in

Carbon isotope evidence for large methane emissions to the Proterozoic atmosphere

  • 1.

    Kasting, J. What caused the rise of atmospheric O2?. Chem. Geol. 362, 13–25 (2013).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Des Marais, D. J. Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic Eon. Org. Geochem. 27(5–6), 185–193 (1997).

    CAS  Article  Google Scholar 

  • 3.

    Karhu, J. A. & Holland, H. D. Carbon isotopes and the rise of atmospheric oxygen. Geology 24(10), 867–870 (1996).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Schidlowski, M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res. 106(1–2), 117–134 (2001).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Aharon, P. Redox stratification and anoxia of the early Precambrian oceans: implications for carbon isotope excursions and oxidation events. Precambrian Res. 137, 207–222 (2005).

    CAS  Google Scholar 

  • 6.

    Krissansen-Totton, J., Buick, R. & Catling, D. C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315(4), 275–316 (2015).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Martin, A. P., Condon, D. J., Prave, A. R. & Lepland, A. A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi-Jatuli Event). Earth Sci. Rev. 127, 242–261 (2013).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Bekker, A. et al. Fractionation between inorganic and organic carbon during the Lomagundi (2.22–2.1 Ga) carbon isotope excursion. Earth Planet. Sci. Lett. 271(1–4), 278–291 (2008).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Maheshwari, A. et al. Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: a review of occurrences in Brazil, India, and Uruguay. Precambrian Res. 182(4), 274–299 (2010).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Melezhik, V. A., Huhma, H., Condon, D. J., Fallick, A. E. & Whitehouse, M. J. Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology 35(7), 655–658 (2007).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Frauenstein, F., Veizer, J., Beukes, N., Van Niekerk, H. S. & Coetzee, L. L. Transvaal supergroup carbonates: implications for paleoproterozoic δ18O and δ13C records. Precambr. Res. 175, 149–160 (2009).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. B 361, 931–950 (2006).

    CAS  Article  Google Scholar 

  • 13.

    Frimmel, H. E. On the reliability of stable carbon isotopes for Neoproterozoic chemostratigraphic correlation. Precambrian Res. 182, 239–253 (2010).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Shields, G. A., Brasier, M. D., Stille, P. & Dorjnamjaa, D. I. Factors contributing to high δ13C values in Cryogenian limestones of western Mongolia. Earth Planet. Sci. Lett. 196(3–4), 99–111 (2002).

    ADS  CAS  Article  Google Scholar 

  • 15.

    De PaulaSantos, G. M., Caetano-filho, S., Babinski, M. & Enzweiler, J. Rare elements of carbonate rocks from the Bambui Group, southern Sao Francisco Basin, Brasil, and their significance as paleoenvironmental proxies. Precambrian Res. 305, 327–340 (2017).

    Article  CAS  Google Scholar 

  • 16.

    Klaebe, R. M., Kennedy, M. J., Jarrett, A. J. M. & Brocks, J. J. Local paleoenvironmental controls on the carbon-isotope record defining the Bitter Springs Anomaly. Geobiology 15(1), 65–80 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Melezhik, V. A., Fallick, A. E., Medvedev, P. V. & Makarikhin, V. V. Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-red beds’ association in a global context: a case for the world-wide signal enhanced by a local environment. Earth-Sci. Rev. 48(1–2), 71–120 (1999).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Blättler, C. L. et al. Two-billion-year-old evaporites capture Earth’s great oxidation. Science 360(6386), 320–323 (2018).

    PubMed  Article  CAS  Google Scholar 

  • 19.

    Hodgskiss, M. S., Crockford, P. W., Peng, Y., Wing, B. A. & Horner, T. J. A productivity collapse to end Earth’s Great Oxidation. Proc. Natl. Acad. Sci. 116(35), 17207–17212 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 20.

    Partin, C. A. et al. Uranium in iron formations and the rise of atmospheric oxygen. Chem. Geol. 362, 82–90 (2013).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Kanzaki, Y. & Murakami, T. Estimates of atmospheric O2 in the Paleoproterozoic from paleosols. Geochim. Cosmochim. Acta 174, 263–290 (2016).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Sheen, A. I. et al. A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia. Geochim. Cosmochim. Acta 227, 75–95 (2018).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Galili, N. et al. The geologic history of seawater oxygen isotopes from marine iron oxides. Science 365(6452), 469–473 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Knauth, L. P. Temperature and salinity of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219, 53–69 (2005).

    Article  Google Scholar 

  • 25.

    Tartèse, R., Chaussidon, M., Gurenko, A., Delarue, F. & Robert, F. Warm Archaean oceans reconstructed from oxygen isotope composition of early-life remnants. Geochem. Perspect. Lett. 3, 55–65 (2017).

    Article  Google Scholar 

  • 26.

    Kasting, J. Methane and climate during the Precambrian era. Precambr. Res. 137, 119–129 (2005).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Kasting, J. Early Earth: faint young Sun redux. Nature 464(7289), 687 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 28.

    Zinke, J., Reijmer, J. J. & Thomassin, B. Systems tracts sedimentology in the lagoon of Mayotte associated with the Holocene transgression. Sed. Geol. 160, 57–79 (2003).

    CAS  Article  Google Scholar 

  • 29.

    Feuillet, N. MAYOBS1 Cruise, RV Marion Dufresne (Institut de Physique du Globe de Paris, 2019), https://doi.org/https://doi.org/10.17600/18001217

  • 30.

    Leboulanger, C. et al. Microbial diversity and cyanobacterial production in Dziani Dzaha crater lake, a unique tropical thalassohaline environment. PLoS ONE 12, e0168879 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 31.

    Milesi, V. et al. Formation of Mg-smectite during lacustrine carbonates early diagenesis: study case of the volcanic crater lake Dziani Dzaha (Mayotte – Indian Ocean). Sedimentology (2018).

  • 32.

    Gérard, E. et al. Key role of alphaproteobacteria and cyanobacteria in the formation of stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean). Front. Microbiol. 9, 1–20 (2018).

    Article  Google Scholar 

  • 33.

    Cellamare, M. et al. Characterization of phototrophic microorganisms and description of new cyanobacteria isolated from the saline-alkaline crater-lake Dziani Dzaha (Mayotte, Indian Ocean). FEMS Microbiol. Ecol. 94(8), 1–25 (2018).

    Article  CAS  Google Scholar 

  • 34.

    Hugoni, M. et al. Spatiotemporal variations in microbial diversity across the three domains of life in a tropical thalassohaline lake (Dziani Dzaha, Mayotte Island). Molecular Ecology (2018).

  • 35.

    Marty, B., Avice, G., Bekaert, D. V. & Broadley, M. W. Salinity of the Archaean oceans from analysis of fluid inclusions in quartz. Compte Rendus Geosci. 350(4), 154–163 (2018).

    ADS  Article  Google Scholar 

  • 36.

    Hay, W. W. et al. Evaporites and the salinity of the ocean during the Phanerozoic: implications for climate ocean circulation and life. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240(1–2), 3–46 (2006).

    Article  Google Scholar 

  • 37.

    Marin-Carbonne, J., Chaussidon, M. & Robert, F. Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: Implications for paleo-temperature reconstructions. Geochim. Cosmochim. Acta 92, 129–147 (2012).

    ADS  CAS  Article  Google Scholar 

  • 38.

    Marin-Carbonne, J., Robert, F. & Chaussidon, M. The silicon and oxygen isotope compositions of Precambrian cherts: a record of oceanic paleo-temperatures?. Precambr. Res. 247, 223–234 (2014).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Halevy, I. & Bachan, A. The geologic history of seawater pH. Science 355, 1069–1071 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560(7719), 471–475 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 41.

    Krissansen-Totton, J., Arney, G. N. & Catling, D. C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proc. Natl. Acad. Sci. 115(16), 4105–4110 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 42.

    Stüeken, E. E., Buick, R. & Schauer, A. J. Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet. Sci. Lett. 411, 1–10 (2015).

    ADS  Article  CAS  Google Scholar 

  • 43.

    Bartley, J. K. & Kah, L. C. Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology 32(2), 129–132 (2004).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Halevy, I., Alesker, M., Schuster, E. M., Popovitz-Biro, R. & Feldman, Y. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nat. Geosci. 10(2), 135–139 (2017).

    ADS  CAS  Article  Google Scholar 

  • 45.

    Fakhraee, M., Hancisse, O., Canfield, D. E., Crowe, S. A. & Katsev, S. Proterozoic seawater sulfate scarcity and the evolution of ocean-atmosphere chemistry. Nat. Geosci. 12(5), 375–380 (2019).

    ADS  CAS  Article  Google Scholar 

  • 46.

    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7(2), 107–112 (2011).

    CAS  Article  Google Scholar 

  • 47.

    Reinhard, C. T., Lalonde, S. V. & Lyons, T. W. Oxidative sulfide dissolution on the early Earth. Chem. Geol. 362, 44–55 (2013).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth Sci. Rev. 110(1–4), 25–57 (2012).

    ADS  Google Scholar 

  • 49.

    Planavsky, N. J., Bekker, A., Hofmann, A., Owens, J. D. & Lyons, T. W. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proc. Natl. Acad. Sci. 109(45), 18300–18305 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Knoll, A. H., Bergmann, K. D. & Strauss, J. V. Life: the first two billion years. Philos. Trans. R. Soc. B Biol. Sci. 371, 1–13 (2016).

    Article  Google Scholar 

  • 51.

    Butterfield, N. J. Early evolution of the Eukaryota. Palaeontology 58, 5–17 (2014).

    Article  Google Scholar 

  • 52.

    Butterfield, N. J. Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7(1), 1–7 (2009).

    MathSciNet  CAS  PubMed  Article  Google Scholar 

  • 53.

    Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A. & Butterfield, N. J. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat. Geosci. 7(4), 257 (2014).

    ADS  CAS  Article  Google Scholar 

  • 54.

    Peters, S. E., Husson, J. M. & Wilcots, J. The rise and fall of stromatolites in shallow marine environments. Geology 45(6), 487–490 (2017).

    ADS  Article  Google Scholar 

  • 55.

    Gu, B., Schelske, C. L. & Hodell, D. A. Extreme 13C enrichments in a shallow hypereutrophic lake: implications for carbon cycling. Limnol. Oceanogr. 49, 1152–1159 (2004).

    ADS  CAS  Article  Google Scholar 

  • 56.

    Zhu, Z., Chen, J. A. & Zeng, Y. Abnormal positive δ13C values of carbonates in lake Caohai, southwest China, and their possible relation to lower temperature. Quatern. Int. 288, 85–93 (2013).

    Article  Google Scholar 

  • 57.

    Birgel, D. et al. Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa Salgada, Brazil: a modern analogue for Palaeo- /Neoproterozoic stromatolites?. Geobiology 13, 245–266 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Valero-Garcés, B. L., Delgado-Huertas, A., Ratto, N. & Navas, A. Large 13C enrichment in primary carbonates from Andean Altiplano lakes, northwest Argentina. Earth Planet. Sci. Lett. 171(2), 253–266 (1999).

    ADS  Article  Google Scholar 

  • 59.

    Anoop, A. et al. Palaeoenvironmental implications of evaporative gaylussite crystals from Lonar Lake, central India. J. Quat. Sci. 28(4), 349–359 (2013).

    Article  Google Scholar 

  • 60.

    Talbot, M. R. & Kelts, K. Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi, Ghana. Geology 14(11), 912–916 (1996).

    ADS  Article  Google Scholar 

  • 61.

    Saba, V. S., Friedrichs, M. A., Antoine, D., Armstrong, R. A., Asanuma, I., Behrenfeld, M. J., Ciotti, A. M., Dowell, M., Hoepffner, N., Hyde, K. J. & Ishizaka, J. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences. 2011, 489-503

  • 62.

    Lambrecht, N. et al. Biogeochemical and physical controls on methane fluxes from two ferruginous meromictic lakes. Geobiology 18(1), 54–69 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem. Cycles 18(4), (2004)

  • 64.

    Bižić, M. et al. Aquatic and terrestrial cyanobacteria produce methane. Sci. Adv. 6(3), eaax5343 (2020).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Caetano-Filho, S., Sansjofre, P., Ader, M., Paula-Santos, G.M., Guacaneme, C., Babinski, M., Bedoya-Rueda, C., Kuchenbecker, M., Reis, H. L. & Trindade R. I. A large epeiric methanogenic Bambuì sea in the core of Gondwana supercontinent? Geosci. Front. (2020)

  • 66.

    Karl, D. M. & Knauer, G. A. Microbial production and particle flux in the upper 350 m of the Black Sea. Deep Sea Res. Part A Oceanogr. Res. Papers 38, S921–S942 (1991).

    ADS  Article  Google Scholar 

  • 67.

    Katsev, S. & Crowe, S. A. Organic carbon burial efficiencies in sediments: the power law of mineralization revisited. Geology 43(7), 607–610 (2015).

    ADS  CAS  Article  Google Scholar 

  • 68.

    Cowie, G. L., Hedges, J. I., Prahl, F. G. & De Lange, G. J. Elemental and major biochemical changes across an oxidation front in a relict turbidite: an oxygen effect. Geochim. Cosmochim. Acta 59(1), 33–46 (1995).

    ADS  CAS  Article  Google Scholar 

  • 69.

    Logan, G. A., Hayes, J. M., Hieshima, G. B. & Summons, R. E. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376(6535), 53–56 (1995).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 70.

    Kuntz, L. B., Laakso, T. A., Schrag, D. P. & Crowe, S. A. Modeling the carbon cycle in Lake Matano. Geobiology 13(5), 454–461 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 71.

    Laakso, T. A. & Schrag, D. P. Methane in the Precambrian atmosphere. Earth Planet. Sci. Lett. 522, 48–54 (2019).

    ADS  CAS  Article  Google Scholar 

  • 72.

    Lambert, M. & Fréchette, J. L. Analytical techniques for measuring fluxes of CO2 and CH4 from hydroelectric reservoirs and natural water bodies. In Greenhouse Gas Emissions—Fluxes and Processes, Springer, Berlin, Heidelberg, 37–60 (2005).

  • 73.

    Abril, G. et al. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochem. Cycles 19(4), 1–16 (2005).

    Article  CAS  Google Scholar 

  • 74.

    Assayag, N., Rivé, K., Ader, M., Jézéquel, D. & Agrinier, P. Improved method for isotopic and quantitative analysis of dissolved inorganic carbon in natural water samples. Rapid Commun. Mass Spectrom. 20(15), 2243–2251 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 75.

    Lebeau, O., Busigny, V., Chaduteau, C. & Ader, M. Organic matter removal for the analysis of carbon and oxygen isotope compositions of siderite. Chem. Geol. 372, 54–61 (2014).

    ADS  CAS  Article  Google Scholar 

  • 76.

    Galès, A., Triplet, S., Geoffroy, T., Roques, C., Carré, C., Le Floc’h, E., Lanfranchi, M., Simier, M., d’Orbcastel, E. R., Przybyla, C. & Fouilland, E. Control of the pH for marine microalgae polycultures: A key point of CO2 fixation improvement in intensive cultures. J. CO2 Util. 38, 187–193 (2020)

  • 77.

    Falkowski, P. G. & Raven, J. A. Aquatic Photosynthesis (Blackwell Science, Oxford, 1997).

    Google Scholar 

  • 78.

    Silsbe, G. M. & Malkin, S. Y. Package “phytotools”: Phytoplankton Production Tools. CRAN library repository. https://cran.r-project.org/package=phytotools (2015).

  • 79.

    Eilers, P. H. C. & Peeters, J. C. H. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model. 42(3–4), 199–215 (1988).

    Article  Google Scholar 

  • 80.

    Kirk, J. T. O. Light and Photosynthesis in Aquatic Environments 3rd edn. (Cambridge University Press, UK, 2010).

    Google Scholar 

  • 81.

    Berner, R. A. Early Diagenesis: A Theoretical Approach (Princeton University Press, Princeton, 1980).

    Google Scholar 

  • 82.

    Milesi, V. P. et al. Early diagenesis of lacustrine carbonates in volcanic settings: the role of magmatic CO2 (Lake Dziani Dzaha, Mayotte, Indian Ocean). ACS Earth Space Chem. 4(3), 363–378 (2020).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Solve Challenge Finals go virtual for 2020

    Universities should lead the way on climate action, MIT panelists say