in

Bumble bees in landscapes with abundant floral resources have lower pathogen loads

  • 1.

    Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    PubMed  Article  Google Scholar 

  • 3.

    Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).

    PubMed  Article  CAS  Google Scholar 

  • 5.

    Steffan-Dewenter, I., Münzenberg, U., Bürger, C., Thies, C. & Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432 (2002).

    Article  Google Scholar 

  • 6.

    Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).

    PubMed  Article  Google Scholar 

  • 7.

    Grozinger, C. M. & Flenniken, M. L. Bee viruses: Ecology, pathogenicity, and impacts. Annu. Rev. Entomol. 64, 205–226 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. R. Soc. B Biol. Sci. 108, 662–667 (2011).

    CAS  Google Scholar 

  • 9.

    Tokarev, Y. S. et al. A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. J. Invertebr. Pathol. 169, 107279 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Levitt, A. L. et al. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 176, 232–240 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Radzevičiūtė, R. et al. Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan. J. Invertebr. Pathol. 146, 14–23 (2017).

    PubMed  Article  CAS  Google Scholar 

  • 12.

    Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Dolezal, A. G. et al. Honey bee viruses in wild bees: Viral prevalence, loads, and experimental inoculation. PLoS ONE 11, 11 (2016).

    Google Scholar 

  • 14.

    Douglas, M. R., Sponsler, D. B., Lonsdorf, E. V. & Grozinger, C. M. County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis mellifera) on US farmland. Sci. Rep. 10, 1–11 (2020).

    Article  CAS  Google Scholar 

  • 15.

    Blacquiere, T., Smagghe, G., Van Gestel, C. A. & Mommaerts, V. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973–992 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Aliouane, Y. et al. Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior. Environ. Toxicol. Chem. 28, 113–122 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Whitehorn, P. R., O’connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351–352 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 18.

    Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Dolezal, A. G. & Toth, A. L. Feedbacks between nutrition and disease in honey bee health. Curr. Opin. Insect Sci. 26, 114–119 (2018).

    PubMed  Article  Google Scholar 

  • 20.

    DeGrandi-Hoffman, G. & Chen, Y. Nutrition, immunity and viral infections in honey bees. Curr. Opin. Insect Sci. 10, 170–176 (2015).

    PubMed  Article  Google Scholar 

  • 21.

    DeGrandi-Hoffman, G., Chen, Y., Huang, E. & Huang, M. H. The effect of diet on protein concentrcation, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Physiol. 56, 1184–1191 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter?. PLoS ONE 8, 8 (2013).

    Google Scholar 

  • 23.

    Manley, R., Boots, M. & Wilfert, L. Condition-dependent virulence of slow bee paralysis virus in Bombus terrestris: Are the impacts of honeybee viruses in wild pollinators underestimated?. Oecologia 184, 305–315 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Ricigliano, V. A. et al. Honey bee colony performance and health are enhanced by apiary proximity to US Conservation Reserve Program (CRP) lands. Sci. Rep. 9, 1–11 (2019).

    CAS  Article  Google Scholar 

  • 25.

    O’Neal, S. T., Anderson, T. D. & Wu-Smart, J. Y. Interactions between pesticides and pathogen susceptibility in honey bees. Curr. Opin. Insect Sci. 26, 57–62 (2018).

    PubMed  Article  Google Scholar 

  • 26.

    Di Prisco, G. V. et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl. Acad. Sci. 110, 18466–18471 (2013).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 27.

    O’Neal, S. T., Swale, D. R. & Anderson, T. D. ATP-sensitive inwardly rectifying potassium channel regulation of viral infections in honey bees. Sci. Rep. 7, 8668 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 28.

    Fine, J. D., Cox-Foster, D. L. & Mullin, C. A. An inert pesticide adjuvant synergizes viral pathogenicity and mortality in honey bee larvae. Sci. Rep. 7, 40499 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Pettis, J. S., Johnson, J. & Dively, G. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 99, 153–158 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Pettis, J. S., Lichtenberg, E. M., Andree, M., Stitzinger, J. & Rose, R. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS ONE 8, e70182 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    McArt, S. H., Fersch, A. A., Milano, N. J., Truitt, L. L. & Böröczky, K. High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop. Sci. Rep. 7, 46554 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    McArt, S. H., Koch, H., Irwin, R. E. & Adler, L. S. Arranging the bouquet of disease: Floral traits and the transmission of plant and animal pathogens. Ecol. Lett. 17, 624–636 (2014).

    PubMed  Article  Google Scholar 

  • 33.

    Piot, N. et al. Establishment of wildflower fields in poor quality landscapes enhances micro-parasite prevalence in wild bumble bees. Oecologia 189, 149–158 (2019).

    ADS  PubMed  Article  Google Scholar 

  • 34.

    Bailes, E. J. et al. Host density drives viral, but not trypanosome, transmission in a key pollinator. Proc. R. Soc. B Biol. Sci. 287, 20191969 (2020).

    Article  Google Scholar 

  • 35.

    Singh, R. et al. RNA viruses in hymenopteran pollinators: Evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS ONE 5, e14357 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Manley, R., Boots, M. & Wilfert, L. Emerging viral disease risk to pollinating insects: Ecological, evolutionary and anthropogenic factors. J. Appl. Ecol. 52, 331–340 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Meeus, I., Pisman, M., Smagghe, G. & Piot, N. Interaction effects of different drivers of wild bee decline and their influence on host–pathogen dynamics. Curr. Opin. Insect Sci. 26, 136–141 (2018).

    PubMed  Article  Google Scholar 

  • 38.

    Huang, Z. Pollen nutrition affects honey bee stress resistance. Terr. Arthropod. Rev. 5, 175–189 (2012).

    Article  Google Scholar 

  • 39.

    Smart, M., Pettis, J., Rice, N., Browning, Z. & Spivak, M. Linking measures of colony and individual honey bee health to survival among apiaries exposed to varying agricultural land use. PLoS ONE 11, 3 (2016).

    Google Scholar 

  • 40.

    Danihlík, J., Aronstein, K. & Petřivalský, M. Antimicrobial peptides: a key component of honey bee innate immunity: Physiology, biochemistry, and chemical ecology. J. Apic. Res. 54, 123–136 (2015).

    Article  Google Scholar 

  • 41.

    Meeus, I., Brown, M. J., De Graaf, D. C. & Smagghe, G. U. Y. Effects of invasive parasites on bumble bee declines. Conserv. Biol. 25, 662–671 (2011).

    PubMed  Article  Google Scholar 

  • 42.

    Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 10, 133–141 (2015).

    PubMed  Article  Google Scholar 

  • 43.

    Sánchez-Bayo, F. et al. Are bee diseases linked to pesticides?—A brief review. Environ. Int. 89, 7–11 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 44.

    Beck, M. A. & Levander, O. A. Host nutritional status and its effect on a viral pathogen. J. Infect. Dis. 182, 93–96 (2000).

    Article  Google Scholar 

  • 45.

    Hing, S., Narayan, E. J., Thompson, R. A. & Godfrey, S. S. The relationship between physiological stress and wildlife disease: Consequences for health and conservation. Wildl. Res. 43, 51–60 (2016).

    Article  Google Scholar 

  • 46.

    Graystock, P., Goulson, D. & Hughes, W. O. Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. R. Soc. B Biol. Sci. 282, 20151371 (2015).

    Article  Google Scholar 

  • 47.

    Sponsler, D. B., Shump, D., Richardson, R. T. & Grozinger, C. M. Characterizing the floral resources of a North American metropolis using a honey bee foraging assay. Ecosphere 11, e03102 (2020).

    Article  Google Scholar 

  • 48.

    Williams, N. M., Regetz, J. & Kremen, C. Landscape-scale resources promote colony growth but not reproductive performance of bumble bees. Ecology 93, 1049–1058 (2012).

    PubMed  Article  Google Scholar 

  • 49.

    Steffan-Dewenter, I. & Tscharntke, T. Resource overlap and possible competition between honey bees and wild bees in central Europe. Oecologia 122, 288–296 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 50.

    Tehel, A., Brown, M. J. & Paxton, R. J. Impact of managed honey bee viruses on wild bees. Curr. Opin. Virol. 19, 16–22 (2016).

    PubMed  Article  Google Scholar 

  • 51.

    Sponsler, D. B. et al. Pesticides and pollinators: A socioecological synthesis. Sci. Total Environ. 662, 1012–1027 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 52.

    McCaskill, G. L. et al. Pennsylvania’s Forests 2009 (U.S Forest Service, Washington, DC, 2009).

    Google Scholar 

  • 53.

    Park, M. G., Blitzer, E. J., Gibbs, J., Losey, J. E. & Danforth, B. N. Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc. R. Soc. B Biol. Sci. 282, 20150299 (2015).

    Article  CAS  Google Scholar 

  • 54.

    Koh, I. et al. Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc. R. Soc. B Biol. Sci. 113, 140–145 (2016).

    CAS  Google Scholar 

  • 55.

    Williams, P. H., Thorp, R. W., Richardson, L. L. & Colla, S. R. Bumble Bees of North America: An Identification Guide (Princeton University Press, Princeton, 2014).

    Google Scholar 

  • 56.

    National Research Council. Under the Weather: Climate, Ecosystems, and Infectious Disease (National Academy Press, Washington, DC, 2001).

    Google Scholar 

  • 57.

    Polgreen, P. M. & Polgreen, E. L. Infectious diseases, weather, and climate. Clin. Infect. Dis. 66, 815–817 (2018).

    PubMed  Article  Google Scholar 

  • 58.

    Retschnig, G., Williams, G. R., Schneeberger, A. & Neumann, P. Cold ambient temperature promotes Nosema spp. intensity in honey bees (Apis mellifera). Insects 8, 20 (2017).

    PubMed Central  Article  PubMed  Google Scholar 

  • 59.

    Dalmon, A., Peruzzi, M. L., Conte, Y., Alaux, C. & Pioz, M. Temperature-driven changes in viral loads in the honey bee Apis mellifera. J. Invertebr. Pathol. 160, 87–94 (2019).

    PubMed  Article  Google Scholar 

  • 60.

    Gardner, W. A., Sutton, R. M. & Noblet, R. Persistence of Beauveria bassiana, Nomuraea rileyi, and Nosema necatrix on Soyhean Foliage. Environ. Entomol. 6, 616–618 (1977).

    Article  Google Scholar 

  • 61.

    Neidel, V., Steyer, C. S. & C., & Hoch, G. ,. Simulation of rain enhances horizontal transmission of the microsporidium Nosema lymantriae via infective feces. J. Invertebr. Pathol. 149, 56–58 (2017).

    PubMed  Article  Google Scholar 

  • 62.

    Rangel, J. et al. Prevalence of Nosema species in a feral honey bee population: A 20-year survey. Apidologie 47, 561–571 (2017).

    Article  Google Scholar 

  • 63.

    Leather, S. R. “Ecological Armageddon”-more evidence for the drastic decline in insect numbers. Ann. Appl. Biol. 172, 1–3 (2017).

    Article  Google Scholar 

  • 64.

    Scheper, J. et al. Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. J. Appl. Ecol. 52, 1165–1175 (2015).

    Article  Google Scholar 

  • 65.

    Rodríguez, J. P., Brotons, L., Bustamante, J. & Seoane, J. The application of predictive modelling of species distribution to biodiversity conservation. Divers. Distrib. 13, 243–251 (2017).

    Article  Google Scholar 

  • 66.

    Young, B. E. et al. Using citizen science data to support conservation in environmental regulatory contexts. Biol. Conserv. 237, 57–62 (2019).

    Article  Google Scholar 

  • 67.

    Lesley, J. P. A Summary Description of the Geology of Pennsylvania (Board of Commissioners for the Geological Survey, Pennsylvania, 1892).

    Google Scholar 

  • 68.

    Dyer, J. Revisiting the Deciduous Forests of Eastern North America. Bioscience 56, 341–352 (2006).

    Article  Google Scholar 

  • 69.

    Wherry, E. T., Fogg, Jr., J. M., & Wahl. H. A. Atlas of the Flora of Pennsylvania. (University of Pennsylvania, Pennsylvania, 1979).

  • 70.

    Albright, T. A. Forests of Pennsylvania, 2017. Resource Update FS-175. (U.S. Department of Agriculture, Forest Service, 2017).

  • 71.

    Wickham, J. et al. The multi-resolution land characteristics (MRLC) consortium—20 years of development and integration. Remote Sens. 6, 7424–7441 (2014).

    ADS  Article  Google Scholar 

  • 72.

    Shannon, C. E. A mathematical theory of communication. Bell Labs Tech. J. 27, 379–423 (1948).

    MathSciNet  MATH  Article  Google Scholar 

  • 73.

    Plischuk, S. et al. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ. Microbiol. Rep. 1, 131–135 (2009).

    PubMed  Article  Google Scholar 

  • 74.

    Chu, C. C. & Cameron, S. A. A scientific note on Nosema bombi infection intensity among different castes within a Bombus auricomus nest. Apidologie 48, 141–143 (2017).

    Article  Google Scholar 

  • 75.

    vanEngelsdorp, D. et al. Colony collapse disorder: A descriptive study. PLoS ONE 4, e6481–e6481 (2009).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 76.

    Simmons, W. R. & Angelini, D. R. Chronic exposure to a neonicotinoid increases expression of antimicrobial peptide genes in the bumblebee Bombus impatiens. Sci. Rep. 7, 44773 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Muller, C. B. & Schmid-Hempel, P. Variation in life-history pattern in relation to worker mortality in the bumble-bee, Bombus lucorum. Funct. Ecol. 6, 48–56 (1992).

    Article  Google Scholar 

  • 78.

    Hijmans, R. J. & van Etten, J. Raster: Geographic analysis and modeling with raster data. R package version 2.0-12. http://CRAN.R-project.org/package=raster (2012).

  • 79.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/index.html (2019).

  • 80.

    Knight, M. E. et al. Bumblebee nest density and the scale of available forage in arable landscapes. Insect Conserv. Diver. 2, 116–124 (2009).

    Article  Google Scholar 

  • 81.

    Darvill, B., Knight, M. E. & Goulson, D. Use of genetic markers to quantify bumblebee foraging range and nest density. Oikos 107, 471–478 (2004).

    Article  Google Scholar 

  • 82.

    Desjardins, È. C. & De Oliveira, D. Commercial bumble bee Bombus impatiens (Hymenoptera: Apidae) as a pollinator in lowbush blueberry (Ericale: Ericaceae) fields. J. Econ. Entomol. 99, 443–449 (2006).

    PubMed  Article  Google Scholar 

  • 83.

    Natural Capital Project. InVEST: Crop Pollination Model. Version 3.1.0. http://naturalcapitalproject.org/models/crop_pollination.html (2014).

  • 84.

    Kammerer, M. A., Biddinger, D. J., Joshi, N. K., Rajotte, E. G. & Mortensen, D. A. Modeling local spatial patterns of wild bee diversity in Pennsylvania apple orchards. Landsc. Ecol. 31, 2459–2469 (2016).

    Article  Google Scholar 

  • 85.

    Johnson, D. M. & Mueller, R. The 2009 cropland data layer. Photogramm. Eng. Remote. Sens. 76, 1201–1205 (2010).

    Google Scholar 

  • 86.

    PRISM Climate Group. PRISM Gridded Climate Data. Oregon State University, Corvallis Oregon, USA. http://prism.oregonstate.edu (2019).

  • 87.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference—A Practical Information-Theoretic Approach (Springer, New York, 2002).

    Google Scholar 

  • 88.

    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 89.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009).

    Google Scholar 

  • 90.

    Sokal, R. R. & Rohlf, F. J. The Principles and Practice of Statistics in Biological Research (W.H Freeman and Company, New York, 1969).

    Google Scholar 


  • Source: Ecology - nature.com

    To boost emissions reductions from electric vehicles, know when to charge

    Discovery allows early detection of shade avoidance syndrome