in

Carbon and nitrogen cycling in Yedoma permafrost controlled by microbial functional limitations

  • 1.

    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Google Scholar 

  • 2.

    Harden, J. W. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 39, L15704 (2012).

    Google Scholar 

  • 3.

    Schädel, C. et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob. Change Biol. 20, 641–652 (2014).

    Google Scholar 

  • 4.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Google Scholar 

  • 5.

    Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philos. Trans. R. Soc. A 373, 20140423 (2015).

    Google Scholar 

  • 6.

    Nannipieri, P. et al. Microbial diversity and soil functions. Eur. J. Soil Sci. 68, 12–26 (2003).

    Google Scholar 

  • 7.

    Harding, T., Jungblut, A. D., Lovejoy, C. & Vincent, W. F. Microbes in High Arctic snow and implications for the cold biosphere. Appl. Environ. Microbiol. 77, 3234–3243 (2011).

    Google Scholar 

  • 8.

    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    Google Scholar 

  • 9.

    Bier, R. L. et al. Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol. Ecol. 91, fiv113 (2015).

    Google Scholar 

  • 10.

    Nunan, N., Leloup, J., Ruamps, L. S., Pouteau, V. & Chenu, C. Effects of habitat constraints on soil microbial community function. Sci. Rep. 7, 4280 (2017).

    Google Scholar 

  • 11.

    Graham, E. B. et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front. Microbiol. 7, 214 (2016).

    Google Scholar 

  • 12.

    Schimel, J. in Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences (eds Chapin, F. S. & Körner, C.) 239–254 (Springer, 1995).

  • 13.

    Schimel, J. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348 (2012).

    Google Scholar 

  • 14.

    Bottos, E. M. et al. Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiol. Ecol. 94, fiy110 (2018).

    Google Scholar 

  • 15.

    Jansson, J. K. & Tas, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425 (2014).

    Google Scholar 

  • 16.

    Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11, 2305–2318 (2017).

    Google Scholar 

  • 17.

    Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).

    Google Scholar 

  • 18.

    Monteux, S. et al. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration. ISME J. 12, 2129–2141 (2018).

    Google Scholar 

  • 19.

    Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105 (2019).

    Google Scholar 

  • 20.

    Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. USA 109, 21390–21395 (2012).

    Google Scholar 

  • 21.

    Sanders, T., Fiencke, C., Hüpeden, J., Pfeiffer, E. M. & Spieck, E. Cold adapted Nitrosospira sp.: a potential crucial contributor of ammonia oxidation in cryosols of permafrost-affected landscapes in Northeast Siberia. Microorganisms 7, 699 (2019).

    Google Scholar 

  • 22.

    Hill, K. A. et al. Processing of atmospheric nitrogen by clouds above a forest environment. J. Geophys. Res. Atmos. 112, D11301 (2007).

    Google Scholar 

  • 23.

    Knoblauch, C., Beer, C., Sosnin, A., Wagner, D. & Pfeiffer, E.-M. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob. Change Biol. 19, 1160–1172 (2013).

    Google Scholar 

  • 24.

    Wild, B. et al. Plant-derived compounds stimulate the decomposition of organic matter in Arctic permafrost soils. Sci. Rep. 6, 25607 (2016).

    Google Scholar 

  • 25.

    Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth-Sci. Rev. 172, 75–86 (2017).

    Google Scholar 

  • 26.

    Wertz, S. et al. Maintenance of soil functioning following erosion of microbial diversity. Environ. Microbiol. 8, 2162–2169 (2006).

    Google Scholar 

  • 27.

    Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).

    Google Scholar 

  • 28.

    Rillig, M. C. et al. Interchange of entire communities: microbial community coalescence. Trends Ecol. Evol. 30, 470–476 (2015).

    Google Scholar 

  • 29.

    Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).

    Google Scholar 

  • 30.

    Keuper, F. et al. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Change Biol. 18, 1998–2007 (2012).

    Google Scholar 

  • 31.

    Elberling, B., Christiansen, H. H. & Hansen, B. U. High nitrous oxide production from thawing permafrost. Nat. Geosci. 3, 332–335 (2010).

    Google Scholar 

  • 32.

    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).

    Google Scholar 

  • 33.

    Gittel, A. et al. Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J. 8, 841–853 (2014).

    Google Scholar 

  • 34.

    Weiss, N. et al. Thermokarst dynamics and soil organic matter characteristics controlling initial carbon release from permafrost soils in the Siberian Yedoma region. Sediment. Geol. 340, 38–48 (2016).

    Google Scholar 

  • 35.

    Inglese, C. N. et al. Examination of soil microbial communities after permafrost thaw subsequent to an active layer detachment in the High Arctic. Arct. Antarct. Alp. Res. 49, 455–472 (2017).

    Google Scholar 

  • 36.

    Wild, B. et al. Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in Western Siberia. Glob. Biogeochem. Cycles 29, 567–582 (2015).

    Google Scholar 

  • 37.

    Voigt, C. et al. Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. Proc. Natl Acad. Sci. USA 114, 6238–6243 (2017).

    Google Scholar 

  • 38.

    Wrage-Mönnig, N. et al. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol. Biochem. 123, A3–A16 (2018).

    Google Scholar 

  • 39.

    Siljanen, H. M. P. et al. Archaeal nitrification is a key driver of high nitrous oxide emissions from Arctic peatlands. Soil Biol. Biochem. 137, 107539 (2019).

    Google Scholar 

  • 40.

    Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 1, 420–434 (2020).

    Google Scholar 

  • 41.

    Keuper, F. et al. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Glob. Change Biol. 23, 4257–4266 (2017).

    Google Scholar 

  • 42.

    Liu, X.-Y. et al. Nitrate is an important nitrogen source for Arctic tundra plants. Proc. Natl Acad. Sci. USA 115, 3398–3403 (2018).

    Google Scholar 

  • 43.

    Myrstener, M. et al. Persistent nitrogen limitation of stream biofilm communities along climate gradients in the Arctic. Glob. Change Biol. 24, 3680–3691 (2018).

    Google Scholar 

  • 44.

    Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E.-M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 8, 309–312 (2018).

    Google Scholar 

  • 45.

    Holm, S. et al. Methanogenic response to long-term permafrost thaw is determined by paleoenvironment. FEMS Microbiol. Ecol. 96, fiaa021 (2020).

    Google Scholar 

  • 46.

    Douglas, T. A. et al. Biogeochemical and geocryological characteristics of wedge and thermokarst-cave ice in the CRREL permafrost tunnel, Alaska. Permafr. Periglac. Process. 22, 120–128 (2011).

    Google Scholar 

  • 47.

    Long, A. & Péwé, T. L. Radiocarbon dating by high-sensitivity liquid scintillation counting of wood from the Fox permafrost tunnel near Fairbanks, Alaska. Permafr. Periglac. Process. 7, 281–285 (1996).

    Google Scholar 

  • 48.

    Hamilton, T. D., Craig, J. L. & Sellmann, P. V. The Fox permafrost tunnel: a late Quaternary geologic record in central Alaska. GSA Bull. 100, 948–969 (1988).

    Google Scholar 

  • 49.

    Shur, Y., French, H. M., Bray, M. T. & Anderson, D. A. Syngenetic permafrost growth: cryostratigraphic observations from the CRREL tunnel near Fairbanks, Alaska. Permafr. Periglac. Process. 15, 339–347 (2004).

    Google Scholar 

  • 50.

    Howard, M. M., Bell, T. H. & Kao-Kniffin, J. Soil microbiome transfer method affects microbiome composition, including dominant microorganisms, in a novel environment. FEMS Microbiol. Lett. 364, fnx092 (2017).

    Google Scholar 

  • 51.

    Patra, A. K. et al. Effects of grazing on microbial functional groups involved in soil N dynamics. Ecol. Monogr. 75, 65–80 (2005).

    Google Scholar 

  • 52.

    Fontaine, S. et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol. Biochem. 43, 86–96 (2011).

    Google Scholar 

  • 53.

    Elberling, B. et al. Long-term CO2 production following permafrost thaw. Nat. Clim. Change 3, 890–894 (2013).

    Google Scholar 

  • 54.

    Walz, J., Knoblauch, C., Böhme, L. & Pfeiffer, E.-M. Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils—impact of oxygen availability, freezing and thawing, temperature, and labile organic matter. Soil Biol. Biochem. 110, 34–43 (2017).

    Google Scholar 

  • 55.

    Weedon, J. T. et al. Temperature sensitivity of peatland C and N cycling: does substrate supply play a role? Soil Biol. Biochem. 61, 109–120 (2013).

    Google Scholar 

  • 56.

    Ping, C. L. Soil temperature profiles of two Alaskan soils. Soil Sci. Soc. Am. J. 51, 1010–1018 (1987).

    Google Scholar 

  • 57.

    D’Amico, S. et al. Psychrophilic microorganisms: challenges for life. EMBO Rep. 7, 385–389 (2006).

    Google Scholar 

  • 58.

    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).

    Google Scholar 

  • 59.

    Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation–extraction—an automated procedure. Soil Biol. Biochem. 22, 1167–1169 (1990).

    Google Scholar 

  • 60.

    Rotthauwe, J. H., Witzel, K. P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).

    Google Scholar 

  • 61.

    Tourna, M., Freitag, T. E., Nicol, G. W. & Prosser, J. I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10, 1357–1364 (2008).

    Google Scholar 

  • 62.

    Fowler, S. J., Palomo, A., Dechesne, A., Mines, P. D. & Smets, B. F. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ. Microbiol. 20, 1002–1015 (2018).

    Google Scholar 

  • 63.

    Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1508 (2017).

    Google Scholar 

  • 64.

    Muyzer, G., Waal, E. Cde & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).

    Google Scholar 

  • 65.

    Bartram, A. K., Lynch, M. D. J., Stearns, J. C., Moreno-Hagelsieb, G. & Neufeld, J. D. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl. Environ. Microbiol. 77, 3846–3852 (2011).

    Google Scholar 

  • 66.

    Smith, D. P. & Peay, K. G. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE 9, e90234 (2014).

    Google Scholar 

  • 67.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    Google Scholar 

  • 68.

    Morgan, M. et al. ShortRead: a Bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25, 2607–2608 (2009).

    Google Scholar 

  • 69.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    Google Scholar 

  • 70.

    Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504 (2011).

    Google Scholar 

  • 71.

    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).

    Google Scholar 

  • 72.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Google Scholar 

  • 73.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Google Scholar 

  • 74.

    Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010).

    Google Scholar 

  • 75.

    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    Google Scholar 

  • 76.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Google Scholar 

  • 77.

    Lagkouvardos, I., Fischer, S., Kumar, N. & Clavel, T. Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons. PeerJ 5, e2836 (2017).

    Google Scholar 

  • 78.

    White, D. C., Davis, W. M., Nickels, J. S., King, J. D. & Bobbie, R. J. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40, 51–62 (1979).

    Google Scholar 

  • 79.

    Olsson, P. A., Bååth, E., Jakobsen, I. & Söderström, B. The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol. Res. 99, 623–629 (1995).

    Google Scholar 

  • 80.

    Ruess, L. & Chamberlain, P. M. The fat that matters: soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol. Biochem. 42, 1898–1910 (2010).

    Google Scholar 

  • 81.

    Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol. Fertil. Soils 29, 111–129 (1999).

    Google Scholar 

  • 82.

    Frostegård, A. & Bååth, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22, 59–65 (1996).

    Google Scholar 

  • 83.

    Lenth, R. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).

    Google Scholar 

  • 84.

    Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).

    Google Scholar 

  • 85.

    Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).

    Google Scholar 

  • 86.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Google Scholar 

  • 87.

    McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 10, e1003531 (2014).

    Google Scholar 

  • 88.

    Pinto, A. J. et al. Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system. mSphere 1, e00054-15 (2016).

    Google Scholar 

  • 89.

    Kozlowski, J. A., Kits, K. D. & Stein, L. Y. Comparison of nitrogen oxide metabolism among diverse ammonia-oxidizing bacteria. Front. Microbiol. 7, 1090 (2016).

    Google Scholar 

  • 90.

    Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).

    Google Scholar 

  • 91.

    Kuhn, M. caret: Classification and Regression Training v.6.0-86 (2020); https://CRAN.R-project.org/package=caret

  • 92.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Google Scholar 

  • 93.

    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn (Springer, 2009).

  • 94.

    Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. VSURF: an R package for variable selection using random forests. R J. 7, 19–33 (2015).

    Google Scholar 

  • 95.

    R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).


  • Source: Ecology - nature.com

    Continuous moulting by Antarctic krill drives major pulses of carbon export in the north Scotia Sea, Southern Ocean

    An escape route for seafloor methane