in

Changes in coupled carbon‒nitrogen dynamics in a tundra ecosystem predate post-1950 regional warming

  • 1.

    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Article  Google Scholar 

  • 2.

    Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, https://doi.org/10.1038/ncomms13043 (2016).

  • 3.

    McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).

    Article  Google Scholar 

  • 4.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    CAS  Article  Google Scholar 

  • 5.

    Chapin, D. M. & Bledsoe, C. S. Nitrogen fixation in Arctic plant communitiesin (eds. Chapin, F. S., Jefferies, R. L., Reynolds, J. F., Shaver, G. R. & Svoboda, J.) Arctic Ecossytems in a changing cliamte: an ecophysiological perspective 1992.

  • 6.

    Chapin, F. S. III. et al. The changing global carbon cycle: linking plant-soil carbon dynamics to global consequences. J. Ecol. 97, 840–850 (2009).

    CAS  Article  Google Scholar 

  • 7.

    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).

    Article  Google Scholar 

  • 8.

    Wookey, P. A. et al. Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob. Change Biol. 15, 1153–1172 (2009).

    Article  Google Scholar 

  • 9.

    Marin-Spiotta, E. et al. Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry 117, 279–297 (2014).

    CAS  Article  Google Scholar 

  • 10.

    Tape, K. D., Hallinger, M., Welker, J. M. & Ruess, R. W. Landscape heterogeneity of shrub expansion in arctic Alaska. Ecosystems 15, 711–724 (2012).

    CAS  Article  Google Scholar 

  • 11.

    Myrstener, M. et al. Persistent nitrogen limitation of stream biofilm communities along climate gradients in the Arctic. Glob Change Biol. 24, 3680–3691 (2018).

    Article  Google Scholar 

  • 12.

    Salmon, V. G. et al. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Glob. Change Biol. 22, 1927–1941 (2016).

    Article  Google Scholar 

  • 13.

    Kling, G. W., Kipphut, G. W. & Miller, M. C. Arctic lakes and streams as gas conduits to the atmosphere-implications for tundra carbon budgets. Science 251, 298–301 (1991).

    CAS  Article  Google Scholar 

  • 14.

    Kling, G. W., Kipphut, G. W., Miller, M. M. & O’Brien, W. J. Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshwater Biol. 43, 477–497 (2000).

    Article  Google Scholar 

  • 15.

    DelSontro, T., Beaulieu, J. J. & Downing, J. A. Greenhouse gas emissions from lakes and impoundments: upscaling in the face of global change. Limnol. Oceanogr. Lett. 3, 64–75 (2018).

    CAS  Article  Google Scholar 

  • 16.

    Bring, A. et al. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. J. Geophys. Res. Biogeosci. 121, 621–649 (2016).

    Article  Google Scholar 

  • 17.

    Tank, S. E. et al. Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal. Global Biogeochem. Cycles 26, https://doi.org/10.1029/2012gb004299 (2012).

  • 18.

    Kling, G. W., Kipphut, G. W. & Miller, M. C. The flux of CO2 and CH4 from lakes and rivers in arctic Alaska. Hydrobiologia 240, 23–36 (1992).

    CAS  Article  Google Scholar 

  • 19.

    Cory, R. M., Ward, C. P., Crump, B. C. & Kling, G. W. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345, 925–928 (2014).

    CAS  Article  Google Scholar 

  • 20.

    Kortelainen, P. et al. Carbon evasion/accumulation ratio in boreal lakes is linked to nitrogen. Global Biogeochem. Cycles 27, 363–374 (2013).

    CAS  Article  Google Scholar 

  • 21.

    Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).

    CAS  Article  Google Scholar 

  • 22.

    Bowden, W. B. et al. Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: Potential impacts on headwater stream ecosystems. J. Geophys. Res. Biogeosci. 113, https://doi.org/10.1029/2007jg000470 (2008).

  • 23.

    Curtis, J., Wendler, G., Stone, R. & Dutton, E. Precipitation decrease in the western arctic, with special emphasis on Barrow and Barter Island, Alaska. Int. J. Climatol. 18, 1687–1707 (1998).

    Article  Google Scholar 

  • 24.

    Yano, Y., Shaver, G. R., Giblin, A. E., Rastetter, E. B. & Nadelhoffer, K. J. Nitrogen dynamics in a small arctic watershed: retention and downhill movement of N-15. Ecol. Monogr. 80, 331–351 (2010).

    Article  Google Scholar 

  • 25.

    Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).

    Article  Google Scholar 

  • 26.

    Stackpoole, S. M. et al. Inland waters and their role in the carbon cycle of Alaska. Ecol. Appl. 27, 1403–1420 (2017).

    Article  Google Scholar 

  • 27.

    Tank, S. E. et al. Landscape matters: Predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach. Permafr. Periglac. Process. 31, 358–370 (2020).

    Article  Google Scholar 

  • 28.

    Hobbie, J. E. & Kling, G. W. Alaska’s Changing Arctic: Ecological Consequences for Tundra, Streams, and Lakes. (Oxford University Press, 2014).

  • 29.

    Kaufman, D. S. et al. Recent warming reverses long-term Arctic cooling. Science 325, 1236–1239 (2009).

    CAS  Article  Google Scholar 

  • 30.

    Meyers, P. A. & Ishiwatari, R. Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Organ. Geochem. 20, 867–900 (1993).

    CAS  Article  Google Scholar 

  • 31.

    Vadeboncoeur, Y. et al. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnol. Oceanogr. 48, 1408–1418 (2003).

    Article  Google Scholar 

  • 32.

    Gettel, G. M., Giblin, A. E. & Howarth, R. W. Controls of benthic nitrogen fixation and primary production from nutrient enrichment of oligotrophic, Arctic lakes. Ecosystems 16, 1550–1564 (2013).

    CAS  Article  Google Scholar 

  • 33.

    Cornwell, J. C. & Banahan, S. A silicon budget for an alaskan arctic lake. Hydrobiologia 240, 37–44 (1992).

    CAS  Article  Google Scholar 

  • 34.

    France, R. L. C-13 enrichment in benthic compared to planktonic algae-foodweb implications. Mar. Ecol. Prog. Ser. 124, 307–312 (1995).

    Article  Google Scholar 

  • 35.

    Levine, M. A. & Whalen, S. C. Nutrient limitation of phytoplankton production in Alaskan Arctic foothill lakes. Hydrobiologia 455, 189–201 (2001).

    Article  Google Scholar 

  • 36.

    Hobbie, S. E., Schimel, J. P., Trumbore, S. E. & Randerson, J. R. Controls over carbon storage and turnover in high-latitude soils. Glob. Change Biol. 6, 196–210 (2000).

    Article  Google Scholar 

  • 37.

    Galman, V., Rydberg, J., de-Luna, S. S., Bindler, R. & Renberg, I. Carbon and nitrogen loss rates during aging of lake sediment: changes over 27 years studied in varved lake sediment. Limnol. Oceanogr. 53, 1076–1082 (2008).

    Article  Google Scholar 

  • 38.

    Fitzgerald, W. F. et al. Modern and historic atmospheric mercury fluxes in northern Alaska: Global sources and Arctic depletion. Environ. Sci. Technol. 39, 557–568 (2005).

    CAS  Article  Google Scholar 

  • 39.

    Holtgrieve, G. W. et al. A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the northern hemisphere. Science 334, 1545–1548 (2011).

    CAS  Article  Google Scholar 

  • 40.

    Hobbs, W. O. et al. Nitrogen deposition to lakes in national parks of the western Great Lakes region: Isotopic signatures, watershed retention, and algal shifts. Global Biogeochem. Cycles 30, 514–533 (2016).

    CAS  Article  Google Scholar 

  • 41.

    Anderson, N. J. et al. Regional variability in the atmospheric nitrogen deposition signal and its transfer to the sediment record in Greenland lakes. Limnol. Oceanogr. 63, 2250–2265 (2018).

    CAS  Article  Google Scholar 

  • 42.

    Brock, C. S., Leavitt, P. R., Schindler, D. E., Johnson, S. P. & Moore, J. W. Spatial variability of stable isotopes and fossil pigments in surface sediments of Alaskan coastal lakes: Constraints on quantitative estimates of past salmon abundance. Limnol. Oceanogr. 51, 1637–1647 (2006).

    CAS  Article  Google Scholar 

  • 43.

    Curtis, C. J. et al. Spatial variations in snowpack chemistry, isotopic composition of NO3- and nitrogen deposition from the ice sheet margin to the coast of western Greenland. Biogeosciences 15, 529–550 (2018).

    CAS  Article  Google Scholar 

  • 44.

    Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).

    CAS  Article  Google Scholar 

  • 45.

    Jones, V. J. et al. The influence of Holocene tree-line advance and retreat on an arctic lake ecosystem: a multi-proxy study from Kharinei Lake, North Eastern European Russia. J. Paleolimnol. 46, 123–137 (2011).

    Article  Google Scholar 

  • 46.

    Kittel, T. G. F., Baker, B. B., Higgins, J. V. & Haney, J. C. Climate vulnerability of ecosystems and landscapes on Alaska’s North Slope. Reg. Environ. Change 11, S249–S264 (2011).

    Article  Google Scholar 

  • 47.

    McKane, R. B. et al. Reconstruction and analysis of historical changes in carbon storage in arctic tundra. Ecology 78, 1188–1198 (1997).

    Article  Google Scholar 

  • 48.

    Leavitt, P. R. et al. Paleolimnological evidence of the effects on lakes of energy and mass transfer from climate and humans. Limnol. Oceanogr. 54, 2330–2348 (2009).

    CAS  Article  Google Scholar 

  • 49.

    Tye, A. M. & Heaton, T. H. E. Chemical and isotopic characteristics of weathering and nitrogen release in non-glacial drainage waters on Arctic tundra. Geochim. Cosmochim. Acta 71, 4188–4205 (2007).

    CAS  Article  Google Scholar 

  • 50.

    Hobbie, J. E. et al. Impact of global change on biogeochemistry and ecosystems of an arctic freshwater system. Polar Res. 18, 207–214 (1999).

    Article  Google Scholar 

  • 51.

    Whalen, S. C. & Cornwell, J. C. Nitrogen, phosphorus, and organic-carbon cycling in an Arctic lake. Can. J. Fish. Aquat. Sci. 42, 797–808 (1985).

    CAS  Article  Google Scholar 

  • 52.

    Mantua, N. J., Hare, S. R., Zhang, Y. & Wallace, J. M. Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997).

    Article  Google Scholar 

  • 53.

    Galloway, J. N. et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    CAS  Article  Google Scholar 

  • 54.

    Dean, W. E. Determination of carbonate and organic-matter in calcareous sediments and sedimentary-rocks by loss on ignition-comparison with other methods. J. Sediment. Petrol. 44, 242–248 (1974).

    CAS  Google Scholar 

  • 55.

    Appleby, P. G. In Tracking Environmental Change Using Lake Sediments Volume 1: Basin Analysis, Coring, and Chronological Techniques (eds. Last, W. M. & Smol, J. P.) 171–203 (Kluwer, 2001).

  • 56.

    Engstrom, D. R. & Rose, N. L. A whole-basin, mass-balance approach to paleolimnology. J. Paleolimnol. 49, 333–347 (2013).

    Article  Google Scholar 

  • 57.

    Dietz, R. D., Engstrom, D. R. & Anderson, N. J. Patterns and drivers of change in organic carbon burial across a diverse landscape: insights from 116 Minnesota lakes. Global Biogeochem. Cycles 29, 708–727 (2015).

    CAS  Article  Google Scholar 

  • 58.

    DeMaster, D. J. The supply and accumulation of silica in the marine environment. Geochim. Cosmochim. Acta 45, 1715–1732 (1981).

    CAS  Article  Google Scholar 

  • 59.

    Conley, D. J. & Schelske, C. L. In Tracking Environmental Change Using lake Sediments: Biological Methods and Indicators (eds. Smol, J. P., Birks, H. J. B. & Last, W. M.) 281–293 (Kluwer, 2001).

  • 60.

    Renberg, I. A procedure for preparing large sets of diatom slides from sediment cores. J. Paleolimnol. 4, 87–90 (1990).

    Article  Google Scholar 

  • 61.

    Savage, C., Leavitt, P. R. & Elmgren, R. Distribution and retention of effluent nitrogen in surface sediments of a coastal bay. Limnol. Oceanogr. 49, 1503–1511 (2004).

    CAS  Article  Google Scholar 

  • 62.

    Wood, S. N. Generalized Additive Models: An Introduction with R, 2nd edn. (Chapman and Hall/CRC, 2017).

  • 63.

    Wood, S. N. Thin-plate regression splines. J. R. Stat. Soc. (B) 65, 95–114 (2003).

    Article  Google Scholar 

  • 64.

    Simpson, G. L. Modelling palaeoecological time series using generalized additive models. Front. Ecol. Evol. 6, 149 (2018).

    Article  Google Scholar 

  • 65.

    Bai, J. & Perron, P. Computation and analysis of multiple structural change models. J Appl. Econ. 181, 1–22 (2003).

    Article  Google Scholar 

  • 66.

    R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org/ (2013).

  • 67.

    Zeileis, A., Leisch, F., Hornik, K. & Kleiber, C. strucchange: An R package for testing for structural change in linear regression models. J. Stat. Softw. 7, 1–38 (2002).

    Article  Google Scholar 

  • 68.

    Anderson, N. J., Engstrom, D. R., Leavitt, P. R., Flood, S. M. & Heathcote, A. J. Mendeley, https://doi.org/10.17632/xfmpvjmrby.1 (2020).

  • 69.

    The Alaska Climate Research Center. Climatological Data-Alaska’s Arctic, http://oldclimate.gi.alaska.edu/Climate/Location/TimeSeries/Data/brwT (2010).

  • 70.

    Hastings, M. G., Steig, E. J. & Sigman, D. M. Seasonal variations in N and O isotopes of nitrate in snow at Summit, Greenland: Implications for the study of nitrate in snow and ice cores. J. Geophys. Res. Atmos. 109, https://doi.org/10.1029/2004jd004991 (2004).

  • 71.

    Tseng, C.-M., Lamborg, C. H., Fitzgerald, W. F. & Engstrom, D. R. Cycling of dissolved elemental mercury in Arctic Alaskan lakes. Geochim. Cosmochim. Acta 68, 1173–1184 (2004).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems

    A sciaenid swim bladder with long skinny fingers produces sound with an unusual frequency spectrum