in

Bacterial analysis in the early developmental stages of the black tiger shrimp (Penaeus monodon)

  • 1.

    Buchon, N., Broderick, N. A. & Lemaitre, B. Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat. Rev. Microbiol. 11, 615, https://doi.org/10.1038/nrmicro3074 (2013).

  • 2.

    Hooper, L. V., Midtvedt, T. & Gordon, J. I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22, 283–307, https://doi.org/10.1146/annurev.nutr.22.011602.092259 (2002).

  • 3.

    Rawls, J. F., Samuel, B. S. & Gordon, J. I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl Acad. Sci. USA 101, 4596–4601, https://doi.org/10.1073/pnas.0400706101 (2004).

  • 4.

    Arrieta, M. C., Stiemsma, L. T., Amenyogbe, N., Brown, E. M. & Finlay, B. The intestinal microbiome in early life: health and disease. Front. Immunol. 5, 427–427, https://doi.org/10.3389/fimmu.2014.00427 (2014).

  • 5.

    Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141, https://doi.org/10.1016/j.cell.2014.03.011 (2014).

  • 6.

    Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89, https://doi.org/10.1111/imr.12567 (2017).

  • 7.

    Chaiyapechara, S. et al. Bacterial community associated with the intestinal tract of P. monodon in commercial farms. Microb. Ecol. 63, 938–953, https://doi.org/10.1007/s00248-011-9936-2 (2011).

  • 8.

    Rungrassamee, W. et al. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages. Plos One 8, https://doi.org/10.1371/journal.pone.0060802 (2013).

  • 9.

    Rungrassamee, W. et al. Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). Plos One 9, https://doi.org/10.1371/journal.pone.0091853 (2014).

  • 10.

    Rungrassamee, W., Klanchui, A., Maibunkaew, S. & Karoonuthaisiri, N. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure. J. Invertebr. Pathol. 133, 12–19, https://doi.org/10.1016/j.jip.2015.11.004 (2016).

  • 11.

    Gomez-Gil, B., Roque, A. & Turnbull, J. F. The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 191, 259–270, https://doi.org/10.1016/S0044-8486(00)00431-2 (2000).

    • Article
    • Google Scholar
  • 12.

    Newaj-Fyzul, A., Al-Harbi, A. H. & Austin, B. Review: Developments in the use of probiotics for disease control in aquaculture. Aquaculture 431, 1–11, https://doi.org/10.1016/j.aquaculture.2013.08.026 (2014).

    • Article
    • Google Scholar
  • 13.

    Ringø, E. et al. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquac. Nutr. 22, 219–282, https://doi.org/10.1111/anu.12346 (2015).

  • 14.

    Motoh, H. Biology and ecology of Penaeus monodon. Iloilo City, Philippines: Aquaculture Department, Southeast Asian Fisheries Development Center, 27–36 (1985).

  • 15.

    Jiravanichpaisal, P. et al. Expression of immune-related genes in larval stages of the giant tiger shrimp, Penaeus monodon. Fish. Shellfish. Immunol. 23, 815–824, https://doi.org/10.1016/j.fsi.2007.03.003 (2007).

  • 16.

    Bates, J. M. et al. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev. Biol. 297, 374–386, https://doi.org/10.1016/j.ydbio.2006.05.006 (2006).

  • 17.

    Tamburini, S., Shen, N., Wu, H. C. & Clemente, J. C. The microbiome in early life: implications for health outcomes. Nat. Med. 22, 713–722, https://doi.org/10.1038/nm.4142 (2016).

  • 18.

    Xia, Y. & Sun, J. Hypothesis testing and statistical analysis of microbiome. Genes. Dis. 4, 138–148, https://doi.org/10.1016/j.gendis.2017.06.001 (2017).

  • 19.

    Stephens, W. Z. et al. The composition of the zebrafish intestinal microbial community varies across development. ISME J. 10, 644–654, https://doi.org/10.1038/ismej.2015.140 (2016).

  • 20.

    Egerton, S., Culloty, S., Whooley, J., Stanton, C. & Ross, R. P. The gut microbiota of marine fish. Front. Microbiol. 9, 873–873, https://doi.org/10.3389/fmicb.2018.00873 (2018).

  • 21.

    Fan, L. et al. Microbiota comparison of Pacific white shrimp intestine and sediment at freshwater and marine cultured environment. Sci. Total. Env. 657, 1194–1204, https://doi.org/10.1016/j.scitotenv.2018.12.069 (2019).

  • 22.

    Tanaka, M. & Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 66, 515–522, https://doi.org/10.1016/j.alit.2017.07.010 (2017).

  • 23.

    Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 51–51, https://doi.org/10.1186/s13073-016-0307-y (2016).

  • 24.

    Mongkol, P. et al. Bacterial community composition and distribution in different segments of the gastrointestinal tract of wild‐caught adult Penaeus monodon. Aquac. Res. 49, 378–392, https://doi.org/10.1111/are.13468 (2017).

  • 25.

    Pangastuti, A., Suwanto, A., Lestari, Y. & Suhartono, M. Bacterial communities associated with white shrimp (Litopenaeus vannamei) larvae at early developmental stages. Biodiversitas 11, 65–68, https://doi.org/10.13057/biodiv/d110203 (2010).

    • Article
    • Google Scholar
  • 26.

    Huang, Z., Li, X., Wang, L. & Shao, Z. Changes in the intestinal bacterial community during the growth of white shrimp, Litopenaeus vannamei. Aquac. Res. 47, 1737–1746, https://doi.org/10.1111/are.12628 (2016).

    • Article
    • Google Scholar
  • 27.

    Zheng, Y. et al. Comparison of cultivable bacterial communities associated with Pacific white shrimp (Litopenaeus vannamei) larvae at different health statuses and growth stages. Aquaculture 451, 163–169, https://doi.org/10.1016/j.aquaculture.2015.09.020 (2016).

    • Article
    • Google Scholar
  • 28.

    Zheng, Y. et al. Bacterial community associated with healthy and diseased Pacific white shrimp (Litopenaeus vannamei) larvae and rearing water across different growth stages. Front. Microbiol. 8, 1362–1362, https://doi.org/10.3389/fmicb.2017.01362 (2017).

  • 29.

    Roeselers, G. et al. Evidence for a core gut microbiota in the zebrafish. ISME J. 5, 1595–1608, https://doi.org/10.1038/ismej.2011.38 (2011).

  • 30.

    Thompson, F. L., Iida, T. & Swings, J. Biodiversity of vibrios. Microbiol. Mol. Biol. Rev. 68, 403–431, https://doi.org/10.1128/MMBR.68.3.403-431.2004 (2004).

  • 31.

    Ortigosa, M., Garay, E. & Pujalte, M. J. Numerical taxonomy of Vibrionaceae isolated from oysters and seawater along an annual cycle. Syst. Appl. Microbiol. 17, 216–225, https://doi.org/10.1016/S0723-2020(11)80011-1 (1994).

    • Article
    • Google Scholar
  • 32.

    Vandenberghe, J. et al. Vibrios Associated with Litopenaeus vannamei Larvae, Postlarvae, Broodstock, and Hatchery Probionts. Appl. Env. Microbiol. 65, 2592–2597 (1999).

  • 33.

    Crenn, K., Duffieux, D. & Jeanthon, C. Bacterial epibiotic communities of ubiquitous and abundant marine diatoms are distinct in short- and long-term associations. Front. Microbiol. 9, 2879–2879, https://doi.org/10.3389/fmicb.2018.02879 (2018).

  • 34.

    Fuerst, J. A. et al. Isolation and molecular identification of planctomycete bacteria from postlarvae of the giant tiger prawn, Penaeus monodon. Appl. Env. Microbiol. 63, 254–262 (1997).

  • 35.

    Li, M. & Gu, J. D. The diversity and distribution of anammox bacteria in the marine aquaculture zones. Appl. Microbiol. Biotechnol. 100, 8943–8953, https://doi.org/10.1007/s00253-016-7690-6 (2016).

  • 36.

    Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P. & Verstraete, W. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 270, 1–14, https://doi.org/10.1016/j.aquaculture.2007.05.006 (2007).

  • 37.

    Cornejo-Granados, F., Gallardo-Becerra, L., Leonardo-Reza, M., Ochoa-Romo, J. P. & Ochoa-Leyva, A. A meta-analysis reveals the environmental and host factors shaping the structure and function of the shrimp microbiota. PeerJ 6, 5382–5382, https://doi.org/10.7717/peerj.5382 (2018).

  • 38.

    Ronquillo, J. D., Saisho, T. & McKinley, R. S. Early developmental stages of the green tiger prawn, Penaeus semisulcatus de Haan (Crustacea, Decapoda, Penaeidae). Hydrobiologia 560, 175–196, https://doi.org/10.1007/s10750-005-1448-y (2006).

    • Article
    • Google Scholar
  • 39.

    Hassan, H.-U. The larval development of Penaeus semisulcatus de Haan, 1850 (Decapoda, Penaeidae) reared in the laboratory. J. Plankton Res. 4, 1–17, https://doi.org/10.1093/plankt/4.1.1 (1982).

    • Article
    • Google Scholar
  • 40.

    Hammer, T. J., McMillan, W. O. & Fierer, N. Metamorphosis of a butterfly-associated bacterial community. Plos One 9, https://doi.org/10.1371/journal.pone.0086995 (2014).

  • 41.

    Chen, B. et al. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 12, 2252–2262, https://doi.org/10.1038/s41396-018-0174-1 (2018).

  • 42.

    Landsman, A., St-Pierre, B., Rosales-Leija, M., Brown, M. & Gibbons, W. Investigation of the potential effects of host genetics and probiotic treatment on the gut bacterial community composition of aquaculture-raised Pacific whiteleg shrimp, Litopenaeus vannamei. Microorg. 7, 217, https://doi.org/10.3390/microorganisms7080217 (2019).

    • Article
    • Google Scholar
  • 43.

    Fan, J. et al. Dynamics of the gut microbiota in developmental stages of Litopenaeus vannamei reveal its association with body weight. Sci. Rep. 9, 734–734, https://doi.org/10.1038/s41598-018-37042-3 (2019).

  • 44.

    Hasan, N. & Yang, H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 7, 7502–7502, https://doi.org/10.7717/peerj.7502 (2019).

    • Article
    • Google Scholar
  • 45.

    Scepanovic, P. et al. A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals. Microbiome 7, 130, https://doi.org/10.1186/s40168-019-0747-x (2019).

  • 46.

    Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nat. 555, 210, https://doi.org/10.1038/nature25973 (2018).

  • 47.

    Cornejo-Granados, F. et al. Microbiome of Pacific Whiteleg shrimp reveals differential bacterial community composition between Wild, Aquacultured and AHPND/EMS outbreak conditions. Sci. Rep. 7, 11783, https://doi.org/10.1038/s41598-017-11805-w (2017).

  • 48.

    Collado, M. C., Cernada, M., Baüerl, C., Vento, M. & Pérez-Martínez, G. Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes 3, 352–365, https://doi.org/10.4161/gmic.21215 (2012).

  • 49.

    Kaczmarczyk, A. et al. First insight into microbiome profile of fungivorous thrips Hoplothrips carpathicus (Insecta: Thysanoptera) at different developmental stages: molecular evidence of Wolbachia endosymbiosis. Sci. Rep. 8, 14376–14376, https://doi.org/10.1038/s41598-018-32747-x (2018).

  • 50.

    Pérez, T. et al. Host–microbiota interactions within the fish intestinal ecosystem. Mucosal Immunol. 3, 355, https://doi.org/10.1038/mi.2010.12 (2010).

  • 51.

    Balcázar, J. L., Rojas-Luna, T. & Cunningham, D. P. Effect of the addition of four potential probiotic strains on the survival of pacific white shrimp (Litopenaeus vannamei) following immersion challenge with Vibrio parahaemolyticus. J. Invertebr. Pathol. 96, 147–150, https://doi.org/10.1016/j.jip.2007.04.008 (2007).

  • 52.

    Verschuere, L., Rombaut, G., Sorgeloos, P. & Verstraete, W. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. 64, 655–671, https://doi.org/10.1128/mmbr.64.4.655-671.2000 (2000).

  • 53.

    Chen, W.-Y., Ng, T. H., Wu, J.-H., Chen, J.-W. & Wang, H.-C. Microbiome dynamics in a shrimp grow-out pond with possible outbreak of acute hepatopancreatic necrosis disease. Sci. Rep. 7, 9395–9395, https://doi.org/10.1038/s41598-017-09923-6 (2017).

  • 54.

    Ridgway, I. D. et al. Extracellular proteases and possible disease related virulence mechanisms of two marine bacteria implicated in an opportunistic bacterial infection of Nephrops norvegicus. J. Invertebr. Pathol. 99, 14–19, https://doi.org/10.1016/j.jip.2008.05.007 (2008).

  • 55.

    Sorieul, L. et al. Survival improvement conferred by the Pseudoalteromonas sp. NC201 probiotic in Litopenaeus stylirostris exposed to Vibrio nigripulchritudo infection and salinity stress. Aquaculture 495, 888–898, https://doi.org/10.1016/j.aquaculture.2018.06.058 (2018).

    • Article
    • Google Scholar
  • 56.

    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41, https://doi.org/10.1093/nar/gks808 (2013).

    • Article
    • Google Scholar
  • 57.

    Bacchetti De Gregoris, T., Aldred, N., Clare, A. S. & Burgess, J. G. Improvement of phylum- and class-specific primers for real-time PCR quantification of bacterial taxa. J. Microbiol. Meth 86, 351–356, https://doi.org/10.1016/j.mimet.2011.06.010 (2011).

  • 58.

    Fierer, N., Jackson, J. A., Vilgalys, R. & Jackson, R. B. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Env. Microbiol. 71, 4117–4120, https://doi.org/10.1128/AEM.71.7.4117-4120.2005 (2005).

  • 59.

    FastQC: a quality control tool for high throughput sequence data (2010).

  • 60.

    Ewels, P., Magnusson, M., Käller, M. & Lundin, S. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinforma. 32, 3047–3048, https://doi.org/10.1093/bioinformatics/btw354 (2016).

  • 61.

    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Env. Microbiol. 75, 7537–7541, https://doi.org/10.1128/AEM.01541-09 (2009).

  • 62.

    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Env. Microbiol. 79, 5112–5120, https://doi.org/10.1128/AEM.01043-13 (2013).

  • 63.

    Parte, A. C. LPSN – List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int. J. Syst. Evol. Microbiol. 68, 1825–1829, https://doi.org/10.1099/ijsem.0.002786 (2018).

  • 64.

    Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, 633–642, https://doi.org/10.1093/nar/gkt1244 (2014).

  • 65.

    Dixon, P. VEGAN, a package of R functions for community ecology. Vol. 14 (2003).

  • 66.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. Plos One 8, https://doi.org/10.1371/journal.pone.0061217 (2013).

  • 67.

    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2018).

  • 68.

    RStudio: Integrated Development for R (RStudio, Inc., Boston, MA, 2015).

  • 69.

    Close, R., Evers, S., Alroy, J. & Butler, R. How should we estimate diversity in the fossil record? Testing richness estimators using sampling-standardised discovery curves. Methods Ecol Evol 9, https://doi.org/10.1111/2041-210X.12987 (2018).

    • Article
    • Google Scholar
  • 70.

    Good, I. J. The population frequencies of species and the estimation of population parameters. Biometrika 40, 237–264, https://doi.org/10.2307/2333344 (1953).

  • 71.

    Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. bioRxiv, 299537, https://doi.org/10.1101/299537 (2018).

  • 72.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410, https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).


  • Source: Ecology - nature.com

    Scientists quantify how wave power drives coastal erosion

    Emissions of several ozone-depleting chemicals are larger than expected