in

Biocrusts buffer against the accumulation of soil metallic nutrients induced by warming and rainfall reduction

  • 1.

    Marschner, H. & Marschner, P. Marschner’s Mineral Nutrition Of Higher Plants. (Academic Press, 2012).

  • 2.

    Hänsch, R. & Mendel, R. R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12, 259–266 (2009).

    PubMed  Google Scholar 

  • 3.

    Chapin, E. S. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11, 233–260 (1980).

    CAS  Google Scholar 

  • 4.

    Luo, W. et al. Thresholds in decoupled soil-plant elements under changing climatic conditions. Plant Soil 409, 159–173 (2016).

    CAS  Google Scholar 

  • 5.

    Cooper, J. E. & Scherer, H. W. in Marschner’s Mineral Nutrition of Higher Plants. 389–408 . https://doi.org/10.1016/B978-0-12-384905-2.00016-9 (2012).

  • 6.

    Keiluweit, M. et al. Long-term litter decomposition controlled by manganese redox cycling. Proc. Natl Acad. Sci. 112, E5253–E5260 (2015).

    CAS  PubMed  Google Scholar 

  • 7.

    Whalen, E. D., Smith, R. G., Grandy, A. S. & Frey, S. D. Manganese limitation as a mechanism for reduced decomposition in soils under atmospheric nitrogen deposition. Soil Biol. Biochem127, 252–263 (2018).

    CAS  Google Scholar 

  • 8.

    Broadley, M., Brown, P., Cakmak, I., Rengel, Z. & Zhao, F. in Marschner’s Mineral Nutrition of Higher Plants. 191–248. https://doi.org/10.1016/B978-0-12-384905-2.00007-8 (2012).

  • 9.

    Moreno-Jiménez, E. et al. Aridity and reduced soil micronutrient availability in global drylands. Nat. Sustain. 2, 371 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Luo, W. et al. A threshold reveals decoupled relationship of sulfur with carbon and nitrogen in soils across arid and semi-arid grasslands in northern China. Biogeochemistry 127, 141–153 (2016).

    CAS  Google Scholar 

  • 11.

    Singh, M. V. Micronutrient nutritional problems in soils of India and improvement for human and animal health. Indian J. Fertilisers 5, 11–56 (2005).

    Google Scholar 

  • 12.

    Prăvălie, R. Drylands extent and environmental issues. A global approach. Earth Sci. Rev. 161, 259–278 (2016).

    Google Scholar 

  • 13.

    Schimel, D. S. Drylands in the Earth system. Science 327, 418–419 (2010).

    CAS  PubMed  Google Scholar 

  • 14.

    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 6, 166–171 (2016).

    Google Scholar 

  • 15.

    Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Desertification Synthesis. Ecosystems and human well-being (Millennium Ecosystem Assessment, 2005). ISBN: 1-56973-590-5.

  • 16.

    Plaza, C. et al. Soil resources and element stocks in drylands to face global issues. Sci. Rep. 8, 13788 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Belnap, J. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process. 20, 3159–3178 (2006).

    CAS  Google Scholar 

  • 18.

    Delgado-Baquerizo, M. et al. Differences in thallus chemistry are related to species-specific effects of biocrust-forming lichens on soil nutrients and microbial communities. Funct. Ecol. 29, 1087–1098 (2015).

    Google Scholar 

  • 19.

    Belnap, J., Weber, B. & Büdel, B. in Biological Soil Crusts: an Organizing Principle in Drylands 3–13, (Springer, 2016).

  • 20.

    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).

    Google Scholar 

  • 21.

    Jones, C., Lawton, J. & Shachak, M. Positive andnegative effects of organisms as physical ecosystem engineers. Ecology 78, 1946–1957 (1997).

    Google Scholar 

  • 22.

    Bowker, M. A., Belnap, J., Davidson, D. W. & Goldstein, H. Correlates of biological soil crust abundance across a continuum of spatial scales: Support for a hierarchical conceptual model. J. Appl. Ecol. 43, 152–163 (2006).

    Google Scholar 

  • 23.

    Yu, J., Guan, P., Zhang, X., Ma, N. & Steinberger, Y. Biocrusts beneath replanted shrubs account for the enrichment of macro and micronutrients in semi-arid sandy land. J. Arid Environ. 128, 1–7 (2016).

    Google Scholar 

  • 24.

    Thiet, R. K., Doshas, A. & Smith, S. M. Effects of biocrusts and lichen-moss mats on plant productivity in a US sand dune ecosystem. Plant Soil 377, 235–244 (2014).

    CAS  Google Scholar 

  • 25.

    Zhang, Y. & Belnap, J. Growth responses of five desert plants as influenced by biological soil crusts from a temperate desert, China. Ecol. Res. 30, 1037–1045 (2015).

    CAS  Google Scholar 

  • 26.

    Ladrón de Guevara, M. et al. Warming reduces the cover, richness and evenness of lichen‐dominated biocrusts but promotes moss growth: insights from an 8 yr experiment. N. Phytol. 220, 811–823 (2018).

    Google Scholar 

  • 27.

    Ferrenberg, S., Reed, S. C. & Belnap, J. Climate change and physical disturbance cause similar community shifts in biological soil crusts. Proc. Natl Acad. Sci. 112, 12116–12121 (2015).

    CAS  PubMed  Google Scholar 

  • 28.

    Bowker, M. A., Belnap, J., Davidson, D. W. & Phillips, S. L. Evidence for micronutrient limitation of biological soil crusts: importance to arid‐lands restoration. Ecol. Appl. 15, 1941–1951 (2005).

    Google Scholar 

  • 29.

    Singh, B. P. & Cowie, A. L. Characterisation and evaluation of biochars for their application as a soil amendment. Aust. J. Soil Res. 48, 516–525 (2010).

  • 30.

    Belnap, J. & Lange, O. L. Lichens and microfungi in biological soil crusts: structure and function now and in the future. in The Fungal Community. Its Organization and Role in the Ecosystem (eds Dighton, J. & White, J. F.) 138–158 (CRC Press, Boca raton FL, 2017).

  • 31.

    Maestre, F. T. et al. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob. Chang. Biol. 19, 3835–3847 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Reed, S. C. et al. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat. Clim. Chang. 2, 752 (2012).

    CAS  Google Scholar 

  • 33.

    Weber, B., Bowker, M., Zhang, Y. & Belnap, J. in Biological Soil Crusts: an Organizing Principle in Drylands 479–498 (Springer, 2016).

  • 34.

    Delgado‐Baquerizo, M. et al. Biocrust‐forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands. N. Phytol. 209, 1540–1552 (2016).

    Google Scholar 

  • 35.

    Steven, B., Kuske, C. R., Reed, S. C. & Belnap, J. Climate change and physical disturbance manipulations result in distinct biological soil crust communities. Appl. Environ. Microbiol81, 7448–7459 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Ladrón de Guevara, M. et al. Simulated climate change reduced the capacity of lichen-dominated biocrusts to act as carbon sinks in two semi-arid Mediterranean ecosystems. Biodivers. Conserv. 23, 1787–1807 (2014).

    Google Scholar 

  • 37.

    Sipos, P., Németh, T., Kis, V. K. & Mohai, I. Sorption of copper, zinc and lead on soil mineral phases. Chemosphere 73, 461–469 (2008).

    CAS  PubMed  Google Scholar 

  • 38.

    Moral, R., Gilkes, R. J. & Jordán, M. M. Distribution of heavy metals in calcareous and non-calcareous soils in Spain. Water Air. Soil Pollut. 162, 127–142 (2005).

    CAS  Google Scholar 

  • 39.

    Lindsay, W. L. in Advances in Agronomy 24, 147–186 (Elsevier, 1972).

  • 40.

    Bradl, H. B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 277, 1–18 (2004).

    CAS  PubMed  Google Scholar 

  • 41.

    McBride, M. B. in Advances in Soil Science (ed. Stewart, B. A.) 1–56 (Springer New York, 1989). https://doi.org/10.1007/978-1-4613-8847-0_1.

  • 42.

    Sauvé, S., Hendershot, W. & Allen, H. E. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol. 34, 1125–1131 (2000).

    Google Scholar 

  • 43.

    Delgado‐Baquerizo, M. et al. Direct and indirect impacts of climate change on microbial and biocrust communities alter the resistance of the N cycle in a semiarid grassland. J. Ecol. 102, 1592–1605 (2014).

    Google Scholar 

  • 44.

    Nielsen, U. N. & Ball, B. A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi‐arid ecosystems. Glob. Chang. Biol. 21, 1407–1421 (2015).

    PubMed  Google Scholar 

  • 45.

    Yuan, Z. et al. Experimental and observational studies find contrasting responses of soil nutrients to climate change. Elife 6, 1–19 (2017).

    Google Scholar 

  • 46.

    Sardans, J., Peñuelas, J., Prieto, P. & Estiarte, M. Changes in Ca, Fe, Mg, Mo, Na, and S content in a Mediterranean shrubland under warming and drought. J. Geophys. Res. Biogeosci 113, G03039 (2008).

    Google Scholar 

  • 47.

    Sardans, J., Peñuelas, J. & Estiarte, M. Warming and drought change trace element bioaccumulation patterns in a Mediterranean shrubland. Chemosphere 70, 874–885 (2008).

    CAS  PubMed  Google Scholar 

  • 48.

    Li, Y. et al. Temperature changes the dynamics of trace element accumulation in Solanum tuberosum L. Clim. Change 112, 655–672 (2012).

    CAS  Google Scholar 

  • 49.

    González-Alcaraz, M. N. & van Gestel, C. A. M. Metal/metalloid (As, Cd and Zn) bioaccumulation in the earthworm Eisenia andrei under different scenarios of climate change. Environ. Pollut. 215, 178–186 (2016).

    PubMed  Google Scholar 

  • 50.

    Fu, Q.-L., Weng, N., Fujii, M. & Zhou, D.-M. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature. Chemosphere 194, 285–296 (2018).

    CAS  PubMed  Google Scholar 

  • 51.

    Coe, K. K., Sparks, J. P. & Belnap, J. in Photosynthesis in Bryophytes and Early Land Plants 291–308 (Springer, 2014).

  • 52.

    Williams, A. J., Buck, B. J. & Beyene, M. A. Biological soil crusts in the Mojave Desert, USA: micromorphology and pedogenesis. Soil Sci. Soc. Am. J. 76, 1685–1695 (2012).

    CAS  Google Scholar 

  • 53.

    Ma, L. Q., Tan, F. & Harris, W. G. Concentrations and distributions of eleven metals in Florida soils. J. Environ. Qual. 26, 769–775 (1997).

    CAS  Google Scholar 

  • 54.

    Castillo-Monroy, A. P., Maestre, F. T., Delgado-Baquerizo, M. & Gallardo, A. Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: insights from a Mediterranean grassland. Plant Soil 333, 21–34 (2010).

    CAS  Google Scholar 

  • 55.

    Gadd, G. M. in Advances in Microbial Physiology 41, 47–92 (Elsevier, 1999).

  • 56.

    Gadd, G. M., Rhee, Y. J., Stephenson, K. & Wei, Z. Geomycology: metals, actinides and biominerals. Environ. Microbiol. Rep. 4, 270–296 (2012).

    CAS  PubMed  Google Scholar 

  • 57.

    Liu, Y.-R. et al. Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change. Soil Biol. Biochem. 107, 208–217 (2017).

    CAS  Google Scholar 

  • 58.

    Chamizo, S., Cantón, Y., Rodríguez‐Caballero, E. & Domingo, F. Biocrusts positively affect the soil water balance in semiarid ecosystems. Ecohydrology 9, 1208–1221 (2016).

    Google Scholar 

  • 59.

    Lafuente, A., Berdugo, M., Ladrón de Guevara, M., Gozalo, B. & Maestre, F. T. Simulated climate change affects how biocrusts modulate water gains and desiccation dynamics after rainfall events. Ecohydrology 11, e1935 (2018).

    PubMed  Google Scholar 

  • 60.

    Han, F. X., Banin, A. & Triplett, G. B. Redistribution of heavy metals in arid-zone soils under a wetting-drying cycle soil moisture regime. Soil Sci. 166, 18–28 (2001).

    CAS  Google Scholar 

  • 61.

    Hu, P. et al. Assessment of EDTA heap leaching of an agricultural soil highly contaminated with heavy metals. Chemosphere 117, 532–537 (2014).

    CAS  PubMed  Google Scholar 

  • 62.

    Keller, C., McGrath, S. P. & Dunham, S. J. Trace metal leaching through a soil–grassland system after sewage sludge application. J. Environ. Qual. 31, 1550–1560 (2002).

    CAS  PubMed  Google Scholar 

  • 63.

    Kidd, P. S., Domínguez-Rodríguez, M. J., Díez, J. & Monterroso, C. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Chemosphere 66, 1458–1467 (2007).

    CAS  PubMed  Google Scholar 

  • 64.

    Cambier, P. et al. Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils. Sci. Total Environ. 499, 560–573 (2014).

    CAS  PubMed  Google Scholar 

  • 65.

    Chatzistathis, T. Micronutrient Deficiency in Soils and Plants (Bentham Science Publishers, 2014).

  • 66.

    Beraldi‐Campesi, H., Hartnett, H. E., Anbar, A., Gordon, G. W. & García‐Pichel, F. Effect of biological soil crusts on soil elemental concentrations: implications for biogeochemistry and as traceable biosignatures of ancient life on land. Geobiology 7, 348–359 (2009).

    PubMed  Google Scholar 

  • 67.

    Fierer, N., Schimel, J. P. & Holden, P. A. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35, 167–176 (2003).

    CAS  Google Scholar 

  • 68.

    Lindsay, W. L. & Norvell, W. A. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 42, 421–428 (1978).

    CAS  Google Scholar 

  • 69.

    Moreno-Jiménez, E., Manzano, R., Esteban, E. & Peñalosa, J. The fate of arsenic in soils adjacent to an old mine site (Bustarviejo, Spain): mobility and transfer to native flora. J. Soils Sediments. 10, 301–312 (2010).

    Google Scholar 

  • 70.

    Moreno-Jiménez, E. et al. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. J. Hazard. Mater. 162, 854–859 (2009).

    PubMed  Google Scholar 

  • 71.

    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2019).

  • 72.

    Oksanen, J. et al. vegan: community ecology package. R. Packag. version 2, 5–5 (2019).

    Google Scholar 

  • 73.

    Grace, J. B. Structural Equation Modeling and Natural Systems. (Cambridge University Press, 2006).

  • 74.

    Eisenhauer, N., Bowker, M. A., Grace, J. B. & Powell, J. R. From patterns to causal understanding: structural equation modeling (SEM) in soil ecology. Pedobiologia (Jena.). 58, 65–72 (2015).

    Google Scholar 

  • 75.

    Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

    Google Scholar 


  • Source: Ecology - nature.com

    Researchers find benefits of solar photovoltaics outweigh costs

    IdeaStream 2020 goes virtual