in

Changes in grassland management and linear infrastructures associated to the decline of an endangered bird population

  • 1.

    Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363 (1994).

    ADS  Google Scholar 

  • 2.

    Watkinson, A. R. & Ormerod, S. J. Grasslands, grazing and biodiversity: editors’ introduction. J. Appl. Ecol. 38, 233–237 (2001).

    Google Scholar 

  • 3.

    Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: a synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).

    Google Scholar 

  • 4.

    Dover, J. W., Spencer, S., Collins, S., Hadjigeorgiou, I. & Rescia, A. Grassland butterflies and low intensity farming in Europe. J. Insect Conserv. 15, 129–137 (2011).

    Google Scholar 

  • 5.

    Morelli, F. High nature value farmland increases taxonomic diversity, functional richness and evolutionary uniqueness of bird communities. Ecol. Indic. 90, 540–546 (2018).

    Google Scholar 

  • 6.

    Morelli, F., Benedetti, Y. & Tryjanowski, P. Introduction. In Birds as Useful Indicators of High Nature Value Farmlands (eds Morelli, F. & Tryjanowski, P.) 1–26 (Springer, Berlin, 2017). https://doi.org/10.1007/978-3-319-50284-7_1.

    Google Scholar 

  • 7.

    Sutcliffe, L. M. E. et al. Harnessing the biodiversity value of Central and Eastern European farmland. Divers. Distrib. 21, 722–730 (2015).

    Google Scholar 

  • 8.

    Donald, P. F., Green, R. E. & Heath, M. F. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 25–29 (2001).

    Google Scholar 

  • 9.

    Donald, P. F., Pisano, G., Rayment, M. D. & Pain, D. J. The Common Agricultural Policy, EU enlargement and the conservation of Europe’s farmland birds. Agric. Ecosyst. Environ. 89, 167–182 (2002).

    Google Scholar 

  • 10.

    Fragoso, R., Marques, C., Lucas, M. R., Martins, M. B. & Jorge, R. The economic effects of common agricultural policy on Mediterranean montado/dehesa ecosystem. J. Policy Model. 33, 311–327 (2011).

    Google Scholar 

  • 11.

    Ribeiro, P. F. et al. Modelling farming system dynamics in high nature value farmland under policy change. Agric. Ecosyst. Environ. 183, 138–144 (2014).

    Google Scholar 

  • 12.

    Suárez, F., Naveso, M. A. & De Juana, E. Farming in the drylands of Spain: birds of the pseudosteppes. In Farming and Birds in Europe. The common Agricultural Policy and its Implications for Bird Conservation (eds Pain, D. & Pienkowsky, M.) 297–330 (Academic Press, New York, 1997).

    Google Scholar 

  • 13.

    Hoogeveen, Y., Petersen, J. E., Balazs, K. & Higuero, I. High Nature Value Farmland: Characteristics, Trends and Policy Challenges. EEA Report. No 1/2004. European Environment Agency, Copenhagen, Denmark (2004).

  • 14.

    Moreira, F., Pinto, M. J., Henriques, I. & Marques, T. The importance of low-intensive farming systems for fauna, flora and habitats protected under the european “birds” and “habitats” directives: is agriculture essential for preserving biodiversity in the mediterranean region? In Trends in Biodiversity Research (ed. Burk, A. R.) 117–145 (Nova Science Publishers, Huappauge, 2005).

    Google Scholar 

  • 15.

    Lomba, A. et al. Mapping and monitoring high nature value farmlands: challenges in European landscapes. J. Environ. Manag. 143, 140–150 (2014).

    Google Scholar 

  • 16.

    Delgado, A. & Moreira, F. Bird assemblages of an Iberian cereal steppe. Agric. Ecosyst. Environ. 78, 65–76 (2000).

    Google Scholar 

  • 17.

    Ribeiro, P. F. et al. An applied farming systems approach to infer conservation-relevant agricultural practices for agri-environment policy design. Land Use Policy 58, 165–172 (2016).

    Google Scholar 

  • 18.

    Stoate, C. et al. Ecological impacts of early 21st century agricultural change in Europe—a review. J. Environ. Manag. 91, 22–46 (2009).

    CAS  Google Scholar 

  • 19.

    Faria, N., Morales, M. B. & Rabaça, J. E. Exploring nest destruction and bird mortality in mown Mediterranean dry grasslands: an increasing threat to grassland bird conservation. Eur. J. Wildl. Res. 62, 663–671 (2016).

    Google Scholar 

  • 20.

    Santana, J. et al. Using beta diversity to inform agricultural policies and conservation actions on Mediterranean farmland. J. Appl. Ecol. 54, 1825–1835 (2017).

    Google Scholar 

  • 21.

    Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14, 18–30 (2000).

    Google Scholar 

  • 22.

    Bernardino, J. et al. Bird collisions with power lines: state of the art and priority areas for research. Biol. Conserv. 222, 1–13 (2018).

    Google Scholar 

  • 23.

    Loss, S. R., Will, T. & Marra, P. P. Direct mortality of birds from anthropogenic causes. Annu. Rev. Ecol. Evol. Syst. 46, 99–120 (2015).

    Google Scholar 

  • 24.

    Hernández-Matías, A., Real, J., Parés, F. & Pradel, R. Electrocution threatens the viability of populations of the endangered Bonelli’s eagle (Aquila fasciata) in Southern Europe. Biol. Conserv. 191, 110–116 (2015).

    Google Scholar 

  • 25.

    Shaw, J. M., Reid, T. A., Schutgens, M., Jenkins, A. R. & Ryan, P. G. High power line collision mortality of threatened bustards at a regional scale in the Karoo, South Africa. Ibis (Lond. 1859) https://doi.org/10.1111/ibi.12553 (2017).

    Article  Google Scholar 

  • 26.

    Borda-de-Água, L., Grilo, C. & Pereira, H. M. Modeling the impact of road mortality on barn owl (Tyto alba) populations using age-structured models. Ecol. Model. 276, 29–37 (2014).

    Google Scholar 

  • 27.

    Reijnen, R., Foppen, R. & Meeuwsen, H. The effects of traffic on the density of breeding birds in Dutch agricultural grasslands. Biol. Conserv. 75, 255–260 (1996).

    Google Scholar 

  • 28.

    Mcnew, L. B., Hunt, L. M., Gregory, A. J., Wisely, S. M. & Sandercock, B. K. Effects of wind energy development on nesting ecology of greater prairie-chickens in fragmented grasslands. Conserv. Biol. 28, 1089–1099 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Wolfe, D. H., Patten, M. A., Shochat, E., Pruett, C. L. & Sherrod, S. K. Causes and patterns of mortality in lesser prairie-chickens Tympanuchus pallidicinctus and implications for management. Wildl. Biol. 13, 95–104 (2007).

    Google Scholar 

  • 30.

    Shaw, J. M., Jenkins, A. R., Smallie, J. J. & Ryan, P. G. Modelling power-line collision risk for the Blue Crane Anthropoides paradiseus in South Africa. Ibis (Lond. 1859) 152, 590–599 (2010).

    Google Scholar 

  • 31.

    Birdlife International. The IUCN Red List of Threatened Species 2018 (2018). www.iucnredlist.org. Accessed 2nd August 2019.

  • 32.

    Faria, N. Implications of Dry Grassland Management in the Ecology and Conservation of Grassland Birds in South Portugal (Universidad Autónoma de Madrid, Madrid, 2015).

    Google Scholar 

  • 33.

    Iñigo, A. & Barov, B. Action plan for the Little Bustard Tetrax tetrax in the European Union. Report. SEO| BirdLife and BirdLife International for the European Commission (2010).

  • 34.

    Morales, M. B., García, J. T. & Arroyo, B. Can landscape composition changes predict spatial and annual variation of little bustard male abundance?. Anim. Conserv. 8, 167–174 (2005).

    Google Scholar 

  • 35.

    Moreira, F. et al. Mosaic-level inference of the impact of land cover changes in agricultural landscapes on biodiversity: a case-study with a threatened grassland bird. PLoS ONE 7, e38876 (2012).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Silva, J. P., Palmeirim, J. M. & Moreira, F. Higher breeding densities of the threatened little bustard Tetrax tetrax occur in larger grassland fields: implications for conservation. Biol. Conserv. 143, 2553–2558 (2010).

    Google Scholar 

  • 37.

    Silva, J. P. et al. EU protected area network did not prevent a country wide population decline in a threatened grassland bird. PeerJ 6, e4284 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    García de la Morena, Bota, G., Mañosa, S. & Morales, M. B. El sisón común en España. II Censo Nacional (2016). Report (2018).

  • 39.

    Traba, J. & Morales, M. B. The decline of farmland birds in Spain is strongly associated to the loss of fallowland. Sci. Rep. 9, 9473 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Marcelino, J. et al. Tracking data of the Little Bustard Tetrax tetrax in Iberia shows high anthropogenic mortality. Bird Conserv. Int. https://doi.org/10.1017/S095927091700051X (2017).

    Article  Google Scholar 

  • 41.

    Bevanger, K. Biological and conservation aspects of bird mortality caused by electricity power lines: a review. Biol. Conserv. 86, 67–76 (1998).

    Google Scholar 

  • 42.

    Janss, G. F. E. Avian mortality from power lines: a morphologic approach of a species-specific mortality. Biol. Conserv. 95, 353–359 (2000).

    Google Scholar 

  • 43.

    Martin, G. R. Understanding bird collisions with man-made objects: a sensory ecology approach. Ibis. 153, 239–254 (2011).

    Google Scholar 

  • 44.

    Martin, G. R. & Shaw, J. M. Bird collisions with power lines: failing to see the way ahead?. Biol. Conserv. 143, 2695–2702 (2010).

    Google Scholar 

  • 45.

    Marques, A. T., Martins, R. C., Silva, J. P., Palmeirim, J. M. & Moreira, F. Power line routing and configuration as major drivers of collision risk in two bustard species. Oryx https://doi.org/10.1017/S0030605319000292 (2020).

    Article  Google Scholar 

  • 46.

    Silva, J. P. et al. A spatially explicit approach to assess the collision risk between birds and overhead power lines: a case study with the little bustard. Biol. Conserv. 170, 256–263 (2014).

    Google Scholar 

  • 47.

    García, J., Suárez-Seoane, S., Miguélez, D., Osborne, P. E. & Zumalacárregui, C. Spatial analysis of habitat quality in a fragmented population of little bustard (Tetrax tetrax): implications for conservation. Biol. Conserv. 137, 45–56 (2007).

    Google Scholar 

  • 48.

    Osborne, P. E. & Suárez-Seoane, S. Identifying core areas in a species’ range using temporal suitability analysis: an example using little bustards Tetrax Tetrax L. in Spain. Biodivers. Conserv. 16, 3505–3518 (2007).

    Google Scholar 

  • 49.

    Santangeli, A. & Dolman, P. M. Density and habitat preferences of male little bustard across contrasting agro-pastoral landscapes in Sardinia (Italy). Eur. J. Wildl. Res. 57, 805–815 (2011).

    Google Scholar 

  • 50.

    Santos, M. et al. Impacts of land use and infrastructural changes on threatened Little Bustard Tetrax tetrax breeding populations: quantitative assessments using a recently developed spatially explicit dynamic modelling framework. Bird Conserv. Int. 26, 418–435 (2016).

    Google Scholar 

  • 51.

    Suárez-Seoane, S., Osborne, P. E. & Alonso, J. C. Large-scale habitat selection by agricultural steppe birds in Spain: identifying species-habitat responses using generalized additive models. J. Appl. Ecol. 39, 755–771 (2002).

    Google Scholar 

  • 52.

    Silva, J. P. et al. Estimating the influence of overhead transmission power lines and landscape context on the density of little bustard Tetrax tetrax breeding populations. Ecol. Model. 221, 1954–1963 (2010).

    Google Scholar 

  • 53.

    Morales, M. B., Traba, J., Carriles, E., Delgado, M. P. & de la Morena, E. L. G. Sexual differences in microhabitat selection of breeding little bustards Tetrax tetrax: ecological segregation based on vegetation structure. Acta Oecologica 34, 345–353 (2008).

    ADS  Google Scholar 

  • 54.

    Faria, N., Rabaça, J. E. & Morales, M. B. The importance of grazing regime in the provision of breeding habitat for grassland birds: the case of the endangered little bustard (Tetrax tetrax). J. Nat. Conserv. 20, 211–218 (2012).

    Google Scholar 

  • 55.

    Silva, J. P., Estanque, B., Moreira, F. & Palmeirim, J. M. Population density and use of grasslands by female Little Bustards during lek attendance, nesting and brood-rearing. J. Ornithol. 155, 53–63 (2014).

    Google Scholar 

  • 56.

    INE. Statistical data: Database. (2019). https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_base_dados. Accessed 9th May 2019.

  • 57.

    Gameiro, J., Silva, J. P., Franco, A. M. A. & Palmeirim, J. M. Effectiveness of the European Natura 2000 network at protecting Western Europe’s agro-steppes. Biol. Conserv. 248, 108681 (2020).

    Google Scholar 

  • 58.

    Beja, P. et al. Predators and livestock reduce bird nest survival in intensive Mediterranean farmland. Eur. J. Wildl. Res. 60, 249–258 (2014).

    Google Scholar 

  • 59.

    van der Wal, R. & Palmer, S. C. Is breeding of farmland wading birds depressed by a combination of predator abundance and grazing?. Biol. Lett. 4, 256–258 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 60.

    Lane, S. J., Alonso, J. C. & Martín, C. A. Habitat preferences of great bustard Otis tarda flocks in the arable steppes of central Spain: are potentially suitable areas unoccupied?. J. Appl. Ecol. 38, 193–203 (2001).

    Google Scholar 

  • 61.

    Ahlering, M. A., Johnson, D. H. & Faaborg, J. Conspecific attraction in a grassland bird, the Baird’s Sparrow. J. Field Ornithol. 77, 365–371 (2006).

    Google Scholar 

  • 62.

    Tarjuelo, R. et al. Not only habitat but also sex: factors affecting spatial distribution of Little Bustard Tetrax tetrax families. Acta Ornithol. 48, 119–128 (2013).

    Google Scholar 

  • 63.

    Reino, L. et al. Effects of changed grazing regimes and habitat fragmentation on Mediterranean grassland birds. Agric. Ecosyst. Environ. 138, 27–34 (2010).

    Google Scholar 

  • 64.

    Walters, K., Kosciuch, K. & Jones, J. Can the effect of tall structures on birds be isolated from other aspects of development?. Wildl. Soc. Bull. 38, 250–256 (2014).

    Google Scholar 

  • 65.

    Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: an empirical review and synthesis. Ecol. Soc. 14, 21 (2009).

    Google Scholar 

  • 66.

    Tryjanowski, P. et al. Conservation of farmland birds faces different challenges in Western and Central-Eastern Europe. Acta Ornithol. 46, 1–12 (2011).

    Google Scholar 

  • 67.

    Gudka, M., Santos, C. D., Dolman, P. M., Abad-Gómez, J. M. & Silva, J. P. Feeling the heat: elevated temperature affects male display activity of a lekking grassland bird. PLoS ONE 14, e0221999 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 68.

    Silva, J. P., Catry, I., Palmeirim, J. M. & Moreira, F. Freezing heat: thermally imposed constraints on the daily activity patterns of a free-ranging grassland bird. Ecosphere 6, art119 (2015).

  • 69.

    Alonso, H. et al. Male post-breeding movements and stopover habitat selection of an endangered short-distance migrant, the Little Bustard Tetrax tetrax. Ibis (Lond. 1859) 162, 279–292 (2020).

    Google Scholar 

  • 70.

    García de la Morena, E. L. et al. Migration patterns of Iberian little bustards Tetrax tetrax. Ardeola 62, 95–112 (2015).

    Google Scholar 

  • 71.

    Silva, J. P., Faria, N. & Catry, T. Summer habitat selection and abundance of the threatened little bustard in Iberian agricultural landscapes. Biol. Conserv. 139, 186–194 (2007).

    Google Scholar 

  • 72.

    Equipa Atlas. Atlas das aves nidificantes em Portugal (1999–2005). (Instituto da Conservaçăo da Natureza e da Biodiversidade, Sociedade Portuguesa para o Estudo das Aves, Parque Natural da Madeira e Secretaria Regional do Ambiente e do Mar, 2008).

  • 73.

    De Juana, E. & Martínez, C. Distribution and conservation status of Little bustard Tetrax tetrax in the Iberian Peninsula. Ardeola 43, 157–167 (1996).

    Google Scholar 

  • 74.

    Delgado, A. & Moreira, F. Between-year variations in Little Bustard Tetrax tetrax population densities are influenced by agricultural intensification and rainfall. Ibis (Lond. 1859) 152, 633–642 (2010).

    Google Scholar 

  • 75.

    DGT. Especificações técnicas da Carta de Uso e Ocupação do Solo de Portugal Continental para 1995, 2007, 2010 e 2015. 103 (2018).

  • 76.

    INE. Recenseamento Agrícola 1999—Análise de resultados (2001).

  • 77.

    INE. Recenseamento Agrícola 2009—Análise dos principais resultados (2011).

  • 78.

    Haklay, M. & Weber, P. Openstreetmap: user-generated street maps. IEEE Pervasive Comput. 7, 12–18 (2008).

    Google Scholar 

  • 79.

    R Core Team. R: a language and environment for statistical computing (2016).

  • 80.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 81.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Google Scholar 

  • 82.

    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, Boca Raton, 2017).

    Google Scholar 

  • 83.

    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009). https://doi.org/10.1007/978-0-387-87458-6.

    Google Scholar 

  • 84.

    Wood, S. N. mgcv: mixed GAM computation vehicle with automatic smoothness estimation. R package version 1.8-24. 302 (2018).

  • 85.

    Bjørnstad, O. N. & Falck, W. Nonparametric spatial covariance functions: estimation and testing. Environ. Ecol. Stat. 8, 53–70 (2001).

    MathSciNet  Google Scholar 

  • 86.

    Rhodes, J. R., McAlpine, C. A., Zuur, A. F., Smith, G. M. & Ieno, E. N. Mixed Effects Models and Extensions in Ecology with R 469–492 (Springer, Berlin, 2009). https://doi.org/10.1007/978-0-387-87458-6_21.

    Google Scholar 

  • 87.

    Bjørnstad, O. N. ncf: spatial nonparametric covariance functions. R package version 1.1–7. (2016).

  • 88.

    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://qgis.osgeo.org (2017).


  • Source: Ecology - nature.com

    Did our early ancestors boil their food in hot springs?

    MIT Integrative Microbiology Initiative will stimulate environmental microbiology research