in

Changing carbon-to-nitrogen ratios of organic-matter export under ocean acidification

  • 1.

    Kwon, E. Y., Primeau, F. & Sarmiento, J. L. The impact of remineralization depth on the air–sea carbon balance. Nat. Geosci. 2, 630–635 (2009).

    CAS  Article  Google Scholar 

  • 2.

    Volk, T. & Hoffert, M. I. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present Vol. 32 (eds Sundquist, E. T. & Broeker, W. S.) 99–110 (American Geophysical Union, 1985).

  • 3.

    Passow, U. & Carlson, C. A. The biological pump in a high CO2 world. Mar. Ecol. Prog. Ser. 470, 249–271 (2012).

    CAS  Article  Google Scholar 

  • 4.

    Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).

    CAS  Article  Google Scholar 

  • 5.

    DeVries, T. New directions for ocean nutrients. Nat. Geosci. 11, 15–16 (2018).

    CAS  Article  Google Scholar 

  • 6.

    Redfield, A. in James Johnstone Memorial Volume (ed. Daniel, R. J.) 177–192 (University Press of Liverpool, 1934).

  • 7.

    Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).

    Article  Google Scholar 

  • 8.

    Riebesell, U. & Tortell, P. D. in Ocean Acidification (eds Gattuso, J. P. & Hansson, L.) 99–121 (Oxford Univ. Press, 2011).

  • 9.

    Boyd, P. W. & Newton, P. P. Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces? Deep Sea Res. I 46, 63–91 (1999).

    CAS  Article  Google Scholar 

  • 10.

    Stange, P. et al. Ocean acidification-induced restructuring of the plankton food web can influence the degradation of sinking particles. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00140 (2018).

  • 11.

    Engel, A. et al. Impact of CO2 enrichment on organic matter dynamics during nutrient induced coastal phytoplankton blooms. J. Plankton Res. 36, 641–657 (2014).

    CAS  Article  Google Scholar 

  • 12.

    Riebesell, U. et al. Technical note: a mobile sea-going mesocosm system—new opportunities for ocean change research. Biogeosciences 10, 1835–1847 (2013).

    Article  Google Scholar 

  • 13.

    Sswat, M. et al. Food web changes under ocean acidification promote herring larvae survival. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0514-6 (2018).

  • 14.

    Riebesell, U. et al. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450, 545–548 (2007).

    CAS  Article  Google Scholar 

  • 15.

    Finkel, Z. V. et al. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32, 119–137 (2010).

    CAS  Article  Google Scholar 

  • 16.

    van de Waal, D. B., Verschoor, A. M., Verspagen, J. M. H., van Donk, E. & Huisman, J. Climate-driven changes in the ecological stoichiometry of aquatic ecosystems. Front. Ecol. Environ. 8, 145–152 (2010).

    Article  Google Scholar 

  • 17.

    Tagliabue, A., Bopp, L. & Gehlen, M. The response of marine carbon and nutrient cycles to ocean acidification: large uncertainties related to phytoplankton physiological assumptions. Glob. Biogeochem. Cycle https://doi.org/10.1029/2010gb003929 (2011).

  • 18.

    Thomas, H., Ittekkot, V., Osterroht, C. & Schneider, B. Preferential recycling of nutrients—the ocean’s way to increase new production and to pass nutrient limitation? Limnol. Oceanogr. 44, 1999–2004 (1999).

    CAS  Article  Google Scholar 

  • 19.

    Schneider, B., Schlitzer, R., Fischer, G. & Nothig, E. M. Depth-dependent elemental compositions of particulate organic matter (POM) in the ocean. Glob. Biogeochem. Cycle https://doi.org/10.1029/2002gb001871 (2003).

  • 20.

    Cripps, G., Flynn, K. J. & Lindeque, P. K. Ocean acidification affects the phyto-zoo plankton trophic transfer efficiency. PLoS ONE https://doi.org/10.1371/journal.pone.0151739 (2016).

  • 21.

    Thor, P. & Oliva, E. O. Ocean acidification elicits different energetic responses in an Arctic and a boreal population of the copepod Pseudocalanus acuspes. Mar. Biol. 162, 799–807 (2015).

    CAS  Article  Google Scholar 

  • 22.

    Endres, S., Galgani, L., Riebesell, U., Schulz, K. G. & Engel, A. Stimulated bacterial growth under elevated (p_{{rm{CO}}_{2}}): results from an off-shore mesocosm study. PLoS ONE 9, e99228 (2014).

    Article  Google Scholar 

  • 23.

    Piontek, J. et al. Response of bacterioplankton activity in an Arctic fjord system to elevated (p_{{rm{CO}}_{2}}): results from a mesocosm perturbation study. Biogeosciences 10, 297–314 (2013).

    Article  Google Scholar 

  • 24.

    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article  Google Scholar 

  • 25.

    Taucher, J. & Oschlies, A. Can we predict the direction of marine primary production change under global warming? Geophys. Res. Lett. https://doi.org/10.1029/2010gl045934 (2011).

  • 26.

    Schneider, B., Engel, A. & Schlitzer, R. Effects of depth- and CO2-dependent C:N ratios of particulate organic matter (POM) on the marine carbon cycle. Glob. Biogeochem. Cycle https://doi.org/10.1029/2003gb002184 (2004).

  • 27.

    Oschlies, A., Schulz, K. G., Riebesell, U. & Schmittner, A. Simulated 21st century’s increase in oceanic suboxia by CO2-enhanced biotic carbon export. Glob. Biogeochem. Cycle https://doi.org/10.1029/2007gb003147 (2008).

  • 28.

    Broecker, W. S. & Henderson, G. M. The sequence of events surrounding Termination II and their implications for the cause of glacial–interglacial CO2 changes. Paleoceanography 13, 352–364 (1998).

    Article  Google Scholar 

  • 29.

    Broecker, W. S. Ocean chemistry during glacial time. Geochim. Cosmochim. Acta 46, 1689–1705 (1982).

    CAS  Article  Google Scholar 

  • 30.

    Boxhammer, T., Bach, L. T., Czerny, J. & Riebesell, U. Technical note: sampling and processing of mesocosm sediment trap material for quantitative biogeochemical analysis. Biogeosciences 13, 2849–2858 (2016).

    Article  Google Scholar 

  • 31.

    Sharp, J. H. Improved analysis for “particulate” organic carbon and nitrogen from seawater. Limnol. Oceanogr. 19, 984–989 (1974).

    CAS  Article  Google Scholar 

  • 32.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • 33.

    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Article  Google Scholar 

  • 34.

    Schartau, M., Landry, M. R. & Armstrong, R. A. Density estimation of plankton size spectra: a reanalysis of IronEx II data. J. Plankton Res. 32, 1167–1184 (2010).

    Article  Google Scholar 

  • 35.

    Mackey, M. D., Mackey, D. J., Higgins, H. W. & Wright, S. W. CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144, 265–283 (1996).

    CAS  Article  Google Scholar 

  • 36.

    Utermöhl, V. H. Neue Wege in der quantitativen Erfassung des Planktons. (Mit besondere Beriicksichtigung des Ultraplanktons). Verh. Internat. Verein. Theor. Angew. Limnol. 5, 567–595 (1931).

    Google Scholar 

  • 37.

    Bach, L. T., Riebesell, U. & Schulz, K. G. Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnol. Oceanogr. 56, 2040–2050 (2011).

    CAS  Article  Google Scholar 

  • 38.

    Stange et al. Quantifying the time lag between organic matter production and export in the surface ocean: implications for estimates of export efficiency. Geophys. Res. Lett. 44, 268–276 (2017).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    A controllable membrane to pull carbon dioxide out of exhaust streams

    More than a meal