in

Bacteria incorporated with calcium lactate pentahydrate to improve the mortar properties and self-healing occurrence

  • 1.

    Monteiro, P. J. M., Miller, S. A. & Horvath, A. Towards sustainable concrete. Nat. Mater. 16, 698–699 (2017).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Schneider, M., Romer, M., Tschudin, M. & Bolio, H. Sustainable cement production—Present and future. Cem. Concr. Res. 41, 642–650 (2011).

    CAS  Article  Google Scholar 

  • 3.

    Worrell, E., Price, L., Martin, N., Hendriks, C. & Meida, L. O. Carbon dioxide emissions from the global cement industry. Annu. Rev. Energy Environ. 26, 303–329 (2001).

    Article  Google Scholar 

  • 4.

    Mehta, P. K. & Monteiro, P. J. M. Concrete: Microstructure, Properties, and Materials (McGraw-Hill, New York, 2005).

    Google Scholar 

  • 5.

    Chen, C., Habert, G., Bouzidi, Y. & Jullien, A. Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 18, 478–485 (2010).

    CAS  Article  Google Scholar 

  • 6.

    Bu, J., Tian, Z., Zheng, S. & Tang, Z. Effect of sand content on strength and pore structure of cement mortar. J. Wuhan Univ. Technol. Mater. Sci. Ed. 32, 382–390 (2017).

    CAS  Article  Google Scholar 

  • 7.

    Khaliq, W. & Ehsan, M. B. Crack healing in concrete using various bio influenced self-healing techniques. Constr. Build. Mater. 102, 349–357 (2016).

    CAS  Article  Google Scholar 

  • 8.

    Vijay, K. & Murmu, M. Effect of calcium lactate on compressive strength and self-healing of cracks in microbial concrete. Front. Struct. Civ. Eng. https://doi.org/10.1007/s11709-018-0494-2 (2018).

    Article  Google Scholar 

  • 9.

    Vahabi, A., Ramezanianpour, A. A. & Noghabi, K. A. A preliminary insight into the revolutionary new line in improving concrete properties using an indigenous bacterial strain Bacillus licheniformis AK01, as a healing agent. Eur. J. Environ. Civ. Eng. 19, 614–627 (2015).

    Article  Google Scholar 

  • 10.

    Schlangen, E. & Joseph, C. Self-Healing Processes in Concrete. Self-Healing Materials: Fundamentals, Design Strategies, and Applications (WILEY-VCH Verlag Gmbh & Co. KGaA, New York, 2009). https://doi.org/10.1002/9783527625376.ch5.

    Google Scholar 

  • 11.

    Mehta, P. K. High-performance, high-volume fly ash concrete for sustainable development. Int. Work. Sustain. Dev. Concr. Technol. 31, 3–14 (2008).

    Google Scholar 

  • 12.

    Achal, V. & Mukherjee, A. A review of microbial precipitation for sustainable construction. Constr. Build. Mater. 93, 1224–1235 (2015).

    Article  Google Scholar 

  • 13.

    Burne, R. A. & Chen, Y. Y. M. Bacterial ureases in infectious diseases. Microbes Infect. 2, 533–542 (2000).

    CAS  Article  Google Scholar 

  • 14.

    Dick, J. et al. Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17, 357–367 (2006).

    CAS  Article  Google Scholar 

  • 15.

    De Muynck, W., De Belie, N. & Verstraete, W. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 36, 118–136 (2010).

    Article  Google Scholar 

  • 16.

    Van Tittelboom, K., De Belie, N., De Muynck, W. & Verstraete, W. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40, 157–166 (2010).

    Article  Google Scholar 

  • 17.

    Dhami, N. K., Reddy, M. S. & Mukherjee, M. S. Biomineralization of calcium carbonates and their engineered applications: A review. Front. Microbiol. 4, 1–13 (2013).

    Article  Google Scholar 

  • 18.

    Ramachandran, S. K., Ramakrishnan, V. & Bang, S. S. Remediation of concrete using micro-organism. Aci Mater. J. 1, 1. https://doi.org/10.14359/10154 (2001).

    Article  Google Scholar 

  • 19.

    Dhami, N. K., Reddy, M. S. & Mukherjee, A. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials. World J. Microbiol. Biotechnol. 29, 2397–2406 (2013).

    CAS  Article  Google Scholar 

  • 20.

    De Muynck, W., Cox, K., De Belie, N. & Verstraete, W. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr. Build. Mater. 22, 875–885 (2008).

    Article  Google Scholar 

  • 21.

    Achal, V., Mukerjee, A. & Reddy, M. S. Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr. Build. Mater. 48, 1–5 (2013).

    Article  Google Scholar 

  • 22.

    Chahal, N., Siddique, R. & Rajor, A. Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume. Constr. Build. Mater. 37, 645–651 (2012).

    Article  Google Scholar 

  • 23.

    van Paassen, L. A. et al. Potential soil reinforcement by biological denitrification. Ecol. Eng. 36, 168–175 (2010).

    Article  Google Scholar 

  • 24.

    Erşan, Y. Ç, Hernandez-Sanabria, E., Boon, N. & De Belie, N. Enhanced crack closure performance of microbial mortar through nitrate reduction. Cem. Concr. Compos. 70, 159–170 (2016).

    Article  Google Scholar 

  • 25.

    Glass, C. & Silverstein, J. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Res. 32, 831–839 (1998).

    CAS  Article  Google Scholar 

  • 26.

    van Paassen, L. Biogrout: Ground Improvement by Microbially Induced Carbonate Precipitation (Delft University of Technology, Delft, 2009).

    Google Scholar 

  • 27.

    Li, M., Fu, Q. L., Zhang, Q., Achal, V. & Kawasaki, S. Bio-grout based on microbially induced sand solidification by means of asparaginase activity. Sci. Rep. 5, 1–9 (2015).

    Google Scholar 

  • 28.

    Jonkers, H. M. & Schlangen, E. A two component bacteria-based self-healing concrete. In Concrete Repair, Rehabilitation and Retroftting II (eds Alexander, M. G. et al.) (CRC Press, Taylor and Francis Group, Boca Raton, 2009).

    Google Scholar 

  • 29.

    Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O. & Schlangen, E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36, 230–235 (2010).

    Article  Google Scholar 

  • 30.

    Jonkers, H. M. Bacteria-based self-healing concrete. Heron 56, 1–12 (2011).

    Google Scholar 

  • 31.

    Chaurasia, L., Bisht, V., Singh, L. P. & Gupta, S. A novel approach of biomineralization for improving micro and macro-properties of concrete. Constr. Build. Mater. 195, 340–351 (2019).

    CAS  Article  Google Scholar 

  • 32.

    Seifan, M., Samani, A. K. & Berenjian, A. Induced calcium carbonate precipitation using Bacillus species. Appl. Microbiol. Biotechnol. 100, 9895–9906 (2016).

    CAS  Article  Google Scholar 

  • 33.

    Wang, J., Ersan, Y. C., Boon, N. & De Belie, N. Application of microorganisms in concrete: A promising sustainable strategy to improve concrete durability. Appl. Microbiol. Biotechnol. 100, 2993–3007 (2016).

    CAS  Article  Google Scholar 

  • 34.

    Mondal, S. & Ghosh, A. Investigation into the optimal bacterial concentration for compressive strength enhancement of microbial concrete. Constr. Build. Mater. 183, 202–214 (2018).

    Article  Google Scholar 

  • 35.

    Andalib, R. et al. Optimum concentration of Bacillus megaterium for strengthening structural concrete. Constr. Build. Mater. 118, 180–193 (2016).

    CAS  Article  Google Scholar 

  • 36.

    Achal, V. & Pan, X. Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr. Microbiol. 62, 894–902 (2011).

    CAS  Article  Google Scholar 

  • 37.

    Sharma, A. & Bhattacharya, A. Enhanced biomimetic sequestration of CO2 into CaCO3 using purified carbonic anhydrase from indigenous bacterial strains. J. Mol. Catal. B Enzym. 67, 122–128 (2010).

    CAS  Article  Google Scholar 

  • 38.

    Morandeau, A., Thiéry, M. & Dangla, P. Investigation of the carbonation mechanism of CH and C–S–H in terms of kinetics, microstructure changes and moisture properties. Cem. Concr. Res. 56, 153–170 (2014).

    CAS  Article  Google Scholar 

  • 39.

    Ameri, F., Shoaei, P., Bahrami, N., Vaezi, M. & Ozbakkaloglu, T. Optimum rice husk ash content and bacterial concentration in self-compacting concrete. Constr. Build. Mater. 222, 796–813 (2019).

    CAS  Article  Google Scholar 

  • 40.

    Syarif, R., Rizki, I. N., Wattimena, R. K. & Chaerun, S. K. Selection of bacteria inducing calcium carbonate precipitation for self-healing concrete application. Curr. Res. Biosci. Biotechnol. 1, 26–30 (2019).

    Google Scholar 

  • 41.

    SNI 15-2049-2004. Semen Portland. BSN – National Standardization Agency of Indonesia (2004).

  • 42.

    Stephen, H. & Stephen, T. Solubilities of Inorganic and Organic Compounds. Binary Systems Part 1 Vol. 1 (Pergamon Press, Oxford, 1979).

    Google Scholar 

  • 43.

    ASTM C642-13. Standard test method for density, absorption, and voids in hardened concrete. Am. Society Testing Mater. https://doi.org/10.1520/C0642-13.5 (2013).

    Article  Google Scholar 

  • 44.

    ISRM. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. 16, 137–140 (1979).

    Google Scholar 

  • 45.

    ISRM. Suggested methods for determining tensile strength of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. 15, 99–103 (1978).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Deep learning-assisted comparative analysis of animal trajectories with DeepHL

    Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization