in

Bowhead whales use two foraging strategies in response to fine-scale differences in zooplankton vertical distribution

  • 1.

    Laidre, K. L., Heide-Jørgensen, M. P., Nielsen, T. G. & Gissel Nielsen, T. Role of the bowhead whale as a predator in West Greenland. Mar. Ecol. Prog. Ser. 346, 285–297 (2007).

    ADS  Article  Google Scholar 

  • 2.

    Pomerleau, C., Ferguson, S. H. & Walkusz, W. Stomach contents of bowhead whales (Balaena mysticetus) from four locations in the Canadian Arctic. Polar Biol. 34, 615–620 (2011).

    Article  Google Scholar 

  • 3.

    Pomerleau, C. et al. Prey assemblage isotopic variability as a tool for assessing diet and the spatial distribution of bowhead whale Balaena mysticetus foraging in the Canadian eastern Arctic. Mar. Ecol. Prog. Ser. 469, 161–174 (2012).

    ADS  Article  Google Scholar 

  • 4.

    Kenney, R. D., Hyman, M. A. M., Owen, R. E., Scott, G. P. & Winn, H. E. Estimation of prey densities required by western North Atlantic right whales. Mar. Mamm. Sci. 2, 1–13 (1986).

    Article  Google Scholar 

  • 5.

    Baumgartner, M. F. & Tarrant, A. M. The physiology and ecology of diapause in marine copepods. Ann. Rev. Mar. Sci. 9, 387–411 (2017).

    PubMed  Article  Google Scholar 

  • 6.

    Fortune, S. M., Trites, A. W., Mayo, C. A., Rosen, D. A. S. & Hamilton, P. K. Energetic requirements of North Atlantic right whales and the implications for species recovery. Mar. Ecol. Prog. Ser. 478, 253–272 (2013).

    ADS  Article  Google Scholar 

  • 7.

    Hays, G. C., Richardson, A. J. & Robinson, C. Climate change and marine plankton. Trends Ecol. Evol. 20, 337–344 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Beaugrand, G., Mackas, D. & Goberville, E. Applying the concept of the ecological niche and a macroecological approach to understand how climate influences zooplankton: advantages, assumptions, limitations and requirements. Prog. Oceanogr. 111, 75–90 (2013).

    ADS  Article  Google Scholar 

  • 9.

    Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Beaugrand, G. Decadal changes in climate and ecosystems in the North Atlantic Ocean and adjacent seas. Deep Res. Part II Top. Stud. Oceanogr. 56, 656–673 (2009).

    ADS  Article  Google Scholar 

  • 11.

    Chust, G. et al. Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach. ICES J. Mar. Sci. 71, 241–253 (2014).

    Article  Google Scholar 

  • 12.

    Grieve, B. D., Hare, J. A. & Saba, V. S. Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. Northeast Continental Shelf. Sci. Rep. 7, 6264 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Feng, Z., Ji, R., Campbell, R. G., Ashjian, C. J. & Zhang, J. Early ice retreat and ocean warming may induce copepod biogeographic boundary shifts in the Arctic Ocean. J. Geophys. Res. Ocean. 121, 6137–6158 (2016).

    ADS  Article  Google Scholar 

  • 14.

    Feng, Z., Ji, R., Ashjian, C., Campbell, R. & Zhang, J. Biogeographic responses of the copepod Calanus glacialis to a changing Arctic marine environment. Glob. Chang. Biol. 24, e159–e170 (2018).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Kwok, R. et al. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res. Ocean. 114, 1–16 (2009).

    Article  Google Scholar 

  • 16.

    Stroeve, J., Holland, M. M., Meier, W., Scambos, T. & Serreze, M. Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett. 34, 1–5 (2007).

    Article  Google Scholar 

  • 17.

    Notz, D. & Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354, 747–750 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Pomerleau, C. et al. Spatial patterns in zooplankton communities across the eastern Canadian sub-Arctic and Arctic waters: insights from stable carbon (delta C-13) and nitrogen (delta N-15) isotope ratios. J. Plankton Res. 33, 1779–1792 (2011).

    CAS  Article  Google Scholar 

  • 19.

    Pomerleau, C., Lesage, V., Winkler, G., Rosenberg, B. & Ferguson, S. H. Contemporary diet of bowhead whales (Balaena mysticetus) from the eastern Canadian Arctic inferred from fatty acid biomarkers. Arctic 67, 84–92 (2014).

    Article  Google Scholar 

  • 20.

    Heide-Jørgensen, M. P. et al. Large scale sexual segregation of bowhead whales. Endang. Species Res. 13, 73–78 (2010).

    Article  Google Scholar 

  • 21.

    Heide-Jørgensen, M. P. et al. Winter and spring diving behavior of bowhead whales relative to prey. Anim. Biotelemetry 1, 1–15 (2013).

    Article  Google Scholar 

  • 22.

    Curry, B., Lee, C. M., Petrie, B., Moritz, R. E. & Kwok, R. Multiyear volume, liquid freshwater, and sea ice transports through Davis Strait, 2004–10. J. Phys. Oceanogr. 44, 1244–1266 (2014).

    ADS  Article  Google Scholar 

  • 23.

    Pomerleau, C. et al. Mercury and stable isotope cycles in baleen plates are consistent with year-round feeding in two bowhead whale (Balaena mysticetus) populations. Polar Biol. 41, 1881–1893 (2018).

    Article  Google Scholar 

  • 24.

    Doniol-Valcroze, T. et al. Abundance estimate of the Eastern Canada-West Greenland bowhead whale population based on the 2013 High Arctic Cetacean Survey. (2015).

  • 25.

    Frasier, T. et al. Abundance estimates of the Eastern Canada-West Greenland bowhead whale (Balaena mysticetus) population based on genetic capture-mark-recapture analyses. (2015).

  • 26.

    Frasier, T. R. et al. Abundance estimation from genetic mark-recapture data when not all sites are sampled: an example with the bowhead whale. Glob. Ecol. Conserv. 22, e00903 (2020).

    Article  Google Scholar 

  • 27.

    Dunbar, M. J. Physical oceanographic results of the ‘Calanus’ expeditions in Ungava Bay, Frobisher Bay, Cumberland Sound, Hudson Strait and Northern Hudson Bay, 1949–1955. J. Fish. Res. Board Canada 15, 155–201 (1958).

    Article  Google Scholar 

  • 28.

    Aitken, A. & Gilbert, R. Holocene nearshore environments and sea-level history in Pangnirtung fjord, Baffin Island, NWT, Canada. Arct. Alp. Res. 21, 34–44 (1989).

    Article  Google Scholar 

  • 29.

    McMeans, B. C. et al. Seasonal patterns in fatty acids of Calanus hyperboreus (Copepoda, Calanoida) from Cumberland Sound, Baffin Island, Nunavut. Mar. Biol. 159, 1095–1105 (2012).

    CAS  Article  Google Scholar 

  • 30.

    Bedard, J. M. et al. Outside influences on the water column of Cumberland Sound, Baffin Island. J. Geophys. Res. C Ocean. 120, 5000–5018 (2015).

    ADS  Article  Google Scholar 

  • 31.

    Tang, C. C. L. et al. The circulation, water masses and sea-ice of Baffin Bay. Prog. Oceanogr. 63, 183–228 (2004).

    ADS  Article  Google Scholar 

  • 32.

    Falk-Petersen, S., Mayzaud, P., Kattner, G. & Sargent, J. R. Lipids and life strategy of Arctic Calanus. Mar. Biol. Res. 5, 18–39 (2009).

    Article  Google Scholar 

  • 33.

    Davies, K. T. A., Ryan, A. & Taggart, C. T. Measured and inferred gross energy content in diapausing Calanus spp. in a Scotian shelf basin. J. Plankton Res. 34, 614–625 (2012).

    Article  Google Scholar 

  • 34.

    Koski, W. R., Davis, R. A., Miller, G. W. & Withrow, D. E. Reproduction. in The bowhead whale (eds. Burns, J. J., Montague, J. J. & Cowles, C. J.) 239–274 (Special Publication Number 2. The Society of Marine Mammalogy, Lawrence, KS, 1993).

  • 35.

    George, J. C. et al. Inferences from bowhead whale ovarian and pregnancy data: age estimates, length at sexual maturity and ovulation rates. International Whaling Commission Scientific Paper 56 (2004).

  • 36.

    Higdon, J. W. & Ferguson, S. H. Past, present, and future for bowhead whales (Balaena mysticetus) in northwest Hudson Bay. In A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Ferguson, S. H. et al.) 159–177 (Springer, New York, 2010).

    Google Scholar 

  • 37.

    Liu, H. & Hopcroft, R. R. Growth and development of Pseudocalanus spp. in the northern Gulf of Alaska. J. Plankton Res. 30, 923–935 (2008).

    Article  Google Scholar 

  • 38.

    DeLorenzo Costa, A., Durbin, E. G. & Mayo, C. A. Variability in the nutritional value of the major copepods in Cape Cod Bay (Massachusetts, USA) with implications for right whales. Mar. Ecol. 27, 109–123 (2006).

    ADS  Article  CAS  Google Scholar 

  • 39.

    Madsen, S. D., Nielsen, T. G. & Hansen, B. W. Annual population development and production by Calanus finmarchicus, C. glacialisand C. hyperboreus in Disko Bay, western Greenland. Mar. Biol. 139, 75–93 (2001).

    Article  Google Scholar 

  • 40.

    Reeves, R., Mitchell, E., Mansfield, A. & McLaughlin, M. Distribution and migration of the bowhead whale, Balaena mysticetus, in the Eastern North American. Arctic 36, 60 (1983).

    Article  Google Scholar 

  • 41.

    Holland, C. A. William penny, 1809–92: Arctic whaling master. Polar Rec. 15, 25–43 (1970).

    Article  Google Scholar 

  • 42.

    Higdon, J. W. Commercial and subsistence harvests of bowhead whales (Balaena mysticetus) in eastern Canada and West Greenland. J. Cetacean Res. Manag. 11, 185–216 (2010).

    Google Scholar 

  • 43.

    Diemer, K. M. et al. Marine mammal and seabird summer distribution and abundance in the fjords of northeast Cumberland Sound of Baffin Island, Nunavut, Canada. Polar Biol. 34, 41–48 (2011).

    Article  Google Scholar 

  • 44.

    Matthews, C. et al. Boat-based surveys for marine mammals and seabirds in Cumberland Sound. Field report. (2012).

  • 45.

    Baumgartner, M. F., Wenzel, F. W., Lysiak, N. S. J. & Patrician, M. R. North Atlantic right whale foraging ecology and its role in human-caused mortality. Mar. Ecol. Prog. Ser. 581, 165–181 (2017).

    ADS  Article  Google Scholar 

  • 46.

    Fortune, S. et al. Seasonal diving and foraging behaviour of Eastern Canada-West Greenland bowhead whales. Mar. Ecol. Prog. Ser. 643, 197–217 (2020).

    ADS  Article  Google Scholar 

  • 47.

    Block, B. A. Physiological ecology in the 21st century: Advancements in biologging science. Integr. Comp. Biol. 45, 305–320 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Hays, G. C. New insights: animal-borne cameras and accelerometers reveal the secret lives of cryptic species. J. Anim. Ecol. 84, 587–589 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Bograd, S. J., Block, B. A., Costa, D. P. & Godley, B. J. Biologging technologies: new tools for conservation. Introduction. Endanger. Species Res. 10, 1–7 (2010).

    Article  Google Scholar 

  • 50.

    Unstad, K. H. & Tande, K. S. Depth distribution of Calanus finmarchicus and C. glacialis in relation to environmental conditions in the Barents Sea. Polar Res. 10, 409–420 (1991).

    Article  Google Scholar 

  • 51.

    Hirche, H. J. & Niehoff, B. Reproduction of the Arctic copepod Calanus hyperboreus in the Greenland Sea-field and laboratory observations. Polar Biol. 16, 209–219 (1996).

    Article  Google Scholar 

  • 52.

    Madsen, S. J., Nielsen, T. G., Tervo, O. M. & Söderkvist, J. Importance of feeding for egg production in Calanus finmarchicus and C. glacialis during the Arctic spring. Mar. Ecol. Prog. Ser. 353, 177–190 (2008).

    ADS  CAS  Article  Google Scholar 

  • 53.

    Darnis, G. & Fortier, L. Temperature, food and the seasonal vertical migration of key arctic copepods in the thermally stratified Amundsen Gulf (Beaufort Sea, Arctic Ocean) GE. J. Plankton Res. 36, 1092–1108 (2014).

    CAS  Article  Google Scholar 

  • 54.

    Parent, G. J., Plourde, S. & Turgeon, J. Overlapping size ranges of Calanus spp. off the Canadian Arctic and Atlantic Coasts: impact on species abundances. J. Plankton Res. 33, 1654–1665 (2011).

    CAS  Article  Google Scholar 

  • 55.

    Hyslop, E. J. Stomach contents analysis—a review of methods and their application. J. Fish Biol. 17, 411–429 (1980).

    Article  Google Scholar 

  • 56.

    Dunweber, M. et al. Succession and fate of the spring diatom bloom in Disko Bay, western Greenland. Mar. Ecol. Prog. Ser. 419, 11–29 (2010).

    ADS  Article  CAS  Google Scholar 

  • 57.

    Swalethorp, R. et al. Grazing, egg production, and biochemical evidence of differences in the life strategies of Calanus finmarchicus, C. glacialis and C. hyperboreus in Disko Bay, Western Greenland. Mar. Ecol. Prog. Ser. 429, 125–144 (2011).

    ADS  Article  Google Scholar 

  • 58.

    Baumgartner, M. F. & Mate, B. R. Summertime foraging ecology of North Atlantic right whales. Mar. Ecol. Prog. Ser. 264, 123–135 (2003).

    ADS  Article  Google Scholar 

  • 59.

    Hirche, H. J. Long-term experiments on lifespan, reproductive activity and timing of reproduction in the Arctic copepod Calanus hyperboreus. Mar. Biol. 160, 2469–2481 (2013).

    Article  Google Scholar 

  • 60.

    Visser, A. W. & Jónasdóttir, S. H. Lipids, buoyancy and the seasonal vertical migration of Calanus finmarchicus. Fish. Oceanogr. 8, 100–106 (1999).

    Article  Google Scholar 

  • 61.

    Scott, C. L., Kwasniewski, S., Falk-Petersen, S. & Sargent, J. R. Lipids and life strategies of Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus in late autumn, Kongsfjorden, Svalbrad. Polar Biol. 23, 510–516 (2000).

    Article  Google Scholar 

  • 62.

    Heide-Jørgensen, M. P., Laidre, K. L., Logsdon, M. L. & Nielsen, T. G. Springtime coupling between chlorophyll a, sea ice and sea surface temperature in Disko Bay, West Greenland. Prog. Oceanogr. 73, 79–95 (2007).

    ADS  Article  Google Scholar 

  • 63.

    Baumgartner, M. F. Comparisons of Calanus finmarchicus fifth copepodite abundance estimates from nets and an optical plankton counter. J. Plankton Res. 25, 855–868 (2003).

    Article  Google Scholar 

  • 64.

    Herman, A. W. Design and calibration of a new optical plankton counter capable of sizing small zooplankton. Deep Sea Res. A 39, 395–415 (1992).

    ADS  Article  Google Scholar 

  • 65.

    Falk-Petersen, S. et al. Vertical migration in high Arctic waters during autumn 2004. Deep Sea Res. II(55), 2275–2284 (2008).

    ADS  Article  Google Scholar 

  • 66.

    Baumgartner, M. F., Lysiak, N. S. J., Schuman, C., Urban-Rich, J. & Wenzel, F. W. Diel vertical migration behavior of Calanus finmarchicus and its influence on right and sei whale occurrence. Mar. Ecol. Prog. Ser. 423, 167–184 (2011).

    ADS  Article  Google Scholar 

  • 67.

    Bollens, S. M. & Frost, B. W. Predator-induced diet vertical migration in a planktonic copepod. J. Plankton Res. 11, 1047–1065 (1989).

    Article  Google Scholar 

  • 68.

    Hays, G. C. Ontogenetic and seasonal variation in the diel vertical migration of the copepods Metridia lucens and Metridia longa. Limnol. Oceanogr. 40, 1461–1465 (1995).

    ADS  Article  Google Scholar 

  • 69.

    Huntley, M. & Brooks, E. R. Effects of age and food availability on diel vertical migration of Calanus pacificus. Mar. Biol. 71, 23–31 (1982).

    Article  Google Scholar 

  • 70.

    Simon, M., Johnson, M. J., Tyack, P. & Madsen, P. T. Behavior and kinematics of continous ram filtration in bowhead wahles (Balaena mysticetus). Proc. R. Soc. Lond. B. 276, 3819–3828 (2009).

    Article  Google Scholar 

  • 71.

    van der Hoop, J. M. et al. Foraging rates of ram-filtering North Atlantic right whales. Funct. Ecol. 33, 1290–1306 (2019).

    Article  Google Scholar 

  • 72.

    Goldbogen, J. A. et al. Prey density and distribution drive the three-dimensional foraging strategies of the largest filter feeder. Funct. Ecol. 29, 951–961 (2015).

    Article  Google Scholar 

  • 73.

    Kooyman, G. L., Wahrenbrock, E. A., Castellini, M. A., Davis, R. W. & Sinnett, E. E. Aerobic and anaerobic metabolism during voluntary diving in Weddell seals: evidence of preferred pathways from blood chemsitry and behavior. J. Comp. Physiol. B 138, 335–346 (1980).

    CAS  Article  Google Scholar 

  • 74.

    Kooyman, G. L., Castellini, M. A., Davis, R. W. & Maue, R. A. Aerobic diving limits of immature Weddell seals. J. Comp. Physiol. B 151, 171–174 (1983).

    Article  Google Scholar 

  • 75.

    Dyke, A. S., Hooper, J. & Savelle, J. M. A history of sea ice in the Canadian Arctic archipelago based on postglacial remains of the bowhead whale (Balaena mysticetus). Arctic 49, 235–255 (1996).

    Article  Google Scholar 

  • 76.

    Baumgartner, M. F., Hammar, T. & Robbins, J. Development and assessment of a new dermal attachment for short-term tagging studies of baleen whales. Methods Ecol. Evol. 6, 289–297 (2015).

    Article  Google Scholar 

  • 77.

    Reinhart, N. R. et al. Occurrence of killer whale Orcinus orca rake marks on Eastern Canada-West Greenland bowhead whales Balaena mysticetus. Polar Biol. 36, 1133–1146 (2013).

    Article  Google Scholar 

  • 78.

    Fortune, S. M. E. et al. Evidence of molting and the function of “rock-nosing” behavior in bowhead whales in the eastern Canadian Arctic. PLoS ONE 12, 1–15 (2017).

    MathSciNet  Article  CAS  Google Scholar 

  • 79.

    Silva, M. A. et al. Assessing performance of Bayesian state-space models fit to argos satellite telemetry locations processed with kalman filtering. PLoS ONE 9, e92277 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 80.

    Lowther, A. D., Lydersen, C., Fedak, M. A., Lovell, P. & Kovacs, K. M. The argos-CLS kalman filter: Error structures and state-space modelling relative to fastloc GPS data. PLoS ONE 10, e0124754 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 81.

    R Development Core Team. R: A Language and Environment for Statistical Computing. R Development Core Team, Vienna (2016). https://doi.org/10.1038/sj.hdy.6800737.

  • 82.

    Jonsen, I. D., Flemming, J. M. & Myers, R. A. Robust state-space modeling of animal movement data. Ecology 86, 2874–2880 (2005).

    Article  Google Scholar 

  • 83.

    Jonsen, I. D. et al. State-space models for bio-loggers: a methodological road map. Deep. Res. II(88–89), 34–46 (2013).

    ADS  Google Scholar 

  • 84.

    Tinbergen, N., Impekoven, M. & Franck, D. An experiment on spacing-out as a defence against predation. Behaviour 28, 307–320 (1967).

    Article  Google Scholar 

  • 85.

    Kareiva, P. & Odell, G. Swarms of predators exhibit ‘preytaxis’ if individual predators use area-restricted search. Am. Nat. 130, 233–270 (1987).

    Article  Google Scholar 

  • 86.

    Haskell, D. G. Experiments and a model examining learning in the area-restricted search behavior of ferrets (Mustela putorius furo). Behav. Ecol. 8, 448–455 (1997).

    Article  Google Scholar 

  • 87.

    Fauchald, P. & Tveraa, T. Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology 84, 282–288 (2003).

    Article  Google Scholar 

  • 88.

    Anderwald, P. et al. Spatial scale and environmental determinants in minke whale habitat use and foraging. Mar. Ecol. Prog. Ser. 450, 259–274 (2012).

    ADS  Article  Google Scholar 

  • 89.

    Jonsen, I. D., Myers, R. A. & James, M. C. Identifying leatherback turtle foraging behaviour from satellite telemetry using a switching state-space model. Mar. Ecol. Prog. Ser. 337, 255–264 (2007).

    ADS  Article  Google Scholar 

  • 90.

    Pinheiro, J. C. & Bates, D. M. Linear mixed-effects models. in Mixed-effects models in S and S-Plus 1–56 (Springer, New York, 2000). https://doi.org/10.1198/tech.2001.s574.

  • 91.

    Sverdrup, H. U. On conditions for the vernal blooming of phytoplankton. ICES J. Mar. Sci. 18, 287–295 (1953).

    Article  Google Scholar 

  • 92.

    Thomson, R. E. & Fine, I. V. Estimating mixed layer depth from oceanic profile data. J. Atmos. Ocean. Technol. 20, 319–329 (2003).

    ADS  Article  Google Scholar 

  • 93.

    Smith, W. O. & Jones, R. M. Vertical mixing, critical depths, and phytoplankton growth in the Ross Sea. ICES J. Mar. Sci. 72, 1952–1960 (2015).

    Article  Google Scholar 

  • 94.

    Suthers, I. M., Taggart, C. T., Rissik, D. & Baird, M. E. Day and night ichthyoplankton assemblages and zooplankton biomass size spectrum in a deep ocean island wake. Mar. Ecol. Prog. Ser. 322, 225–238 (2006).

    ADS  CAS  Article  Google Scholar 

  • 95.

    Grainger, E. H. The copepods Calanus glacial is Jaschnov and Calanus finmarchicus (Gunnerus) in Canadian Arctic-Subarctic waters. J. Fish. Res. Board Can. 18, 663–678 (1961).

    Article  Google Scholar 

  • 96.

    Jaschnov, W. A. Distribution of Calanus Species in the Seas of the Northern Hemisphere. Int. Rev. Hydrobiol. Hydrogr. 55, 197–212 (1970).

    Article  Google Scholar 

  • 97.

    Hirche, H. J. & Mumm, N. Distribution of dominant copepods in the Nansen Basin, Arctic Ocean, in summer. Deep Sea Res. A 39, 485–505 (1992).

    ADS  Article  Google Scholar 

  • 98.

    Breteler, W. C. M. K., Fransz, H. G. & Gonzalez, S. R. Growth and development of four calanoid copepod species under experimental and natural conditions. Neth. J. Sea Res. 16, 195–207 (1982).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Massive, swift federal investment needed to address climate change, panelists say

    Cracking the secrets of an emerging branch of physics