 9, 58–73 (2018).

    Article  Google Scholar 

  • 22.

    Lim, J., Lee, J.-Y., Hong, S.-S. & Kim, J.-Y. Late Holocene flooding records from the floodplain deposits of the Yugu River South Korea. Geomorphology 180–181, 109–119 (2013).

    ADS  Article  Google Scholar 

  • 23.

    Li, J. et al. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China. Clim. Dyn. 50, 1101–1113 (2018).

    Article  Google Scholar 

  • 24.

    Sun, J. et al. Quantitative precipitation reconstruction in the east-central monsoonal China since the late glacial period. Quat. Int. 521, 175–184 (2019).

    Article  Google Scholar 

  • 25.

    Stebich, M. et al. Holocene vegetation and climate dynamics of NE China based on the pollen record from Sihailongwan Maar Lake. Quat. Sci. Rev. 124, 275–289 (2015).

    ADS  Article  Google Scholar 

  • 26.

    Li, J. et al. East Asian summer monsoon precipitation variations in China over the last 9500 years: A comparison of pollen-based reconstructions and model simulations. The Holocene 26, 592–602 (2016).

    ADS  Article  Google Scholar 

  • 27.

    Cao, X. et al. Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation. Quat. Sci. Rev. 178, 37–53 (2017).

    ADS  Article  Google Scholar 

  • 28.

    Wu, D. et al. Decoupled early Holocene summer temperature and monsoon precipitation in southwest China. Quat. Sci. Rev. 193, 54–67 (2018).

    ADS  Article  Google Scholar 

  • 29.

    Park, J. A modern pollen–temperature calibration data set from Korea and quantitative temperature reconstructions for the Holocene. The Holocene 21, 1125–1135 (2011).

    ADS  Article  Google Scholar 

  • 30.

    Tian, F. et al. Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia. Quat. Sci. Rev. 156, 1–11 (2017).

    ADS  Article  Google Scholar 

  • 31.

    Herzschuh, U. et al. Position and orientation of the westerly jet determined Holocene rainfall patterns in China. Nat. Commun. 10, 2376 (2019).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Li, C., Wu, Y. & Hou, X. Holocene vegetation and climate in Northeast China revealed from Jingbo Lake sediment. Quat. Int. 229, 67–73 (2011).

    Article  Google Scholar 

  • 33.

    Hu, C. et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet. Sci. Lett. 266, 221–232 (2008).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Wen, R. et al. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia China. Boreas 39, 262–272 (2010).

    Article  Google Scholar 

  • 35.

    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    ADS  Article  Google Scholar 

  • 36.

    Zhao, K. et al. Contribution of ENSO variability to the East Asian summer monsoon in the late Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 449, 510–519 (2016).

    Article  Google Scholar 

  • 37.

    Giry, C. et al. Mid- to late Holocene changes in tropical Atlantic temperature seasonality and interannual to multidecadal variability documented in southern Caribbean corals. Earth Planet. Sci. Lett. 331–332, 187–200 (2012).

    ADS  Article  CAS  Google Scholar 

  • 38.

    Viles, H. Interannual, decadal and multidecadal scale climatic variability and geomorphology. Earth-Science Rev. 61, 105–131 (2003).

    ADS  Article  Google Scholar 

  • 39.

    Lim, J. & Fujiki, T. Vegetation and climate variability in East Asia driven by low-latitude oceanic forcing during the middle to late Holocene. Quat. Sci. Rev. 30, 2487–2497 (2011).

    ADS  Article  Google Scholar 

  • 40.

    Williams, J. W., Post*, D. M., Cwynar, L. C., Lotter, A. F. & Levesque, A. J. Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30, 971 (2002).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Yu, Z. Late quaternary dynamics of tundra and forest vegetation in the southern niagara escarpment Canada. New Phytol. 157, 365–390 (2003).

    Article  Google Scholar 

  • 42.

    Yu, Z. Rapid response of forested vegetation to multiple climatic oscillations during the last deglaciation in the northeastern United States. Quat. Res. 67, 297–303 (2007).

    Article  Google Scholar 

  • 43.

    Richter, H. & Kituta, S. Ecophysiology of long-distance water transport in trees. in Trees in a Changing Environment- Ecophysiology, Adaptation, and Future Survival (eds. Tausz, M. & Grulke, N.) (Springer Nature, 2014).

  • 44.

    Johnson, M. T. & Agrawal, A. A. The ecological play of predator–prey dynamics in an evolutionary theatre. Trends Ecol. Evol. 18, 549–551 (2003).

    Article  Google Scholar 

  • 45.

    Tobolski, K. & Ammann, B. Macrofossils as records of plant responses to rapid Late Glacial climatic changes at three sites in the Swiss Alps. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 251–259 (2000).

    Article  Google Scholar 

  • 46.

    Ammann, B. Biotic responses to rapid climatic changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 191–201 (2000).

    Article  Google Scholar 

  • 47.

    Walther, G. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 48.

    Lischke, H., Lotter, A. F. & Fischlin, A. Untangling a Holocene pollen record with forest model simulations and independent climate data. Ecol. Modell. 150, 1–21 (2002).

    Article  Google Scholar 

  • 49.

    Steinhilber, F., Beer, J. & Fröhlich, C. Total solar irradiance during the Holocene. Geophys. Res. Lett. 36, L19704 (2009).

    ADS  Article  Google Scholar 

  • 50.

    Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M. & Beer, J. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084–1087 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 51.

    Yi, S. & Kim, J.-Y. Pollen analysis at Paju Unjeong, South Korea: Implications of land-use changes since the late Neolithic. The Holocene 22, 227–234 (2012).

    ADS  Article  Google Scholar 

  • 52.

    Yi, S., Yang, D.-Y. & Jia, H. Pollen record of agricultural cultivation in the west–central Korean Peninsula since the Neolithic Age. Quat. Int. 254, 49–57 (2012).

    Article  Google Scholar 

  • 53.

    Yi, S., Saito, Y., Zhao, Q. & Wang, P. Vegetation and climate changes in the Changjiang (Yangtze River) Delta, China, during the past 13,000 years inferred from pollen records. Quat. Sci. Rev. 22, 1501–1519 (2003).

    ADS  Article  Google Scholar 

  • 54.

    Kim, C. & Cheong, K. Research Report of Antiquities Vol. 204: Gonggeomji. Gyeongsangbukdo Institute of Cultural Properties, 230 p (2013) (in Korean).

  • 55.

    Ammann, B. et al. Quantification of biotic responses to rapid climatic changes around the Younger Dryas- a synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 313–347 (2000).

    Article  Google Scholar 

  • 56.

    Jo, K., Woo, K. S., Hong, G. H., Kim, S. H. & Suk, B. C. Rainfall and hydrological controls on speleothem geochemistry during climatic events (droughts and typhoons): an example from Seopdong Cave, Republic of Korea. Earth Planet. Sci. Lett. 295, 441–450 (2010).

    ADS  CAS  Article  Google Scholar 

  • 57.

    Danzeglocke, U., Joris, O. & Weninger, B. CalPal-2007online. Available at: https://www.calpal-online.de.

  • 58.

    Blaauw, M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat. Geochronol. 5, 512–518 (2010).

    Article  Google Scholar 

  • 59.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS  Article  Google Scholar 

  • 60.

    Moore, P. D., Webb, J. A. & Collison, M. E. Pollen Analysis 2nd edn. (Blackwell Scientific Publications, Oxford, 1991).

    Google Scholar 

  • 61.

    Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen Spores 13, 615–621 (1971).

    Google Scholar 

  • 62.

    Grimm, E. Tilia 1.7.16 Software. Illinois State Museum, Research and Collection Center, Springfield, II. (2011).

  • 63.

    Chevalier, M., Cheddadi, R. & Chase, B. M. CREST (Climate REconstruction SofTware): a probability density function (PDF)-based quantitative climate reconstruction method. Clim. Past 10, 2081–2098 (2014).

    Article  Google Scholar 

  • 64.

    Chevalier, M. Enabling possibilities to quantify past climate from fossil assemblages at a global scale. Glob. Planet. Change 175, 27–35 (2019).

    ADS  Article  Google Scholar 

  • 65.

    Lim, J., Yi, S., Nahm, W.-H. & Kim, J.-Y. Holocene millennial-scale vegetation changes in the Yugu floodplain, Kongju area, central South Korea. Quat. Int. 254, 92–98 (2012).

    Article  Google Scholar 

  • 66.

    Jung, S.-K. & McDonald, K. Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization. BMC Bioinformatics 12, 340 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 67.

    Singal developer. Signal: Signal processing. (2013).

  • 68.

    Polanco-Martinez, Josue, M., Medina-Elizalde, Martin, A., Goni, Maria, Fernanda, S. & Mudelsee, M. BINCOR: An R package for Estimating the Correlation between Two Unevenly Spaced Time Series. R J. 11, 170 (2019).

  • 69.

    Yim, T. & Kira, T. Distribution forest vegetation and climate in the Korea Peninsula. I. Distribution of some indices of thermal climate. Japanese J. Ecol. 25, 77–88 (1975).

  • 70.

    Steinhilber, F. et al. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. 109, 5967–5971 (2012).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 71.

    Stott, L. et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 431, 56–59 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 72.

    Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    More than a meal

    Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach